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Abstract: Soil water holding capacities (SWHCs) are among the most important factors for under-

standing the water cycle in forested catchments because they control available plant water that sup-

ports evapotranspiration. The direct determination of SWHCs, however, is time consuming and ex-

pensive, so many pedotransfer functions (PTFs) and digital soil mapping (DSM) models have been 

developed for predicting SWHCs. Thus, it is important to select the correct soil properties, topogra-

phies, and environmental features when developing a prediction model, as well as to understand 

the interrelationships among variables. In this study, we collected soil samples at 971 forest sites 

and developed PTF and DSM models for predicting three kinds of SWHCs: saturated water content 

(θS) and water content at pF1.8 and pF2.7 (θ1.8 and θ2.7). Important explanatory variables for SWHC 

prediction were selected from two variable importance analyses. Correlation matrix and sensitivity 

analysis based on the developed models showed that, as the matric suction changed, the soil phys-

ical and chemical properties that influence the SWHCs changed, i.e., soil structure rather than soil 

particle distribution at θS, coarse soil particles at θ1.8, and finer soil particle at θ2.7. In addition, or-

ganic matter had a considerable influence on all SWHCs. Among the topographic features, elevation 

was the most influential, and it was closely related to the geological variability of bedrock and soil 

properties. Aspect was highly related to vegetation, confirming that it was an important variable 

for DSM modeling. Information about important variables and their interrelationship can be used 

to strengthen PTFs and DSM models for future research. 

Keywords: forest soils; pedotransfer function (PTF); digital soil mapping (DSM); machine learning 

model; random forest; variable importance; sensitivity analysis 

 

1. Introduction 

The soil water holding capacity (SWHC) is the amount of water content in soil at the 

particular matric suction. This is one of the most important factors for understanding and 

modeling the water cycle in forest catchment [1–3]. SWHCs are usually represented 

through the soil water retention curve, which is the relation curve between soil water con-

tent and applied matric suction [4]. Since this matric suction indicates gravitational force, 

capillary retention, and root pressure, identifying the water content of the soil correspond-

ing to the particular matric suction is essential for understanding the water cycle, espe-

cially in relation to soil. In general, the logarithm of the absolute value of matric suction 

(pF) is widely used to express particular matric suction [5,6]: pF = log10|F|, where F is the 

height of the water column (cm). 

Water content at a specific pF value plays a major role in representing the character-

istics of forest soil. Saturated water content (𝜃𝑆; water content at pF0) refers to the amount 

of water when the soil is saturated with water and indicates porosity, as well as the total 
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amount of pores combined with macropores and micropores in the soil. pF1.8 indicates 

the starting point of capillary water holding in soil, and pF2.7 expresses the end point of 

the gravitation drainage [6]. pF2.7 also represents the boundary condition of easily avail-

able water for some tree species (Cryptomeria japonica and Chamaecyparis obtusa) [6]. Spe-

cifically, pF1.8 and pF2.7 are often used in forest soils, because the difference between the 

water content at pF1.8 (𝜃1.8) and the water content at pF2.7 (𝜃2.7) is directly related to the 

coarse capillary pore and plant growth [7]. Cianfrani et al. [5] and Wessolek et al. [8] used 

𝜃1.8 and 𝜃2.7 to indicate the plant available soil water (PAW) and confirmed that these 

values were closely related to plant water uptake and evapotranspiration in the catchment 

scale. In addition, 𝜃2.7 is similar to the field capacity (𝜃2.5; water content at pF2.5 of −33 

kPa), which is commonly used in soil research. 

Despite its importance, estimating SWHCs is time consuming and expensive [4]. One 

of the most famous models for predicting SWHCs is the use of pedotransfer functions 

(PTFs). This is an in situ measurement-based model that predicts SWHCs based on soil 

property data [9]. PTF directly predicts SWHCs using soil particle distribution, bulk den-

sity, organic matter, etc. [10,11], or estimates the parameters of the soil water retention 

curve, indicating the relationship between the matric suction and the soil water content 

[12,13]. 

The other way to predict SWHCs is digital soil mapping (DSM). First, environmental 

covariates that geographically reference information corresponding to soil sampling sites 

are collected [14]. Prediction models are developed through environmental covariates and 

SWHCs, and they can be applied to large areas [15–17]. Topographical features, geology, 

and historical soil information are generally used as environmental covariates [18,19]. 

In order to effectively develop the PTFs and DSM models, it is important to accumu-

late an efficient dataset. Due to recent developments in computing technology, machine 

learning techniques have become popular. A supervised machine learning model is a 

data-driven method, and a primary way to increase model performance is to secure many 

training data related to the model. Thus, when various soil surveys are conducted, effec-

tive prediction model development becomes possible. 

