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Abstract: The P-factor for support practice of the Universal Soil Loss Equation (USLE) accounts for
soil conservation measures and leads to a significant reduction in the modelled soil loss. However,
in the practical application, the P-factor is the most neglected factor overall due to high effort for
determining or lack of input data. This study provides a new method for automatic derivation of
the main cultivation direction from seed rows and tramlines on agricultural land parcels using the
Fast Line Detector (FLD) of the Open Computer Vision (OpenCV) package and open remote sensing
data from Google Earth™. Comparison of the cultivation direction with the mean aspect for each
land parcel allows the determination of a site-specific P-factor for the soil conservation measure
contouring. After calibration of the FLD parameters, the success rate in a first application in the low
mountain range Fischbach catchment, Germany, was 77.7% for 278 agricultural land parcels. The
main reasons for unsuccessful detection were problems with headland detection, existing soil erosion,
and widely varying albedo within the plots as well as individual outliers. The use of a corrected
mask and enhanced parameterization offers promising improvements for a higher success rate of
the FLD.

Keywords: soil erosion; USLE; P-factor; contouring; remote sensing; open data; image analysis;
line segment detection

1. Introduction

Soil erosion caused by wind or water is a well-known global problem, but a natural
process. The term soil erosion includes the processes of detachment, transportation, and
sedimentation of soil particles [1]. A massive increase in eroded soil material and land
degradation often occurs due to excessive and improper use by humans on agricultural
land [2]. The intensity of the removed mass depends on erosive factors such as precipitation
and the resulting surface runoff as well as erodible factors that take into account soil
properties and land cover as well as practice management [3]. High erosion rates can lead
to significant damage, initially affecting the farmland itself, known as on-site damage. The
associated loss of the most fertile topsoil causes a decrease in soil quality and productivity
and an impairment of important soil functions, which in turn leads to a loss of yield [4].
Furthermore, material deposits and siltation occur downslope within the field. If the
detached soil material passes the edge of the field, not only neighboring fields but also
infrastructure elements such as canals, traffic areas, or settlement areas can be impaired [1,5].
These effects are known as off-site damage. This includes the quantitative and qualitative
impairment of water bodies due to the input of soil material and the water-polluting
substances bound to the solid matter, such as heavy metals or nutrients from fertilizers and
pesticides [4,6,7].

In order to be able to quantify soil erosion, various models have been developed in
recent decades. Among others, the Universal Soil Loss Equation (USLE) is an empirical
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model for predicting the longtime average rate of soil erosion by water on cultivated
land [3]. The model takes into account input data for precipitation (R-factor), soil properties
(K-factor), topography (L- and S-factor), crop management (C-factor), and support practice
management (P-factor) and calculates the annual average rate of soil loss by multiplying
the corresponding six factors [8]. Its application is restricted to sheet and small rill erosion
working at the plot scale. However, the USLE does not address large rill or gully erosion [3].
Since the introduction of the equation, it has been revised and modified frequently as
well as adapted to local or national conditions [9]. Today, the USLE and its revised
version, the RUSLE, “are by far the most widely applied soil erosion prediction models
globally” [9] (p. 204).

The derivation of parameters for the application of the USLE usually depends on
the availability, quality, and acquisition time of the input data. Despite the increased
availability of remote sensing datasets and their higher spatial resolution, many studies
concerning the USLE do not consider the P-factor for support practice management. Some
use at least a constant input that is spatially uniform [10,11]. The P-factor accounts for the
soil conservation practices, which can be managed and controlled by humans. It indicates
the ratio between soil loss with a certain support practice compared to the corresponding
soil loss without these methods, i.e., up- and downslope tillage [3]. They reduce the risk of
erosion and include contouring, contour strip cropping, and terracing [3]. These measures
are particularly effective during precipitation events with a low or moderate intensity
because flow barriers on the ground, such as strip boundaries and furrows, are more likely
to be overflown during heavy, erosive precipitation events [1,12]. Values for the P-factor
typically range between 0.2 and 1.0, which leads to a relative reduction in the erosion
estimate due to the protective measures [13]. The erosion-reducing effect of contouring
is optimal if the tillage or cultivation direction follows the contour lines of the terrain.
It depends on the slope and its length and is most effective at slope gradients between
3 and 8% [3]. As the slope increases, the value for the maximum possible slope length,
also known as the critical slope length, decreases [14]. A reduction in the erosion rate by
soil conservation practices such as contouring is only effective in combination with other
measures. For example, additional ground cover reinforces contouring [1]. This is the
reason why the P-factor is often considered together with the C-factor [8,15,16]. In turn,
neglecting the P-factor in areas with conservation practices leads to an overestimation of
erosion rates, which reduces confidence in erosion model results. This leads to problems
in the implementation and acceptance of policy measures to protect soil [17,18]. Since
the P-factor is site-specific, it must be derived individually for each agricultural land
parcel [11]. In practice, this leads to a particularly high temporal effort for the determination
of individual P-factors, especially with increasing size of the research area. Consequently,
the main reasons for neglecting this factor are the high effort required for manual evaluation
and the lack of datasets or options for an automatic derivation from available datasets [8].
However, the lack of available data and methods causes the actual on-site condition of
support practice measures to be disregarded. Therefore, the following alternative methods
are often used to quantify the support practice management concerning the USLE [10]:

