
land

Article

Effects of Meteorological Parameters on Surface Water Loss in
Burdur Lake, Turkey over 34 Years Landsat Google Earth
Engine Time-Series

Sohaib K. M. Abujayyab 1,* , Khaled H. Almotairi 2, Mohammed Alswaitti 3 , Salem S. Abu Amr 4,
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Abstract: The current work aims to examine the effect of meteorological parameters as well as the
temporal variation on the Burdur Lake surface water body areas in Turkey. The data for the surface
area of Burdur Lake was collected over 34 years between 1984 and 2019 by Google Earth Engine. The
seasonal variation in the water bodies area was collected using our proposed extraction method and
570 Landsat images. The reduction in the total area of the lake was observed between 206.6 km2 in
1984 to 125.5 km2 in 2019. The vegetation cover and meteorological parameters collected that affect the
observed variation of surface water bodies for the same area include precipitation, evapotranspiration,
albedo, radiation, and temperature. The selected meteorological variables influence the reduction
in lake area directly during various seasons. Correlations showed a strong positive or negative
significant relationship between the reduction and the selected meteorological variables. A factor
analysis provided three components that explain 82.15% of the total variation in the data. The data
provide valuable references for decision makers to develop sustainable agriculture and industrial
water use policies to preserve water resources as well as cope with potential climate changes.

Keywords: surface water degradation; meteorological parameters; surface water mapping; spatial-
temporal variation; satellite images; Normalized Difference Water Index (NDWI); correlation; fac-
tor analysis

1. Introduction

The availability of water resources is necessary for human economic prosperity, agri-
culture, drinking, and the promotion of sustainable development [1–3]. Climate change, in
combination with urbanization, population growth, and water consumption is projected to
intensify the strain on natural water resources [4,5]. Interannual and intra-annual changes
in surface waters can be dramatically affected by climate change and human activity with
far-reaching implications for habitats and human society [6,7].

Climate change has adverse effects on the water bodies in Turkey and in the rest
of the countries [8–11]. The Burdur Lake basin, located in the Turkish Mediterranean
region, has been subjected to significant environmental degradation, including increased
emissions and a decline in water levels [12]. It is critical for the future development of the
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area to determine the origin of this disaster and whether it is natural (climate, seismic) or
anthropogenic [13]. To ensure the river basin’s long-term economic and social development,
as well as the ecosystem’s resilience, the spatial-temporal variance characteristics of surface
waters need to be precisely mapped [14]. Former research used several algorithms and
different data sources to map the surface water [15]. Due to the high frequency, low cost,
and repeatability of measurements, satellite-based methods have advantages in surface
water mapping over conventional methods [16]. Recently, Landsat, IKONOS, QuickBird
MODIS, and Sentinel [17,18] satellite images were used to explore and evaluate the areas
of surface water at global, continental, and regional scales.

In the meantime, several satellite-based methods for detecting surface water have
been established. There are two types of surface water detection algorithms: thematic
water surface extraction algorithms and classification algorithms. Classification algorithms
consist of Maximum Likelihood [19], Artificial Neural Networks [20–22], Support Vector
Machine [23–25], Random Forest [26,27], Decision Tree [28], Naïve Bayes [29,30], and
Logistic Regression [30]. However, since these approaches require human experience for
the manual tasks involved in the data processing, skills to pick samples and train algorithms
as well as a significant technological infrastructure such as high-performance computing
machines capable of delivering the necessary processing, analysis, and storage platform,
they are challenging to use to rapidly map water bodies using multitemporal images over
a wide area, a large region, or on a global scale [29,31]. In contrast, satellite spectral bands
and various types of water indices are the two main components of thematic water surface
extraction algorithms. Multiband water indices such as the Normalized Difference Water
Index (NDWI) exploit the variations in reflectance between the visible and infrared bands
of the electromagnetic spectral spectrum. The low reflection and high absorption of long
wavelengths of electromagnetic energy in water, especially in the near-infrared sections of
the electromagnetic spectrum, are used in most water indices. Meanwhile, water indices
have been successfully utilized for mapping surface water using remotely-sensed data. The
main advantages of water indices are the precise, quick, easy, and reproducible mapping
of surface water to investigate the dramatic interannual and intra-annual surface water
volatility [31]. Xu utilized the Modified Normalized Difference Water Index (MNDWI) to
enhance water features. The study reported that zero threshold works much better for the
MNDWI than the NDWI [32]. However, the short-wave infrared bands (SWIR) are not
available in Landsat 1, 2, 3, and 4.