In South Korea, a nationwide forest soil investigation has been conducted by the Na-

tional Institute of Forest Science (NIFoS), and SWHC prediction PTFs and DSM models 

were developed based on this database. Additionally, the Korea Forest Service is planning 

to conduct an additional nationwide soil survey to strengthen PTF and DSM models to 

accurately predict SWHCs in forest soil. For efficient additional data accumulation, soil 

surveys should be conducted considering factors that are highly influential in SWHCs. 

For example, if one variable (e.g., elevation or aspect, etc.) acts as an important variable in 

model prediction, there may be several methods that can be used. We could make that 

variable’s distribution of sampling sites uniform or similar to the distribution of that var-

iable of a target area. Therefore, it is essential to select the important variables and com-

prehensively understand the interrelationships between soil properties, topography, en-

vironmental features, and SWHCs before conducting an additional soil survey [15]. How-

ever, there are only a few studies concerning the important variables for predicting 𝜃𝑆, 

𝜃1.8, and 𝜃2.7 and their interrelationships in temperate forest regions. 

In this context, our objectives are as follows: (1) to suggest the highly effective soil 

physical and chemical properties, topographies, and environmental features for the de-

velopment of PTFs and DSM models and (2) to identify the interrelationships and non-

linear effects on SWHC changes through selected variables. 

2. Materials and Methods 

2.1. Study Sites 

This study was conducted in South Korea, which is the southern half of the Korean 

Peninsula located in East Asia. The north side of South Korea is bordered by North Korea, 

and the other three sides are surrounded by the sea. It has a temperate climate and four 
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seasons. The annual average temperature is about 12.8 degrees Celsius, and the annual 

average precipitation is about 1343 mm. After the Korean War ended in 1953, parts of the 

country were destroyed, and many trees were planted as a government policy. Now, al-

most two-thirds of South Korea, 62.8%, is covered by forests, in a context of complex to-

pography. 

2.2. Forest Stand and Soil Properties 

We used 11,544 soil samples collected at depths of 10 and 30 cm in a forested area of 

South Korea. These forest soil samples were collected by the National Institute of Forest 

Science to develop the SWHCs prediction models; soil samples were collected from 971 

sample sites that were randomly selected (Figure 1). Nine hundred and seventy-one sam-

ple sites contain twelve soil texture classes, three forest types, and three kinds of bedrock 

(Figures S2 and S3). Six soil samples were collected in a sample site at the same point as 

replicates and collected at the equivalent soil depth (10 or 30 cm), though separated by a 

few centimeters. The soil texture distribution of the collected soil samples is shown in 

Figure 2. 

 

Figure 1. Spatial distribution of 971 soil sampling sites in South Korea. 
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Figure 2. Soil texture distribution used in this study: (a) distribution of soil samples at 10 cm depth and (b) 30 cm depth. 

Twelve soil textures (<2 mm fraction) were determined according to USDA Textural Soil Classification. 

All soil samples were collected below the organic O horizon. Since the average soil 

depth of A horizons in South Korean forests is about 17 to 20 cm, soil samples 10 cm deep 

represent mineral A horizons, while soil samples 30 cm deep represent B or C horizons. 

In this study, three kinds of SWHCs are used: saturated water contents (𝜃𝑆), water 

content at pF1.8 (𝜃1.8), and water content at pF2.7 (𝜃2.7). A pressure plate method was used 

to measure SWHCs. The collected soil samples were analyzed by means of laboratory 

methods to determine six physical and chemical properties, including bulk density and 

organic matter. Bulk density is related to soil compaction and structure. It was measured 

by the ratio of the dry weight of soil and the volume of the soil. Soil organic carbon was 

measured by the Walkley-Black method [20], and organic matter was recalculated by mul-

tiplying by 1.724, the van Bemmelen factor. Hydraulic conductivity was measured by the 

falling head method, which uses a constantly changing pressure head. Soil particle frac-

tions were measured with the hydrometer method, and three particle-size classes were 

classified: sand (0.05 to 2 mm), silt (0.002 to 0.05 mm), and clay (<0.002 mm). In situ meas-

urements were also investigated to develop PTFs for analysis of the environmental impact 

on soil. Dominant tree height, dominant tree DBH, average DBH, and tree density were 

measured by forestry professionals when soil samples were collected. 