1.  Combination of cover and practice management (C- and P-factor);

2. Empirical uniform values or classified by land use based on previous research or
expert knowledge;

3. Calculation with slope gradients (with or without additional information about the
type of support practice);

4. Values derived from proxy indicators.

In order to be able to map the real conditions for each land parcel, a connection with
the type of crop or land cover has to be established to determine the P-factor. Only the first
and second methods of the four previously mentioned meet this condition.

Advances in remote sensing and greater availability of earth observation data are
important factors for future improvement in USLE results [9,10,19]. In addition, geographic
information systems (GIS) ensure differentiated and significantly faster preparation meth-



Land 2021, 10, 1279

3o0f 34

ods and processing of datasets with spatial reference. As a result, the derivation of the
individual factors of the equation becomes significantly better and more accurate depend-
ing on the quality and availability of the input data. Methods of image analysis from remote
sensing data have been used in the recent past to quantify the P-factor. Karydas et al. [20]
used an object-oriented classification to identify terraces based on QuickBird imagery and
defined site-specific P-factors. Wang et al. [21] derived P-factor values for contouring by
calculating the angle between aspect and ridge direction based on visual satellite image
interpretation.

This study adopts the manual approach of Wang et al. [21] to use visual image
interpretation to derive the cultivation direction for individual agricultural land parcels
from remote sensing data. The main objectives of this study include:

e  Development of an automated method for determining the main cultivation direction
on each agricultural land parcel with seasonal crop;

e  Site-specific verification of contouring by comparing the main cultivation direction
with the mean aspect direction for each agricultural land parcel;

e Improvement of the erosion risk assessment by means of USLE equations using an
automated derivation of the P-factor based on an airborne image.

To automate this process of visual image interpretation, we apply existing image
analysis techniques to high-resolution remote sensing data from Google Earth™ to detect
linear structures [22]. A sub-meter image resolution makes it possible to deduce the
tramlines of agricultural machinery or even the seed rows of crops or furrows in agricultural
fields. In the following, this direction of processing on the field is defined as the cultivation
direction. A comparison of this cultivation direction with the mean aspect direction for
each land parcel allows the determination of a site-specific P-factor for contouring.

2. Materials and Methods
2.1. Study Site

To develop the method, a low mountain range area was selected because erosion
processes mainly take place in sloped areas, and thus, it represents a suitable landscape
area. Here, soil erosion occurs, although erosion control measures are already being
implemented. Therefore, we chose the Fischbach catchment located in the southeast of
Hesse, Germany, as the research area. For this local application, the German derivation of
the USLE with the general soil loss equation ABAG (‘Allgemeine Bodenabtragsgleichung’)
was used [23]. We applied the current technical specifications of the ABAG for Germany,
which are normatively regulated in German standard DIN 19708 [14]. The results can be
transferred to the USLE and all of its revisions.

Since 2016, the Fischbach catchment has been a part of the field observatory of the
Chair of Engineering Hydrology and Water Management (ihwb) at the Technical University
of Darmstadt [24-28]. The small catchment has a size of 35.6 km? and is delineated by the
gauging station Grof3-Bieberau 2. At this location, the ihwb monitors the discharge of the
Fischbach and qualitative parameters such as water temperature, electric conductivity, pH,
dissolved oxygen, and turbidity.

The altitude within the catchment ranges from 162 to 592 m.a.s.l., with a mean
of 289 m.a.s.l. (see Figure 1a). The largest elevations are located in the south of the catch-
ment area. From south to north, the elevations decrease on average. Two parallel valleys
with streams running in them, Fischbach in the east and Rodauer Bach in the west, extend
from the south to the north. Overall, there is a hilly topography typical for the German
low mountain ranges, with slopes ranging from 0.01 to a maximum of 214.5%, with a mean
slope of 18.0%. Due to this partly steep topography, a large part of the catchment is not
suitable for crop cultivation with farm machinery. Therefore, the predominant land use in
the Fischbach catchment, shown in Figure 1b, is forest with a share of 50.2%, followed by
grassland with 19.7%. The percentage of arable land is almost the same with 19.6%. The
low value of 6.7% for settlement illustrates the rural character of the catchment area. Other
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vegetation, orchards, and tree nurseries account for only 3.7% of the total area, and water
bodies for 0.1% [29].