Although several satellites have advanced capabilities to map water bodies such as
Sentinel-1 SAR imagery, which does not have the cloud limitation [33], these satellites have
only been available for a few years. Landsat imagery is considered as the most suitable
images to extract the NDWI maps for a long period [34]. In addition, the Normalized
Difference Vegetation Index (NDVI) was employed because it is well known and easy
to apply. Furthermore, much of the research used these indices because of their reliable
results. Moreover, the NDVI is used to determine land cover changes [35–37], drought
monitoring [38], and forest health tracking [39], etc.; the NDWI is used to detect the water
surface and its changes [40].

Water bodies have significant interannual and intra-annual differences in surface area.
Therefore, there are many unknowns when using a single image to extract the regions
of surface water [41]. Although some former studies in the literature that analyzed the
surface area of Burdur Lake [15,42], all the available articles have utilized few images to
analyze the degradation in the area. Since surface water has interannual water variability,
describing long patterns of surface water variability with several years of images taken
at the same time can result in inconsistent areas of surface water and uncertainties in the
outcomes. In addition, it is challenging to identify the suitable period in a year for a single
image and the same date’s image over various years. Meanwhile, the areas of surface
water could be mapped during rainy seasons, while the permanent water area could be
detected during dry seasons. Choosing an acceptable time to take satellite images for
various reasons can be difficult. Therefore, using all available images within a year helps
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to prevent these mapping challenges, inconsistencies, and reduce such uncertainty. As a
result, a wide-ranging investigation is needed to examine the continuous shift of surface
water areas using sufficient photos taken over several seasons and years.

Among the current satellites, Landsat images have the longest-running terrestrial
satellite records and the highest consistency spectrum. As a result, Landsat images have
been successfully utilized in mapping the surface water and studying the effects of human-
caused factors and climate change. Since January 2008, petabytes of long-term Landsat
image files have been available for free download due to the open-data policy of Land-
sat [43,44]. Simultaneously, some cloud computing systems have been created to handle
vast amounts of geospatial data. Google Earth Engine (GEE) is an example of a cloud com-
puting platform that can efficiently handle big data due to the capabilities of parallel com-
puting. GEE is made up of multipetabyte remote sensing data that has been preprocessed
and made accessible and usable [45,46]. Recently, the GEE platform has been widely em-
ployed to extract the crop planting areas [47,48], forests [35,49–52], coastal tidal flats [53,54],
surface water bodies [55–57] from Landsat images at a national or regional scale.

This paper aims to examine the spatial and temporal variation in the Burdur Lake sur-
face water body areas from 1984 to 2019 as well as to determine the key driving influencers
(vegetation cover, precipitation, evapotranspiration, albedo, radiation, and temperature)
that affect the observed variation of surface water bodies. In this paper, the degradation
and seasonal variation in the Burdur Lake surface water area were extracted and analyzed
over 34 years utilizing the GEE cloud computing platform and using the time series of
Landsat imagery. The mapping of the Burdur Lake surface water for such a long period
with this continuation are not yet established. The statistical relationship between meteoro-
logical variables and the reduction in the area of the lake is presented and assessed. The
correlation matrix and factor analysis between the selected variables and the degradation
of the surface area were assessed and discussed. The research provides valuable references
for decision makers to develop sustainable agriculture and industrial water use policies to
preserve water resources as well as to cope with potential climate changes.

2. Materials and Methods
2.1. Study Area

The study area is located in the southwest of Turkey, which lies in the administrative
area of the Burdur and Isparta provinces. Geographically, it is located in the Mediterranean
region and is under the rain shadow of the Taurus Mountains. The lake is fed from the
rainfall of the surrounding watershed with a total area of 3211 km2 as shown in Figure 1.
The annual average temperature of the area is 13.2 ◦C, and the annual total precipitation of
the area is 428.3 mm [58]. According to the Köppen classification, the area is Csa, which
represents lukewarm in the winter and very hot in the summer [59].