Soil type was not used as an explanatory variable in this study, because of its gener-

ality and diversity issues. The soil classification system for forest soil in South Korea is 

totally different from other classification systems such as World Reference Base for Soil 

Resources (WRB) or USDA soil taxonomy. In addition, because of the relatively small ter-

ritory and the similar climatic zone throughout the whole country, over 86% of the forest 

soils are grouped in an order, Brown Forest Soils, which is similar to Inceptisols from 

USDA soil taxonomy. For example, about 87.4% of forest soils used in this study are 

Brown Forest Soils. Because of these reasons, soil type cannot be a useful variable for pre-

dicting SWHCs in South Korea, and we did not include the soil type as an input variable. 

In Table 1, soil physical and chemical properties and forest stand characteristics are 

shown. Some soil samples at 10 cm depth from 18 sample sites were lost. Therefore, the 

number of analyzed soil sampling sites is different (n = 953 for 10 cm soil depth, n = 971 

for 30 cm soil depth), and the averaged values of in situ measurements at 10 and 30 cm 

soil depth are different (Table 1). 
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Table 1. Measured forest stand and soil physical and chemical properties. 

Forest Stand and Soil 

Physical and 

Chemical Properties 

Abb. Unit 
At 10 cm Soil Depth 

(n = 953) 

At 30 cm Soil 

Depth (n = 971) 

Saturated SWC 𝜃𝑆 % 60.4 ± 7.9 57.7 ± 7.5 

SWC at pF1.8 𝜃1.8 % 32.2 ± 6.8 33.0 ± 7.2 

SWC at pF2.7 𝜃2.7 % 26.3 ± 5.8 27.4 ± 6.5 

Bulk density 𝜌𝑏 g cm−3 0.95 ± 0.2 1.05 ± 0.2 

Organic matter OM % 4.07 ± 1.88 2.98 ± 1.52 

Hydraulic 

conductivity 
KS cm s−1 0.015 ± 0.013 0.011 ± 0.010 

Sand fraction Sand % 39.5 ± 16.3 38.4 ± 17.2 

Silt fraction Silt % 37.6 ± 15.7 36.2 ± 16.7 

Clay fraction Clay % 22.8 ± 10.3 25.4 ± 11.8 

Dominant tree height DTH m 14.7 ± 3.5 14.6 ± 3.4 

Dominant tree DBH DTD cm 30.6 ± 10.2 30.4 ± 9.9 

Average DBH AD cm 24.0 ± 7.5 23.7 ± 7.4 

Tree density TD trees ha−1 578 ± 285 580 ± 283 

Note: Average ± standard deviation. DBH is diameter at breast height. 

2.3. Environmental Covariates 

We extracted an environmental covariates dataset at corresponding soil sample sites 

from four geographical maps: digital elevation map (DEM; 10 m resolution), geologic map 

(GM; 1:50,000), forest type map (FTM; 1:25,000), and forest site and soil map (FSSM; 

1:25,000). Eight topographic variables from the DEM, one bedrock variable from the GM, 

four forest stand characteristics from the FTM, and eight forest site and soil properties 

from the FSSM were selected to develop the DSM models (Table S1). We chose these 4 

maps because they are open source and easily available at the National Geographic Infor-

mation Institute. While all the variables in the PTF dataset were continuous, the environ-

mental covariates dataset included 11 discrete variables (Table S1). 

2.4. Random Forest Model 

Random forest is one of the most popular machine learning methods. Unlike other 

machine learning models, the random forest model is appropriate for model develop-

ment, as it has discrete input variables and is based on a decision tree algorithm. There 

are 11 discrete variables for developing DSM models, and this is the main reason why we 

used a random forest model to predict SWHCs in this study. The random forest model 

was established using Python (v. 3.7.4) and the RandomForestRegressor module from 

scikit-learn (v. 0.23.2). 

2.5. Variable Importance Measurements 

In this study, we selected two methods for calculating variable importance: feature 

importance and permutation importance. Feature importance is one of the most widely 

used methods for variable importance measurement in the random forest model. It is cal-

culated based on mean decrease impurity. It is related to the random forest model struc-

ture and its developing process, where the decision tree is extended by impurity [21]. In 

other words, the greater the decrease in impurity, the higher the importance of the varia-

ble. We calculated the feature importance using scikit-learn version 0.23.2. Permutation 

importance is determined by the performance differences between a basic model and a 

modified model. The modified version uses an input variable in which one variable is 
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randomly permutated and the others are fixed. If a critical variable is employed to develop 

the modified model, the performance of the new model will decrease more than that of a 

less important variable. In this paper, we used the coefficient of determination to measure 

the performance, with 500 times random analysis on each variable. 