Due to the arable land used for agriculture on areas with steep slopes, there is an
increased risk of erosion from precipitation and surface runoff in the Fischbach catchment.
The P-factor is most effective between 3 and 8%, although it can be applied to croplands
with slopes up to 25%, depending on the slope length [14]. Therefore, the catchment in
the low mountain range is very well suited to show the possible potential of applying
the P-factor.
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Figure 1. Fischbach catchment: (a) Digital elevation model (5 m x 5 m) based on [30]; (b) land use based on digital landscape
model (DLM) of the official topographic-cartographic information system dataset (ATKIS) [29].

The Hessian Agency for Nature Conservation, Environment and Geology (HLNUG)
has shown in a regulatory, statewide survey in Hesse that there is an enhanced risk of
erosion for the agricultural land catchment area of the Fischbach river [31,32]. However,
this study does not consider the P-factor. The high soil erosion risk results in particular from
the brown and parabrown topsoils prevailing in the catchment area, which are susceptible
to erosion due to a high loess content [31]. Furthermore, significant parameters for a
high or extremely high erosion risk are strongly inclined slopes with long slope lengths
and a corresponding cultivation of these areas, for example, with root crops such as corn,
potatoes, or sugar beets. It is suspected that the majority of suspended solids that can be
measured at the Fischbach stream gauge in Grofs-Bieberau 2 are eroded from agricultural
land by soil erosion and transported into the stream via connected flow paths.

2.2. Database
2.2.1. Google Earth™ Remote Sensing Data

Google Earth™ provides an excellent platform for the analysis of high-resolution
remote sensing images based on freely available data. In terms of image analysis, the
use of the data is limited to non-commercial use and non-mass download or bulk feeds,
among others [33]. Available remote sensing data on Google Earth™ consist of satellite
and aircraft-based imagery with three bands of red, green, and blue (RGB), whereas the
available resolution varies for the different regions of the Earth with the data provider
of the imagery. Nevertheless, Google Earth™ has been used in previous studies to map
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objects such as gullies in the context of soil erosion [34-36]. Boardman et al. [37] pointed
out the untapped potential of Google Earth™ imagery, which can significantly expand
the existing database in the field of soil erosion based on the free availability of data and
allows a retrospective view of historical events. However, extracting the georeferenced
aerial imagery to process the data is inconvenient. Using a Python script developed for this
purpose, we extracted images from Google Earth™ Pro App (7.3.3.7786) and used image
data taken on 30 June 2019 with an approximated resolution of about 0.6 m x 0.6 m per
pixel (px). Using the script, we set a buffer radius around the catchment area, divided it into
a matrix, and saved each image of the matrix after resetting tilt and compass. Additionally,
we stored the coordinates of the four corner points for each of the 120 images in a table for
later georeferencing.

2.2.2. Digital Elevation Model (DEM)

We used two different digital elevation models to study the influence of raster res-
olution and accuracy on slope and aspect data for individual agricultural land parcels.
The Hessian Administration for Land Management and Geoinformation (HVBG) derived
the DEMs from airborne laser scanning data with a resolution of 5 m x 5 m (DEM5) and
1m x 1 m (DEM1) [30]. The vertical accuracy of DEM1 is quite high at 0.5 m, while for
DEMS5 this value is &=1.1 m [38].

2.2.3. Land Use and Land Parcel Information

The basis for determining land use classes in the catchment was the Digital Land-
scape Model (DLM) from the official topographic-cartographic information system dataset
(ATKIS) from 2017 [29]. It contains the classified, topographic features of the surface (see
Figure 1b). Since the P-factor is site-specific, the appropriate reference unit for determining
the factor is the individual agricultural land parcel with one single crop. The Land Parcel
Information System (LPIS) within the European Union was used to determine the eligibility
of agricultural land [39]. It accurately maps agricultural land parcels, as subsidies are cal-
culated for each farmer individually. For the definition of the individual agricultural land
parcels in the catchment area, we use the clipped and anonymized dataset of the reference
annual land uses (RJN) for Hesse [40]. The original dataset contains 1285 agricultural land
parcels that lay completely or partly within the catchment area including their associated
crops for the year 2019.