2.2. Data Source (Landsat5 TM, 7 ETM+, 8 OLI Data, NDVI Data, and Climate Data)

Burdur Lake is covered by Paths 178 and 179 and Row 34. By utilizing the GEE
Landsat-hosted dataset, 570 scenes have been obtained from 1984 to 2019.

The Landsat images were collected from the Landsat 4–5 Thematic Mapper sensor
(TM) [60], Landsat 7 Enhanced Thematic Mapper Plus (ETM+) [61], and Landsat 8 Opera-
tional Land Imager (OLI)/Thermal Infrared Sensor (TIRS) [62] instruments.

The 3-hourly Global Land Data Assimilation System (ERA5-Land) product [63], which
ingests ground-based observational and satellite data, was used to collect the annual
cumulative precipitation, annual cumulative evapotranspiration, albedo, radiation, and
annual average temperature.
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Figure 1. Location of Burdur Lake in Turkey and the local watershed.

The data of the vegetation cover was obtained from the combined 16 days MODIS
NDVI through the GEE platform [64]. The MODIS-NDVI data was only available from
2000 to 2019.

2.3. Surface Water Body Extraction

The detailed methodology consists of three stages as illustrated in Figure 2: Firstly,
there are the Landsat 5, 7, and 8 images listed from the GEE datasets across the Burdur area
since 1984 to 2019. A total of 883 images were collected from Landsat 5, 612 images were
collected from Landsat 7, and 425 images were gathered from Landsat 8. Although the
GEE provides the possibility of filtering and removing the low-quality images by shadows,
snow, and clouds, all the images found were masked based on the study area. Analyzing
the maximum obtainable images enhances the time series continuity. Therefore, during the
exploration of the Landsat images, several Landsat tiles (tiles within Paths 178 and 179 and
Row 34 based on the Landsat World Reference System WRS-2) were found mainly cloudy
but not cloudy within the area of Burdur Lake. Thus, these Landsat tiles were utilized to
support the continuity of the extracted time series.
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Figure 2. A flowchart of the surface water extraction methodology using Landsat 5, 7, and 8 data
utilizing GEE and the ArcGIS model builder iterator.

Secondly, the NDWI index was calculated from the various Landsat images in the GEE
platform. Due to the limited 5 min of time processing and limited 5000 processing points
provided by the GEE platform or temporal and spatial analysis, batch processing was im-
plemented using Python within QGIS using the GEE plugin to overcome this problem. The
NDWI method delineates the body of surface water by extracting the normalized difference
between a reflected green visible band and a near-infrared band [65]. The NDWI index
enhances the presence of surface water bodies and eliminates the presence of terrestrial
vegetation and soil features. The NDWI index is calculated by using Equation (1):

NDWI =
(Green−NIR)
(Green + NIR)

(1)

where
theNDWI is the normalized difference water index,
Green is the reflected green visible light and
the NIR is the reflected near-infrared energy.

Based on the data used in this analysis, the surface water bodies were extracted by
Equations (2)–(4).

Landsat 4 5 NDWI =
(Band 2− Band 4)
(Band 2− Band 4)

(2)

Landsat 7 NDWI =
(Band 2− Band 4)
(Band 2− Band 4)

(3)
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Landsat 8 NDWI =
(Band 3− Band 5)
(Band 3− Band 5)

(4)

The postprocessing operations were performed in the second stage in the ArcGIS
environment using a model builder iterator. The NDWI images were calculated on a
pixel-by-pixel basis, then different thresholds were defined between the range of <0 and
0.1 to 1 based on different Landsat images and based on the visual interpretation. When
the condition was met, the pixels were categorized as surface water and assigned 1 value.
When the condition was not met, the pixels were categorized as non-surface water and
assigned 0 value (5). Most of the threshold values were assigned 0 except some of the
images were assigned 0.1 due to the complex image digital values. The different threshold
values were assigned to distinguish the normal water bodies from water with high sand
content and mudflats with high water content.