2.6. Linear Relationship 

Pearson’s correlation coefficient is used to confirm the linear relationship between 

explanatory variables and SWHCs. It is a method used primarily in descriptive statistics, 

and it has a range from −1 to 1. As the absolute value of the correlation coefficient becomes 

larger, the linear relationship between the two variables becomes greater. A negative 

value means anti-correlation and a positive value means a positive relationship between 

two variables. The equation for Pearson’s correlation coefficient in this study is as follows: 

𝑟𝑋𝑌 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑁

𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑁
𝑖=1 ∙ √∑ (𝑌𝑖 − 𝑌̅)2𝑁

𝑖=1

 
(1) 

where N is the sample size of variables X and Y. 

2.7. Developed Models 

A total of 12 random forest models were developed with different explanatory vari-

ables, soil sample layers, and matric suctions of response variables (Table 2). Explanatory 

variables are divided into two types: forest stand and soil physical and chemical proper-

ties for the PTF model and environmental covariates (Table S1) for the DSM model. We 

also classified soil sample layers at depths of 10 and 30 cm and soil water contents at sat-

urated, pF1.8, and pF2.7 as the response variables. 

Table 2. Developed models. 

Model ID 
Explanatory 

Variables 

Soil Sample 

Layer 

Matric Suction of Response 

Variable 

PTF-10-pF0 

Forest stand and soil 

physical and 

chemical properties 

10 cm depth 

pF0 (saturated) 

PTF-10-pF1.8 pF1.8 

PTF-10-pF2.7 pF2.7 

PTF-30-pF0 

30 cm depth 

pF0 (saturated) 

PTF-30-pF1.8 pF1.8 

PTF-30-pF2.7 pF2.7 

DSM-10-pF0 

Environmental 

covariates 

10 cm depth 

pF0 (saturated) 

DSM-10-pF1.8 pF1.8 

DSM-10-pF2.7 pF2.7 

DSM-30-pF0 

30 cm depth 

pF0 (saturated) 

DSM-30-pF1.8 pF1.8 

DSM-30-pF2.7 pF2.7 

2.8. Sensitivity Analysis 

Sensitivity analysis can determine how much response variables are affected by ex-

planatory variable changes. In this study, we conducted a sensitivity analysis using the 

developed random forest models. First, a soil sample was randomly chosen from the da-

taset. The explanatory variable became the input variable by changing equal intervals, 

while the others were kept constant. We used the modified variable as an input variable 

to test the sensitivity of the explanatory variable on the corresponding response variable. 

In this study, the analysis of each variable was repeated 150 times. 

While scatter plotting and correlation coefficient analysis allow for an acknowledge-

ment of the relationships between the explanatory variable and response variable, these 
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analyses contain all the effects of variables that might affect response variable. On the 

other hand, sensitivity analysis enables the rejection of impacts of other variables on var-

ious models. Therefore, we can analyze the effects of one explanatory variable in greater 

detail. 

3. Results 

3.1. Variable Importance for Predicting SWHCs 

Two methods were used for measuring variable importance. We standardized the 

variable importance of each model to have the total sum of 1. Feature importance and 

permutation importance were calculated by means of 12 models. Variable importance of 

forest stand, soil physical and chemical properties, and environmental covariates is shown 

in Tables S2–S4. To rank the importance of each variable, we averaged standardized fea-

ture importance and permutation importance (Figure 3). We also selected four critical var-

iables for each model (Table 3). 

 

Figure 3. Averaged variable importance of 30 explanatory variables. 

Table 3. Four primary important variables of the twelve developed models. 

Model ID 

First  

Important 

Variable 

Second  

Important 

Variable 

Third  

Important 

Variable 

Fourth  

Important 

Variable 

PTF-10-pF0 𝜌𝑏 OM Sand KS 

PTF-10-pF1.8 Sand OM KS DTH 

PTF-10-pF2.7 Sand OM KS Clay 

PTF-30-pF0 𝜌𝑏 OM Sand Clay 

PTF-30-pF1.8 Sand KS OM DTH 

PTF-30-pF2.7 Sand K𝑆 OM Clay 
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DSM-10-pF0 Elevation Aspect STC TSD 

DSM-10-pF1.8 STC Elevation TPI Bedrock 

DSM-10-pF2.7 STC Elevation TPI Aspect 

DSM-30-pF0 Elevation STC Aspect TPI 

DSM-30-pF1.8 STC Elevation TPI Bedrock 

DSM-30-pF2.7 STC Elevation Bedrock TPI 

As illustrated in Figure 3, variable importance to predict 𝜃𝑆, 𝜃1.8, and 𝜃2.7, respec-

tively, has different characteristics. In the PTFs models that used forest stand and soil 

physical and chemical properties, bulk density greatly impacted on 𝜃𝑆 prediction at both 

10 and 30 cm. In predictions for 𝜃1.8 and 𝜃2.7, however, the sand fraction was the most 

significant. Organic matter was critical for all cases, and hydraulic conductivity (KS) was 

also important. In the PTF-10-pF2.7 and PTF-30-pF2.7 models, the influence of clay in-

creased, and the ranking of dominant tree height (DTH) on PTF-10-pF1.8 and PTF-30-

pF2.7 went up, while the variable importance value remained low (below 6%). 