2.3. Methods

The first step of the preprocessing workflow was to define the catchment area for the
gauging station Grofs-Bieberau 2 with the Hydrology Toolset of ArcGIS. For the definition
we only used DEM1 and filled it in advance. For the further analysis, we used the provided
DEMs without prior preparation. The year 2019 was selected for analysis due to the current
and complete data available in Google Earth™. In order to be able to check soil protective
measures of contouring for each agricultural land parcel, the parcel information dataset
was imported and analyzed in the first step of data preparation in terms of crop type and
geometric shape (see Section 2.3.1). In the second step of data preparation, an analysis of the
DEM was carried out and mean slope and mean aspect were determined as in Figure 2a (see
Section 2.3.2). LPIS data can optionally be supplemented with land use data. Image data by
Google Earth™ had to be georeferenced before the final export of individual masked images
for each land parcel (see Figure 2b). After data preparation, a main cultivation direction
was derived from the image data using the image analysis techniques in Figure 2c,d (see
Section 2.3.3). Subsequently, these directions were compared with each other (see Figure 2e).
A site-specific P-factor for the USLE could then be determined from the deviation between
these direction values, taking the slope’s gradient and length into account.
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(a) (b) (c) (d) (e)

Figure 2. Workflow of land-parcel-based application of Fast Line Detector to high-resolution remote sensing data for

automated derivation of main cultivation direction and verification of support practice measure contouring: (a) DEM

analysis; (b) preparing remote sensing data; (c) applying FLD; (d) deriving main cultivation direction; (e) comparing of

directions; data source: [30,40,41].

2.3.1. Land Parcel Geometry Analysis

Agricultural land parcels are based on farmers’ property. This results in cultivation
with a single crop per parcel with uniform management and growing conditions [1,42].
The topography, adjacent farmland, and the surrounding landscape features such as
hedges, shrubs, conservation strips, and fallow land as well as other land uses such as
forests, settlements, and water bodies or roads determine the shape of the land parcel.
For economic reasons of agricultural machining, many fields resemble a parallelogram in
shape, or their polygonal geometries are composed of triangular or quadrangular shapes.
The time required for the cultivation decreases with the medium length of the parcel and
increases with the irregularity of the shape of the parcel, as the proportion of time required
for turns and headland cultivation increases [43]. Thus, from an economic point of view,
the geometric shape and the topography of arable fields usually lead to the cultivation
direction. However, larger arable fields usually do not have a simple rectangular shape.
Moreover, the ratios of the side lengths are often not equal. To quantify the morphological
shape form of the agricultural land parcels, we used the isoperimetric inequality. In the
two-dimensional plane, the isoperimetric inequality for the perimeter P and the area A of a
polygon states that

P? > 4mA. 1)

This means that the circle is a shape that encloses the maximum area for a given
perimeter [44]. Among others, Osserman [45] derived the isoperimetric quotient (IPQ)
from this relationship as a shape compactness value Cipg with

Cipq = 4mA /P? ()

which has become one of the most accepted factors for compactness [46]. The Cipg is
defined as the ratio of a shape area to that of a circle with the same perimeter. Thus, since a
circle with a Cypg of 1.0 is considered the most compact of all shapes, this ratio is called
circularity [44]. The Cipg of shapes ranges in the interval (0, 1] [46]. Figure 3 shows a
comparison of the Cipg values for different geometric shapes. Circle, rectangle, and right
triangle are listed as examples. As the ratio of width to height for the rectangle and base
to height for the triangle increases, the Cipg decreases and finally approaches zero. The
smaller the value is, the less compact is the geometric shape. The factor is rotationally
invariant and, by squaring the perimeter, independent of the variable side lengths of the
polygons under study [46].
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Figure 3. Comparison of values of Cpg for different geometric shapes according to their width-height ratio for rectangles

and base-height ratio for right triangles according to Equation (2).