if NDWI > 0
{

if NDWI > 0 = surface water
if NDWI < 0 = nonsurface water

To extract the final vector polygon of Burdur Lake we proceeded as follows: (1) The
results from the binary NDWI images were smoothed using a low-pass filter (kernel 3 by
3 pixels) to remove the noisy pixels and reduce the implication of abnormal cells. (2) The
smoothed images again enhanced the subdued edges by utilizing a high-pass filter (kernel 3
by 3 pixels). (3) The results from the enhanced images were converted to a GIS vector format,
and only the polygons of Burdur Lake were stored. The lake polygons were separated
from other discrete plates by spatially intersecting them with the general diagonal line of
Burdur Lake. A model builder with a vector iterator was built in ArcGIS, then ran over the
polygons to extract only the Burdur Lake polygons. (4) Based on the visual interpretation
using the satellite image as a base image for verification, several polygons were excluded
from the list due to high gaps in the polygon area. Then, the area of each polygon was
calculated as shown in Figure 3. (5) The monthly base time series were formed in Microsoft
Excel using the PivotTable. The timeline of the collected data was classified into four
seasons using the meteorological seasons in the Northern Hemisphere. The meteorological
autumn (September, October, and November), winter (December, January, and February),
spring (March, April, and May), and summer (June, July, and August) [66].

Figure 3. Results of Burdur Lake mapping of each processing stage. (a) the original Landsat image,
(b) the NDWI map of Burdur Lake, (c) the smoothed NDWI image using a low-pass filter, (d) the
edge-enhanced NDWI image using high-pass filter, (e) the binary map of water and non-water areas,
(f) final extracted vector polygon of the Burdur area.
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2.4. Accuracy Assessment of Extracted Surface Water Data

This section aims to prove the efficiency of the proposed method of surface water
body extraction and illustrates the quality of the extracted data of the lake borders. The
process involves 3 datasets as follows:

(1) The proposed dataset uses the raw Landsat images to extract the lake borders to
monitor the degradation process. To generate a base for an accuracy assessment and
to avoid any statistical misrepresentation of the location of assessment points, pixel-
by-pixel accuracy assessment methods were employed. By applying the pixel-by-pixel
accuracy assessment method, hundreds of thousands of pixels were taken around the
coastline of the lake. A rectangle was drawn over the lake area and clipped the lake
area from the Sentinel satellite image. The clipped image consists of 3588 rows and
3210 columns, which lead to producing 4,035,395 pixels. These pixels were converted
to points. The points were used as a base to extract the pixels values from the NDWI
images. The confusion matrix was calculated again using 4,035,395 pixels.

(2) Lastly, the 4,035,395 points act as ground truth points to visually interpret the non-
water and water areas based on the 10 m resolution Sentinel-2. Due to the limited
temporal Sentinel-2 satellite images, we searched and matched between the images
of the same month and year from two datasets (Sentinel images and our produced
NDWI). The matching processing is to avoid the sensitivity and seasonality problem
of the water area during the accuracy comparison. The found Sentinel images were
for the years 2016, 2017, 2018, and 2019 and the 8, 9, 8, 9 months, respectively.

The confusion matrix was generated to compute the User Equation (5), Producer
Equation (6), and Overall Accuracy Equation (7) [67]. In addition, Cohen’s Kappa index
was calculated to measure the agreement among the two datasets [68]:

User′ s accuracy =
TP

TN
∗ 100% ==

FP
FN
∗ 100% (5)

Producer accuracy =
TP

FN
∗ 100% ==

FP
FP
∗ 100% (6)

Overall Accuracy =
TN + TP

TN + TP + FP + FN
∗ 100% (7)

where TP = true positive value, FP = false positive value, TN = true negative value, and
FN = false negative value.

2.5. Statistical Analysis

The extracted results from the Landsat images were analyzed using descriptive statis-
tics and the Pearson correlation analysis [69]. Furthermore, a factor analysis was used
to identify the sources of variation in the data. A factor analysis (FA) is a multivariate
technique used to produce new uncorrelated variables using the original data values. A
principal components analysis (PCA) is usually used to extract the factors from the corre-
lation matrix of the selected variables. The extracted components are usually rotated to
reduce the contribution of less significant variables [70,71]. The process will result in a few
factors that account for the same amount of information as the original dataset.

3. Results and Discussion
3.1. Accuracy Assessment of Surface Water Map

The extracted results from the Landsat images were compared point-to-point with
the Sentinel-2 images over the last four years in our time series duration (2016, 2017, 2018,
and 2019). Table 1 presents each water and non-water point extracted from Sentinel-2
images and their User’s Accuracy, Producer’s Accuracy, as well as Overall Accuracy and
the number of points in each category. The Overall Accuracy of our extraction methodology
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was more than 99%, the Producer’s Accuracy for non-water areas and water areas was
more than 99%, and the User’s Accuracy was more than 99% for non-water areas and water
areas over the years 2016, 2017, 2018, and 2019.