In the DSM models that used environmental covariates as input variables, elevation 

was the primary important variable in 𝜃𝑆 prediction at soil depths of 10 and 30 cm. To 

predict 𝜃1.8 and 𝜃2.7, the soil texture class was the most significant. The next important 

variables were TPI and bedrock. In the DSM-10-pF0 model, aspect showed a high variable 

importance. 

From the variable importance analysis, the importance difference by soil depth layer 

(10 and 30 cm) was not significant; however, the difference shown by different matric 

suctions was larger. The order of important variables between 𝜃𝑆  and 𝜃1.8  showed a 

large difference, and the order of important difference between 𝜃1.8 and 𝜃2.7 was small, 

showing similar important variables (Table 3). The forest stand dataset influenced less 

than 11.6% in the PTF models (average 7.6%); therefore, soil physical and chemical prop-

erties were dominant in these models. In the DSM models, the digital elevation model 

(DEM) and forest site and soil maps (FSSM) showed more than 80% importance. 

3.2. Correlation between Highly Effective Variables and SWHCs 

From the variable importance analysis, we selected eight highly effective explanatory 

variables: four forest stand and soil physical and chemical properties (𝜌𝑏, KS, sand, and 

OM) and four environmental covariates (elevation, STC, TPI, and bedrock). To identify 

the linear interrelationship between highly effective input variables and SWHCs, we plot-

ted correlation matrix plots (Figure 4). 
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Figure 4. Correlation matrix of 8 highly important variables and SWHCs. 

First, three kinds of SWHC were closely interrelated. The correlation coefficients of 

each relationship among the SWHCs were all positive, especially 𝜃1.8 and 𝜃2.7. In soil 

physical and chemical properties, bulk density (𝜌𝑏) and sand fraction (sand) had a nega-

tive influence on SWHCs. Bulk density and organic matter showed a negative correlation 

with a high coefficient, and organic matter was positively related with SWHCs. All other 

variables except KS presented the same tendency to the three kinds of SWHCs. KS showed 

a positive correlation with 𝜃𝑆, but a negative correlation with 𝜃1.8 and 𝜃2.7. 

Regarding environmental covariate, elevation and TPI presented a positive relation-

ship with SWHCs, and soil texture class and bedrock, which have a high correlation coef-

ficient value to sand, showed a negative relationship with SWHCs. Elevation showed a 

high correlation with three soil properties. It had a negative relationship with bulk density 

and sand fraction and a positive relationship with organic matter. The differences in in-

terrelationships between selected variables and SWHCs at soil depths of 10 cm and those 

at soil depths of 30 cm were not significant. 

3.3. Sensitivity Analysis for Identifying Non-Linear Relationship 

To identify the non-linear effect of input variables on SWHCs, a sensitivity analysis 

was conducted. We selected four variables that were primary and secondary important 

variables in PTF and DSM, respectively, and analyzed sensitivity on 𝜃𝑆 and 𝜃2.7 (Figure 

4). Since 𝜃1.8 and 𝜃2.7 are closely related (see in Figure 4) and have a similar trend, we 

excluded 𝜃1.8 from Figure 5. 
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Figure 5. Non-linear changes in modelled soil water content by sensitivity analysis. Modelled soil water content changes 

of (a–d) 𝜃𝑆 at 10 cm depth soil, (e–h) 𝜃𝑆 at 30 cm depth soil, (i–l) 𝜃2.7 at 10 cm depth soil, (m–p) 𝜃2.7 at 30 cm depth soil 

were represented with four variables: bulk density, sand fraction, elevation, and soil texture class. 

In Figure 5a–h, 𝜃𝑆 was highly sensitive to bulk density and elevation changes. As 

shown in Figure 4, bulk density has a negative relationship with 𝜃𝑆, and a positive rela-

tionship with elevation. Notably, 𝜃𝑆 steeply increased at the elevation between 500 and 

1000 m. On the other hand, sand fraction and soil texture classes showed a modest contri-

bution when predicting 𝜃𝑆 and presented a low sensitivity. 