2.3.2. Digital Elevation Model Analysis

Analysis of the digital elevation models was performed using Esri ArcGIS Pro (2.7.3).
Calculation of slope and aspect for the whole catchment was conducted by planar method
with a 3 x 3 neighborhood for DEM5 and a 9 x 9 neighborhood for DEM1 to consider
high-resolution elevation data [47]. The slope describes the relationship between horizontal
elevation changes on a defined vertical distance. Based on the raster dataset, the slope
is defined as medium horizontal inclination of the surrounding raster pixels in the given
neighborhood. The aspect specifies the compass direction facing this average downhill
slope. In the context of evaluation, we define the zonal mean value of the slope of a land
parcel as the main slope for this parcel. The parameter aspect follows the same procedure.
Especially in hilly and mountainous areas, the derived mean values of slope and aspect
for a plot or parcel do not always correspond to reality since the terrain may incline in
several directions and with different gradients. Therefore, we considered the standard
deviation (SD) as an index for the complexity of the topography with different slopes or
directions. The smaller the value for the SD is, the smaller the dispersion is of the measured
features from the mean and the more uniformly the terrain within the plot is sloped in
direction considering aspect and in gradient considering slope. Mean and SD for slope
raster were figured out with zonal statistics for each land parcel. For the aspect grid, we
had to consider the circular statistical functions of the Python package SciPy to determine
the mean and SD of the aspect values [48]. For all indicated aspect angles, we used the
north azimuth system, measured in clockwise direction from north in units of degrees in
the interval [0, 360).

2.3.3. Image Analysis

The usual cultivation of fields by agricultural machinery is carried out in strips, so
cultivation of the seed rows and tramlines (tire tracks) runs parallel to the long sides of
the field geometries. Tramlines are caused due to regular use for maintenance purposes,
e.g., applying pesticides or fertilizer during the growth phase of the crop. In the context
of topology, the tramlines form a continuous, mostly parallel network across the entire
field and do not end abruptly except at the edge of the field. Usually, the tramlines are
not sown. If they are sown, the plant growth within the tramlines is negatively influenced
by soil compaction, and the growth progress within the tramlines lags behind that of
the other plants [49]. Due to the difference in albedo between plants and soil as well as
increasing shading within the tramlines as the plants grow taller, texture gradients are
created on the remote sensing images that can be deduced using computer vision [50].
However, for perception of these gradients, a corresponding resolution in the sub-meter
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range is required for the remote sensing dataset. Therefore, freely available remote sensing
data from satellites with a current resolution of 10 m x 10 m (Sentinel-2) or 15m x 15 m
(Landsat 8) per pixel are not suitable [51,52]. Moreover, the intensity of the texture gradient
depends on the crop type and the phenological growth stages of the plants [53].

To link the image data to the arable land parcels, the images extracted from Google
Earth™ were first loaded into ArcGIS Pro and georeferenced using the four saved corner
points for each image. Subsequently, all images were merged to form a mosaic with
histogram adaption. Then, we extracted the image grid for each arable land parcel by
mask. To obtain a suitable minimum resolution for the images of each land parcel, we
only considered areas larger than 1500 m?. For further image analysis, we used the
Open Source Computer Vision (OpenCV) library with version 4.0.1 for Python [54,55].
The OpenCV library is open source and free to use under license [56]. Among others,
it contains the Fast Line Detector algorithm by Lee et al. [22] that works with grayscale
images and shows good results for the detection of linear segments [57]. The following
equation shows the definition for converting the luminance E for each color from RGB
to 8-bit grayscale in OpenCV according to the International Telecommunication Union
Recommendation BT.601-7 [58]:

EGray = 0.299 EReq + 0.587 EGreen + 0.114 Epjye. 3)

The FLD algorithm uses the Canny edge detector for the effective identification of
edges, which operates in the following four steps [50,59,60]:

1.  Image smoothing by Gaussian filter for noise reduction;
2. Computing local gradient with Sobel operator;

3. Edge localization with non-maximum suppression;

4.  Hysteresis threshold to form contours.

To improve the result of the FLD algorithm, the input parameters for line detection
listed in Table 1 can be adjusted. For all subsequent applications of the FLD algorithm,
the parameter ‘Do Merge’ was set to ‘False” in order to prevent the merging of segments,
which may promote the connection of detected lines of different categories—for example,
detected lines from soil erosion and tramlines. In addition, the Canny Aperture Size was
set to 5 since the value 3 was usually responsible for the FLD detecting significantly too
few lines in preliminary investigations. All other parameters will be further investigated in
the adjustment of the FLD in Section 3.3.1.

Table 1. Input parameters for the Fast Line Detector in OpenCV [57].