Table 1. Accuracy assessment of the last 4 years of the Burdur NDWI area (2016, 2017, 2018, and
2019) based on the visual interpretation from Sentinel-2 images using the pixel-by-pixel method.

Non-Water Class Water Class User’s Accuracy
(%)

20
16

Non-water 2,695,685 2848 99.9%
water 5464 1,331,398 99.6%

Producer’s Accuracy 99.8% 99.8%
Overall Accuracy 99.8%
Cohen’s Kappa 0.9953

20
17

Non-water 2,739,899 2853 99.9%
water 4726 1,287,917 99.6%

Producer’s Accuracy 99.8% 99.8% 99.8%
Overall Accuracy 100%
Cohen’s Kappa 0.9957

20
18

Non-water 2,754,160 857 100%
water 6178 1,274,200 99.5%

Producer’s Accuracy 99.8% 99.9%
Overall Accuracy 99.8 %
Cohen’s Kappa 0.9960

20
19

Non-water 2,775,806 3702 99.9%
water 6957 1,248,930 99.4%

Producer’s Accuracy 99.7% 99.7%
Overall Accuracy 99.7%
Cohen’s Kappa 0.9938

The obtained results show a high degree of accuracy for the proposed extraction
method results in this study and the benchmark data. This high degree of accuracy is a
supportive indicator of the quality of the extracted data and the employed methodology
where the dissimilarity is reasonable since there should be a margin of error even in the
benchmark dataset extraction methodology as well as the proposed method.

Ultimately, this assessment reflects the effectiveness and the simplicity of the proposed
method, triggers the potential for publishing the data on an open-source platform, and
paves the way for applying the same principle to other attractive geographical areas for
further investigation.

3.2. Spatial and Temporal Changes of Burdur Lake Area from 1984 to 2019

The analysis of long-term, remotely-sensed data of Burdur Lake has shown that the
water body of the lake has dramatically decreased from 1984 to 2019. The trend of the
decrease in the lake area was observed by utilizing Landsat images at roughly five-year
intervals. The follow-up of the changes in the area covering the lake was examined within
seven periods as 1984–1990, 1995, 2000, 2005, 2010, 2015, 2019 as shown in Figure 4. As a
result, the areal changes of Burdur Lake were determined, considering the periods as 206.6,
192.2, 172.9, 158, 156.8, 144.2, 135.8, 125.5 km2, respectively.

Burdur Lake lies in a southwest-northeast direction, and the depth of the lake is
shallower on the northeast side. For this reason, the maximum areal changes of the lake
had taken place by 1984–2000, which is the first three periods on the northeast edge of the
water body [72,73]. The radical reduction in the lake area led to a severe loss of wetland
habitat, resulting in the drying up of shallow areas of great importance to waterfowl.
Figure 5 shows the trend and temporal variation in the lake area between 1984 and 2019.
It is obvious that during the thirty-four years, the lake area continually decreased except
for the period between 2003 and 2004. Unfortunately, after 2006, the area continued to
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decrease with an almost fixed rate of reduction. The trend of the annual area shows the
same reduction pattern after 2006 until 2019. Figure 5 indicates that the decrease in the
lake area is ongoing and will lead to further reduction. According to the general trend of
the lake, the annual reduction in the area is 2.35 km2 per year. In case the lake conditions
persist, starting in 2019, the lake will lose half of its area in eight and a half years.

Figure 4. The coastline and areal changes of Burdur Lake’s water body according to years.

Figure 5. The trend and temporal variation in the lake area between 1984 and 2019.



Land 2021, 10, 1301 10 of 18

Moreover, the seasonal and annual redaction variation in the lake area between 1985
and 2019 are presented in Figure 6. Generally, the reduction in the lake area happened
most of the time except the years 1985, 1998, 2002, 2003, 2004, and 2005, when the area
of Burdur Lake increased annually to 0.39, 0.15, 1.4, 2.24, 0.83, and 0.36 km2, respectively.
Between 2003 and 2006, the decrease in the area stopped and started to recover. The lake
area slightly increased from 154 to 158 km2. The worst redaction was in 2011, where the
area was reduced by 6.23 km2 in one year. Figure 6 also presents the seasonal variation
in redactions. The two subfigures show that the redactions happened during the summer
and autumn seasons, while in the winter and spring seasons, the lake gained some area
over a few years especially after the year 2000. These outcomes indicate the strong linkage
between the lake area and the rainy-snowy seasons as well as the source of lake water.