However, 𝜃2.7 showed the opposite tendency. Bulk density and elevation, which 

had high sensitivity in 𝜃𝑆 , showed low sensitivity in 𝜃2.7, and sand fraction and STC 

showed high sensitivity. 

Figures S3–S6 depict sensitivity analysis results of the four selected variables from 

twelve developed models. From the sensitivity analysis, we confirmed the non-linear ef-

fects on SWHCs, not merely the linear relationship between two variables. For example, 

organic matter was significant only when it was below 5%. Hydraulic conductivity also 

showed a significant relationship only when KS < 0.02 cm s−1. Moreover, the impact of 

aspect on saturated soil water content was limited at a depth of 10 cm. The southern aspect 

(90° to 270°) had a lower 𝜃𝑆 than the northern aspect (0° to 90° and 270° to 360°), the 

tendency of which was hardly detected by a linear relationship such as Pearson’s correla-

tion. 

4. Discussion 

4.1. Influential Soil Physical and Chemical Properties on SWHCs Prediction 

The primary important soil property to predict 𝜃𝑆 was bulk density, while sand frac-

tion was the most valuable in predicting 𝜃1.8 and 𝜃2.7 (Figure 3). Sensitivity analysis also 

demonstrated that the impact of bulk density and sand fraction on soil was different, 
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along with different matric suction (Figures S3 and S4). Since bulk density is the mass of 

soil per unit volume, it represents soil structure and soil compaction [22]. The result of 

sensitivity analysis showed that an increase in the bulk density led to a decrease in 𝜃𝑆. 

Thus, compacted soil has fewer macropores and a lower water holding capacity. 

On the other hand, sand fraction was the first important variable for predicting 𝜃1.8 

and 𝜃2.7, not silt or clay, which both showed a negative relationship. Since 𝜃2.7 is the 

amount of soil moisture after being pressured from pF1.8 and pF2.7 (−6.2 kPa and −49.1 

kPa, respectively), soil water in macropore is eliminated at 𝜃2.7 [23]. Therefore, the trivial 

influence of bulk density on 𝜃1.8 and 𝜃2.7 prediction (below 4%) is explainable by soil 

texture, which is related to capillary force and micropore rather than macropore and soil 

structure. 

The PTF-10-pF2.7 and PTF-30-pF2.7 models denoted that importance of the sand frac-

tion became greater than that in predicting 𝜃1.8, and it was also shown in sensitivity anal-

ysis results. Clay was significant in 𝜃2.7 prediction. Water holding capacity is closely re-

lated to capillary force [23]. As the particle of soil becomes finer, its surface area becomes 

broader; therefore, the capillary is enhanced. Soil needs a wider surface area and finer soil 

particles such as silt and clay to have more moisture at high matric suctions. In this regard, 

the enhanced role of the sand fraction in predicting 𝜃2.7 is indirect. The sand fraction is 

equal to the summation of the silt fraction and the clay fraction in hydrological modeling, 

since the sum of sand, silt, and clay is 100%. Small particles such as silt and clay become 

powerful in 𝜃1.8 and 𝜃2.7 predictions. Moreover, a higher rank of variable importance 

with a weight of 5~7% emphasizes the influence of clay in 𝜃2.7, whereas the variable im-

portance of the clay fraction for predicting 𝜃𝑆 and 𝜃1.8 is minute (Figures S3 and S4). 

In this vein, in order to estimate water holding capacity at a higher matric suction, 

such as 𝜃4.2 (water content at pF4.2; permanent wilting point), the importance of the clay 

fraction increases. Qiao et al. [24] employed a stepwise method to select proper variables 

for predicting 𝜃2.5 (field capacity) and 𝜃4.2 (permanent wilting point). While the sand 

fraction was used as the main factor in the 𝜃2.5 prediction, they selected clay as a main 

factor in the 𝜃4.2 prediction. Adhikary et al. [25] also used the clay fraction for 𝜃4.2 pre-

diction, whereas the sand and silt fractions were used for 𝜃2.5. As the capillary force is 

closely related to the soil texture (bulk density < sand < silt < clay), corresponding soil 

particle distribution mainly affects the SWHCs (𝜃𝑆 < 𝜃1.8 < 𝜃2.7 < 𝜃4.2). In other words, 

soil structure is the main factor in 𝜃𝑆 rather than soil texture, sand and silt are the major 

factors in 𝜃1.8, and silt and clay are the most influential variables in 𝜃2.7. 