Parameter Variable Value Ranges Description
Length Threshold t >0 Threshold for line length; shorter segments than this will be discarded
Distance Threshold dt >0 Threshold for non-maximal suppression (outlier definition by distance)
Canny Threshold 1 cthl (0, 255] First threshold for hysteresis procedure
Canny Threshold 2 cth2 (0, 255] Second threshold for hysteresis procedure
Canny Aperture Size cas 3,57 Kernel size of the Sobel operator
Do Merge m True, False If true, incremental merging of segments will be performed

To ensure that the boundaries of the land parcel are not detected as a line, each masked
raster image was buffered before line detection. For this operation, a width for the field
border should be selected depending on the field area and the image resolution. Especially
with a large width-height ratio, the total width of the field should be taken into account
so that the buffer width is not too large. The selected buffer width was between 15 and
30 pixels, which corresponds to approximately 9 to 18 m. As a result, landscape features
such as individual trees or other vegetation located at the field boundaries or extending
the boundaries of the land parcel did not impair line detection. In addition, a part of the
headland was not taken into account in this way. The algorithm output the results both
visually in the form of an image with detected lines and in the form of a table in which the
vertex points of the detected lines are stored in the form of image coordinates. In order
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to take into account the continuous topology of the tramlines when evaluating the main
cultivation direction, we calculated a weighted average considering the length of the lines.
For specifying the main cultivation direction, we used the north azimuth system. Since
agricultural machinery can drive along the tramlines in both directions, the interval was
limited to angles x with x € [0, 180). All angles x with x > 180° were converted accordingly
by subtracting 180°. The main cultivation direction for each agricultural land parcel was
determined visually in a manual manner using the Google Earth™ dataset in order to
be able to check the automatically derived main cultivation direction and calibrate the
parameters for FLD algorithm. In addition, we categorized all images regarding whether
the cultivation direction was definite or ambiguous by subjective decision. To quantify
the result of the FLD algorithm, the mean absolute error (MAE) was applied. It compared
the absolute difference between the automatically detected cultivation direction x; and the
main cultivation direction visually derived in a manual manner y; for each field. When
applied to multiple parameter constellations, the mean was calculated by dividing the sum
of all absolute differences by the number n of constellations:

MAE =) ly; — x;|/n 4)

A maximum MAE of less than 5° was defined as a successful detection of the main
cultivation direction by the FLD.

3. Results
3.1. Arable Land Parcel Analysis
3.1.1. Cultivation Statistics

The analysis of different agricultural land uses in 2019 for Germany in Figure 4 shows
that arable land accounts for by far the largest share at 70%. For Hesse, the share of arable
land is somewhat lower at 61%, and with only 38.5%, this share is significantly lower
for the Fischbach catchment. The shares of permanent crops are constant for all regions,
being negligible at about 1%. Thus, permanent grassland takes the inverse share of arable
land for all regions. As the area of the study region under consideration decreases, the
proportion of cropland decreases, while the proportion of permanent grassland increases
at the same rate. Thus, the Fischbach catchment eventually had a distinct inverse ratio of
arable land to permanent grassland of 60.0%.

100%
| B Germany M Hesse ® Fischbach catchment |
o | 70.3%
75% 60.9% 60.0%
50% - 38.5% 38.2%
28.5%
25% -
0%
arable land permanent crop permanent grassland

Figure 4. Comparison of shares for different types of areas with agricultural use for the regions
Germany, Hesse, and the Fischbach catchment in 2019; data source: [40,61].

The above distribution shows a different relationship for permanent grassland and
arable land than the ATKIS land use data in Section 2.2.3, even though the reference area
is of a different size. The share for permanent grassland is significantly higher in the
RJN dataset.

Arable land grows crops of various categories, such as cereals, plants for green harvest-
ing (e.g., silage maize), root crops, legumes, oil crops and other cash crops, and horticultural
crops [62]. Figure 5 shows the distribution of area shares for the respective categories in
comparison for Germany, Hesse, and the Fischbach catchment in 2019. Cereals take the
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largest share of arable land in all regions at over 50%. In Hesse, this share is 67.3%, and
in the Fischbach catchment it is higher at 71.1%. Crops for green harvesting, on the other
hand, account for about 15% in Hesse and the Fischbach catchment, which is significantly
below the average value of 25.0% for Germany. The shares for root crops are about the same
for all regions, at about 5%. The same applies to legumes at about 2%. The area share for oil
crops in the Fischbach catchment of 2.0% is significantly lower than those in Hesse (6.3%)
and Germany (8.0%). Horticultural crops are significantly less represented in the Fischbach
catchment at 0.2%. The share for eligible set-aside land is slightly higher in the study
area compared to Hesse and Germany. Even though the proportion of arable land in the
Fischbach catchment is lower than in Hesse and Germany, the relative distribution of crop
categories is very typical for Hesse and comparable to the average proportions in Germany.
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Figure 5. Distribution of various categories of cultivated area in comparison for Germany, Hesse,
and the Fischbach catchment in 2019 (categories < 0.2% not considered); data source: [40,61].