Figure 6. Seasonal and annual temporal redaction variation between 1985 and 2000.
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3.3. Descriptive Statistics of Climatological Data, Vegetation, and Temporal Area

The results for temperature, evaporation, precipitation, albedo, radiation, and the
reduction of the lake area are summarized as a minimum, maximum, mean, and standard
deviation (Table 2). The lowest average value was observed for evaporation, which was
−0.002, and the highest average value was observed for radiation, which was 1.6478000.
Furthermore, the standard deviation was low and acceptable, except radiation was high,
which was 6,449,530. This was due to the seasonal variation as well as cloudy times. The
collected data were further analyzed based on the season. The boxplot for the reduction of
the area of the lake and selected variables are presented in Figure 7 showing the first, second
(median), and third quartiles with minimum and maximum values. Figure 7 exhibits a very
big fluctuation for the selected variables during the various season and within each season
as well. The higher changes in the area of the lake may be attributed to the high changes in
all selected meteorological parameters, especially in winter and spring. In summary, the
selected variables behave differently during each season and between various seasons.

Table 2. Minimum, maximum, mean, and standard deviations for the selected variables.

Variables Minimum Maximum Mean Std. Deviation

Temperature (Kelvin) 273.440 300.930 286.860 8.095
Evaporation (m) −0.005 0.000 −0.002 0.002
Precipitation (m) 0.000 0.010 0.002 0.001

Albedo (%) 0.080 0.180 0.092 0.014
Radiation (J/m2) 5,330,000 27100 16,478,000 6,449,530
Reduction (km2) −3.840 3.780 −0.142 0.863

NDVI 0.000 0.000 0.300 0.058

Figure 7. Cont.
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Figure 7. Boxplot for the selected variables based on season.

3.4. Correlation Analysis

The relationship between selected variables (temperature, evaporation, precipitation,
albedo, radiation, and NDVI) of the lake area was studied to understand the behavior of
each variable in the presence of other variables. The correlation matrix for the coefficient
of correlation is presented in Table 3. The correlation matrix showed a strong positive or
negative significant relationship (p-value < 0.01 or p-value < 0.05) as presented in Table 3
between the reduction and the selected variables. Furthermore, a strong correlation was
exhibited between various variables in the presence of other variables. In summary, the
selected variables influence the reduction in the lake area directly during various seasons.

Table 3. Correlation matrix for the selected variables.

Temperature Evaporation Precipitation Albedo Radiation Reduction NDVI

Temperature 1 −0.925 ** −0.629 ** −0.307 ** 0.871 ** −0.311 ** 0.047
Evaporation −0.925 ** 1 0.548 ** 0.172 ** −0.919 ** 0.233 ** −0.063
Precipitation −0.629 ** 0.548 ** 1 0.346 ** −0.526 ** 0.204 ** 0.136 *

Albedo −0.307 ** 0.172 ** 0.346 ** 1 −0.240 ** 0.164 * -0.299 **
Radiation 0.871 ** −0.919 ** −0.526 ** −0.240 ** 1 −0.183 ** 0.260 **
Reduction −0.311 ** 0.233 ** 0.204 ** 0.164 * −0.183 ** 1 0.152 *

NDVI 0.047 −0.063 0.136 * −0.299 ** 0.260 ** 0.152 * 1

**. Correlation is significant at the 0.01 level (2-tailed); *. Correlation is significant at the 0.05 level (2-tailed).

3.5. Factor Analysis

The collected data were further analyzed to identify the amount of explained variation
in the data. A factor analysis is a multivariate method used to describe the relationship
between various selected variables which are highly correlated with a smaller number
of new, uncorrelated variables called factors. A factor analysis is considered as a data
reduction method that proposes how many variates are important to explain the observed
variances in the data. The analysis was provided only three components which explain
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82.15% of the total variation in the data. The contribution of each variable to each factor is
represented by the coefficient associated with each variable in Equations (8)–(10):