The relationship between the KS and SWHCs can be explained by the relation men-

tioned above. In Figure 4, KS has a positive correlation with 𝜃𝑆, but a negative correlation 

with 𝜃1.8 and 𝜃2.7. KS and bulk density are negatively correlated, and compacted soil has 

smaller KS, since it has fewer macropores. On the other hand, the bulk density effect is 

negligible and soil texture is dominant in 𝜃1.8 and 𝜃2.7. Therefore, a higher value of KS 

can be explainable through a high sand fraction content or a small clay fraction content, 

which are both closely related to the smaller value of 𝜃1.8 and 𝜃2.7. The scatter plot in 

Figure 4 shows a weak correlation between KS and sand fraction; this is because KS is 

mainly affected by disturbances in the soil structure, indirectly caused by factors that af-

fect bulk density and organic matter [22]. 

Organic matter was another powerful factor in the prediction of SWHCs. In Figures 

S3 and S4, SWHCs rise as organic matter contents become greater. The influence of organic 

matter on 𝜃𝑆 is linked to bulk density. Organic matter enriches porosity and lessens soil 

compaction [26–29]. In particular, the negative relationship between organic matter and 

bulk density has been suggested as a linear equation in previous studies [30]. We also 

confirmed the linear relationship between bulk density and organic matter (BD = 1.26–

0.073OM; Figure 4). In other words, an increase in organic matter results in a reduction in 

bulk density and expansion of macropore; therefore, 𝜃𝑆 rises. 

Organic matter also affects water holding capacities. Many studies have confirmed 

that organic matter can increase 𝜃2.5 [3,31–33], which is closely related to 𝜃1.8 and 𝜃2.7 
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[5]. Leu et al. [32] confirmed that organic matter even increases in 𝜃4.2. SWHCs are also 

highly related to the plant available water (PAW; generally represented as 𝜃2.5-𝜃4.2 or 

𝜃1.8-𝜃2.7). Lal [34] demonstrated that the influence of organic matter on capillary force was 

more noticeable at field capacity (𝜃2.5) than at permanent wilting point (𝜃4.2), raising PAW. 

In this study, we also found similar results in our sensitivity analysis. In Figures S3 and 

S4, sensitivity on organic matter is higher at 𝜃1.8 than 𝜃2.7. Thus, we identified that or-

ganic matter was effective in lower matric suction. We also confirmed that, when organic 

matter content is more than 5%, sensitivity dropped drastically. It is thought that organic 

matter with a large particle size is too large to affect capillary force. Consequently, soil 

organic matter shrinks bulk density and raises 𝜃𝑆 and capillary force, as well as 𝜃1.8 and 

𝜃2.7. In this regard, we found that organic matter influenced SWHCs and PAW signifi-

cantly. Its sensitivity was active below 5%, and it decreased sharply above 5%. 

4.2. Interrelationship between Topography, Soil Properties, and Vegetation 

Topography was also an influential factor in SWHCs. In previous studies, elevation, 

which was included in DEM, was the most dominant factor in predicting SWHCs 

[15,35,36]. In Figure 4, we confirm the interrelationships between elevation and soil phys-

ical and chemical properties. Elevation was closely related to bulk density, sand fraction, 

and organic matter of the soil. The sand fractions decreased and organic matter contents 

increased as the elevation became high. Most of Baekdudaegan, which is a mountain spine 

stretching from north to south in South Korea [37], is a nationally protected area. In this 

region, development is strictly limited, and natural vegetation is widely spread. It is con-

sidered that soil in high elevation has low bulk density and high organic matter contents 

because of these reasons. In addition, the effects of elevation on SWHCs can be found by 

the spatial distribution of bedrock. Since soil particles were made from bedrock, soil tex-

ture was highly related to its bedrock. Plaster et al. [38] showed the differences in soil 

textures from different bedrocks and sedimentary and metamorphic rocks. Metamorphic 

rock tends to create sand fraction, while sedimentary bedrock tends to create finer frac-

tions. Soil samples in this study showed that the average elevation of sample sites with 

metamorphic rock was 286.7 m, and the average elevation of sample sites with sedimen-

tary rock was 538.9 m. The average elevation of two types of bedrock is different and 

statistically significant (p < 0.01). This shows that finer fractions are more distributed in 

higher elevations due to the large distribution of sedimentary bedrock at high elevations. 

In Figures S5 and S6, aspect was the most important topographical feature in the 

DSM-10-pF0 and DSM-30-pF0 models. Sensitivity analysis showed that the 𝜃𝑆 of north-

facing slopes was greater than the 𝜃𝑆 of south-facing slopes. Solar energy in south-facing 

slopes, which is larger than that of north-facing slopes, raises soil and air temperatures of 

the mountainside. This could create water stress in plants and hinder the growth of vege-

tation, since high temperature increases evapotranspiration [39]. However, in South Ko-

rea, relatively high summer rainfall and annual rainfall, which is 1343 mm, generally limit 

water stress, and higher solar energy in south-facing slopes helps vegetation grow well. 