Since the further analysis will examine the cultivation direction in fields with seasonal
crops, eligible set-aside land will not be considered anymore. These include buffer strips,
ornamental plants, flowering strips, and honey plants as well as fallow and arable land
taken from production, as no clear plant type is defined for these areas. In addition, crops
from the category of plants for green harvesting are neglected, such arable grass, clover
grass, and alfalfa, even if planted seasonally, except maize for silage.

After data processing, the dataset in Figure 6 contains the final geometries for the total
of 300 land parcels of arable land bigger than 1500 m? that lay completely or partly within
the catchment area including their associated crops for the year 2019. The remaining arable
land parcels are located especially in the flatter north and, furthermore, in the western part
of the catchment.

Table 2 shows an overview of the absolute and relative area shares of the individual
crop types in the Fischbach catchment. In addition, the number of land parcels with these
crop types is listed there. Winter durum and winter barley together accounted for more
than 50% of the total area and, with 157 parcels, more than half of all accounted arable land
parcels. Maize plants were subdivided according to the time of harvest, based on processing
of the harvested plant in the form of silage or grain corn (category root crops). Combined,
they accounted for 15.4% of the total area or 44 land parcels, with each type accounting
for one half. Other cereal crops followed, including winter triticale (8.0%), summer oats
(4.6%), spring barley (2.6%), and winter mixed grains (1.2%). Additionally, 2.3% contained
oil crops such as winter or summer rapeseed. Legumes included broad bean and soybean
with a rather low share of 1.5 and 0.8%, respectively. Root crops included sugar beets (4.8%)
and potatoes (0.5%). In addition, there were individual fields (1 to 3) with horticultural
plants (vegetables, giant pumpkin), other cereals, and other crops, represented by the
pseudocereal buckwheat.
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Table 2. Distribution of different crop types in the Fischbach catchment (deviations result from rounding); data source: [40].

Crop Type Category Area (m?) 11,\; (::::lfs Areal (%)
Winter wheat Cereals 1,321,909 87 32.1
Winter barley Cereals 959,073 70 23.3

Silage maize Pfgh. ? 341,493 22 83
Winter triticale Cereals 330,456 27 8.0
Maize (non-silage) Cereals 292,791 22 7.1

Sugar beet Root crop 197,008 9 4.8
Summer oats Cereals 188,316 17 4.6
Spring barley Cereals 108,395 9 2.6

Winter rapeseed Oil crop 84,884 6 2.1
Broad bean Legumes 62,000 3 15
Winter mixed grain Cereals 48,352 6 1.2
Soybean Legumes 34,411 1 0.8
Winter rye Cereals 24,023 3 0.6
Potatoes Root crop 22,291 3 0.5
Winter spelt Cereals 21,475 3 0.5
Winter durum Cereals 21,402 1 0.5

Buckwheat Other crop 17,893 2 0.4

Summer spelt Cereals 14,254 2 0.3

Summer rapeseed Oil crop 9441 1 0.2

Summer durum Cereals 6878 1 0.2

Summer wheat Cereals 6313 1 0.2

Vegetables Hort. Crop 3 3665 1 0.1

Winter oats Cereals 3491 2 0.1
Giant pumpkin Hort. Crop 2 3410 1 0.1 | ; . .

Sum 4,123,625 300 100.0 0% 10% 20% 30%

! share of area refers to absolute total area of all analyzed arable land parcels, 2 Pf.gh.: Plants for green harvesting, 3> Hort. Crop:
Horticultural crops.

[ ] Arable Land Parcels
[ Fischbach Catchment

B KM
0 05 1 2

Figure 6. Geometries of arable land parcels in 2019 within the Fischbach catchment after data
processing of mosaic on Google Earth™ images; data source: [30,40,41].
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3.1.2. Geometry Shape Analysis

Since the minimum area size was limited to 1500 m?, the size of the land parcels
ranged from 1551 m? to a maximum of 73,936 m2, with a mean value of 13,745 m2. The
median of 11.358 m2, which is significantly smaller than the mean, resulted in a right-
skewed distribution for the shape area of the land parcels. This is evident in the cumulative
frequency analysis in Figure 7. The Fischbach catchment contains a very large number of
land parcels with a very small area <20,000 m? (78.7%). In addition, 19.7% of small-sized
parcels are from 20,000 up to 40,000 m? in area. Larger parcels bigger than 40,000 m? are
represented only five times, of which two parcels are larger than 60,000 m?. Compared
to Hesse with a mean size of 18,423 m? per arable land parcel, there are more very small
parcels (<20,000 m?) and less small parcels (20,000-40,000 m?) in the Fischbach catchment.
Medium (60,000-100,000 m?) and large parcels (>100,000 m?) are clearly underrepresented.