F1 = 0.93 Temperature − 0.97 Evaporation − 0.63 Precitipation
− 0.13 Albedo + 0.95 Radiation − 0.14 Reduction
+ 0.09NDVI

(8)

F2 = 0.09 Temperature − 0.01 Evaporation − 0.04 Precitipation
− 0.79 Albedo + 0.19 Radiation + 0.02 Reduction
+ 0.81NDVI

(9)

F3 = − 0.23 Temperature + 0.07 Evaporation + 0.44 Precitipation
+ 0.45 Albedo + 0.02 Radiation + 0.80 Reduction
+ 0.43NDVI

(10)

The first factor (F1) explains more than 45% (45.06) of the total variation in the data,
this contribution is mainly due to the difference between temperature, radiation, and from
the other side evaporation and precipitation. The second factor (F2) explains 18.90% which
is mainly due to the difference between vegetation cover (NDVI) and albedo, whilst the
third factor (F3) explains only 18.19% of the total variation in the data which is due to the
reduction in the area of the lake. The contribution of the selected variables in explaining
the total variation during various seasons is represented in a boxplot as shown in Figure 8
showing the effect during various seasons. The values of the factors behave differently
during various seasons. Furthermore, winter exhibited the highest fluctuation for factors 2
and 3 which is due to the NDVI, albedo, and reduction of the lake area. The lake is fed by
rainfall of the basin, the rivers that flow into the lake, and groundwaters. Since there is no
water flow out of the lake, water losses occur only through evaporation and infiltration [72].
The water level of the lake has decreased by 14 m, and the total volume of the lake has
decreased by 38%. A high correlation was found between the decrease in the lake level and
the temperature and total evaporation [73].

Figure 8. Cont.
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Figure 8. Boxplot for the values of the extracted factors during various seasons.

According to some studies, the decreasing trend of the lake’s water level is rooted
in increasing human activity in the Burdur Lake basin. Especially dams constructed on
rivers feeding the lake to irrigate agricultural lands in the basin reduce the amount of water
feeding the lake. Besides, excessive water consumption of the marble quarries in the basin
is among the important reason for the water level decrease [74]. According to another
study, the use of rivers feeding the lake for mains water and the use of groundwater for
agriculture caused the water level of the lake to decrease [75]. In other words, the reasons
for the decrease in the water level of the lake are the increase in water consumption due
to the expansion of urban areas and agricultural lands in harmony with the population
increase. In addition, because the area where the lake is located is tectonically active, the
direction and drying of the underground waters due to the earthquakes may have caused
the water level of the lake to decrease [76]. Figure 9 shows the relationship between the
reduction in the area of the lake with the NDVI.

Figure 9. The relationship between the reduction in the area of the lake and the NDVI index.

4. Conclusions

In this work, the relationship between selected meteorological variables and the
reduction of the lake area was studied for 34 years between 1984 and 2019 to understand
the behavior of each variable in the presence of other variables. A strong positive or
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negative correlation showed a significant relationship (p-value < 0.01 or p-value < 0.05)
between the reduction of the lake area and the selected variables. Furthermore, a strong
correlation is exhibited between various variables in the presence of other variables. In
summary, the selected variables influence the reduction of lake area directly during various
seasons. A factor analysis provided three components that explain 82.15%% of the total
variation in the data. The contribution of each variable to each factor is represented by the
coefficient associated with each variable. The first factor explains more than 45% (45.06) of
the total variation in the data, this contribution is mainly due to the difference between
temperature, radiation, and, from the other side, evaporation and precipitation. The second
factor explains 18.90% which is mainly due to the variation of the vegetation cover (NDVI)
and albedo, whilst the third factor explains only 18.19% of the total variation in the data,
which is due to the reduction in the area of the lake. The values of the factors behave
differently during various seasons. Furthermore, human activities such as agriculture and
industry may contribute to the degradation rate of lake areas which may be considered
in future work. In addition, the lake body area as a unit of measurement alone expresses
the relative deterioration of the water volume in the lake, but the difference in the depth
of the lake from one place to another can lead to a margin of error in the area of the lake
body. Thus, solutions to this problem can be developed in future studies by linking the
area extracted from satellite images with depth data, if available.
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