Vegetation and soil chemical weathering are highly related, and it can make soils in south-

facing slopes finer [40–42]. Freeze–thaw processes could be another reason. In the winter 

season, the soil water freeze–thaw cycle is more frequent on south-facing slopes because 

of higher solar energy during the day; this cycle also promotes physical soil weathering 

[43,44], which could contribute to a greater relative abundance of finer particles and low 

𝜃𝑆 on south-facing slopes. 
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4.3. Limitations and Recommendations for Future Research 

In this study, we collected data related to soil physical and chemical properties, en-

vironmental covariates, and forest stand characteristics to investigate the contribution fac-

tors of SWHCs. Forest stand characteristics data showed marginal effects on SWHC pre-

dictions compared to other variables, such as soil properties and topographical features 

[35]. It seems that the role of vegetation on soil moisture capacity is subtle; however, this 

is because we only used forest stand characteristics for biological factors. Understory veg-

etation plays a key role in affecting the moisture content of topsoil, organic matter content, 

and regional evapotranspiration [45]. In future research, the data of understory vegetation 

and NDVI, which represents overall vegetation, should be included to clarify the relation-

ship among the soil physical and chemical properties, vegetation, and environmental co-

variates. 

We used bulk density and soil texture for soil physical properties, and these variables 

showed great importance in predicting SWHCs. However, coarser soil particles over 2 

mm were not considered for developing the models in this study. In future research, it 

may be more appropriate to include coarser soil particles to develop models and to con-

firm their interrelationships, since different size particles showed markedly different 

properties, as shown in Section 4.1. 

5. Conclusions 

The developed pedotransfer function (PTF) models based on forest stand and soil 

physical and chemical properties showed that bulk density had the greatest influence on 

predicting saturated water content (𝜃𝑆), while sand content had the greatest influence on 

predicting water content at pF 1.8 and pF2.7 (𝜃1.8 and 𝜃2.7). The digital soil mapping 

(DSM) models developed using environmental covariates as an input dataset showed that 

elevation was the most influential factor in predicting 𝜃𝑆, and soil texture class was the 

most influential factor in predicting 𝜃1.8 and 𝜃2.7. 

Variable importance and sensitivity analysis showed that, as the matric suction 

changed, the soil physical and chemical properties that mainly influence the soil water 

holding capacities (SWHCs) changed to the following values: soil structure in 𝜃𝑆; sand 

and silt fraction in 𝜃1.8; and much finer particles in 𝜃2.7. It was confirmed that the organic 

material increased 𝜃𝑆 by reducing the density and also increased 𝜃1.8 and 𝜃2.7 by in-

creasing capillary force. The sensitivity of SWHCs to organic matter was significant when 

it was less than 5%. Elevation was closely related to the geological variability of bedrock 

and soil physical and chemical properties, and aspect was highly related to vegetation, 

confirming that it was an important variable for developing the DSM model. 

This study contributes to the data collection process for the development of more 

accurate PTF and DSM models by presenting important variables necessary for the esti-

mation of three kinds of SWHC. Unfortunately, we could not find a significant relation-

ship between forest stand characteristics and SWHCs. However, we were able to confirm 

the close association with topographic features, soil physical and chemical properties, and 

vegetation. More accurate SWHCs prediction models will be developed when the data 

related to understory, NDVI data, and coarser soil particle are added. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/land10121290/s1. Table S1: Twenty-one environmental covariates from geographically 

referenced database used in this study; Table S2: Variable importance of forest stand and soil phys-

ical and chemical properties in PTF; Table S3: Variable importance of environmental covariates from 

digital elevation map and geologic map; Table S4: Variable importance of environmental covariates 

from forest type map and forest site and soil map; Figure S1: Spatial distribution of 971 soil sampling 

sites with soil texture map at 10 cm soil depth and 30 cm soil depth; Figure S2: Spatial distribution 

of 971 soil sampling sites with forest type map and geographical map; Figure S3: Modelled SWHCs 

changes across 4 important variables from sensitivity analysis and developed PTF models for soil 

depth at 10 cm; Figure S4: Modelled SWHCs changes across 4 important variables from sensitivity 

analysis and developed PTF models for soil depth at 30 cm; Figure S5: Modelled SWHCs changes 
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across 4 important variables from sensitivity analysis and developed DSM models for soil depth at 

10 cm; Figure S6: Modelled SWHC changes across 4 important variables from sensitivity analysis 

and developed DSM models for soil depth at 30 cm. 
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