1.0 100%
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Figure 7. Compactness in relation to the parcel area for all geometries of land parcels with and
without holes (numbers in diagram define the area of holes); cumulative frequency analysis of the
shape area for land parcel geometries (green line); data source: [40].

The plot in Figure 7 shows the compactness of each parcel, calculated according to the
isoperimetric quotient Cipg in Equation (2) as a function of the parcel area size. The results
for compactness rank between 0.147 and 0.864. Values smaller than 0.3 occur only for small
fields (<6000 m?). In this size range of the fields, moreover, the variance of the possible
values for compactness is very large. With increasing area, the minimum compactness
increases. If only the compactness and its frequency are considered, a clear left-skewed
distribution can be observed with a mean value of 0.625. Only 9.0% of the arable land
parcels have a Cipg greater than 0.785 and, thus, a more compact or circle-like shape than a
square (see Figure 3). Some arable land parcels have holes within the geometry, with the
area of the holes ranging between 24.98 and 5411.91 m?. As the area of the holes increases,
the compactness factor decreases due to the increasing circumference and simultaneously
decreasing total area (see Figure 7). In these cases, the holes usually represent landscape
features such as hedges or shrubs that are not counted as agricultural land. Sometimes
there is an unfavorable land parcel definition where one parcel lies within another (see
Figure 8a). However, the determination of Cipg does not work for polygons with holes.
These parcels must be evaluated separately, since Cipg takes into account the perimeter of
all outer lines of the polygon, including inner edges. In addition, holes of a certain size
have a particular influence on the effort for agricultural cultivation of the parcels, with
the result that it is no longer possible to give an indication of the amount of cultivation
required on the basis of the geometric shape. There are, altogether, four polygons with
holes larger than 200 m?, which are separately illustrated in Figure 7. The Cipq for these
parcels is significantly lower depending on the size of the hole. The graphical analysis
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Crro=0.203
(a)

Figure 8. Examples of geometric shapes of arable land parcels in the Fischbach catchment with different values for Cipg

shows this characteristic especially for the two plots with larger holes. Figure 8 illustrates
four examples of geometric shapes of arable land parcels in the Fischbach catchment with
increasing values for Cipg from (a) to (d). In Figure 8a, we first present an example of a
polygon with a hole, which gives the very low Cipg value of 0.203. The parcel in Figure 8b
has a trapezoidal shape with a strongly unequal ratio of width to height (1:9). This results
in a low value of 0.252. The width-height ratio of the parcel in Figure 8c is between 1:1
and 1:2. The partially slightly rounded corners of the polygon have a beneficial effect on
the Cipg, which is higher at 0.777. The convex polygon in Figure 8d resembles the circular
shape even more, and the Cipg is 0.857. Convex shapes increase the Cpg value, while
concave shapes decrease it.

| &

Crro =0.252 Cro=0.777 Crro =0.857
(b) (0 (d)

(figures do not have the same scale); (a) shape with hole; (b) shape with unequal ratio; (c) squared shape; (d) convex shape;

data source: [40,41].

3.2. DEM Analysis

Regarding the analysis of the digital elevation model, the results include a comparison
of DEM1 and DEMS5 for slope and aspect, spatially differentiating between the entire
Fischbach catchment and the masked area of the arable land parcels.

3.2.1. Slope Analysis

Table 3 compares the results for the slope of the statistical parameters of minimum,
maximum, mean, and SD. DEM1 has a significantly higher variance when the entire
Fischbach catchment is considered. Furthermore, even when using a larger neighborhood
for the slope calculation, the maximum slope for DEM1 is twice as large (439.91%) as
that for DEM5 (214.50%). The high maximum slope values result from the edges of
an abandoned quarry in the study area. This results in a larger mean for DEM1 and a
higher SD in relation to DEM5. However, the differences in slope calculated with DEM1
and DEMS are only apparent in detail, which is why Figure 9 shows only the slope
from DEMS5 as an example. Comparison of the land use in Figure 1b with the slope in
Figure 9 indicates that areas with steep slopes are predominantly forested or covered
with permanent grassland, so significantly lower maximum values of about one-fifth of
the total catchment can be observed if only the masked areas of the arable land parcels
are considered. This is true for both DEM1 and DEM5. The mean and SD values are
significantly lower, too. Furthermore, the difference in statistical values between the two
different DEM input datasets is smaller.
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Table 3. Statistical parameters of slope (%) for DEM1 and DEMS5; data source: [30,40].

Calculated Mean for Masked

Fischbach Catchment Masked Arable Land Parcels Arable Land Parcels
Stat. DEM1 DEMS5 DEM1 DEMS5 DEM1 DEMS5
Parameters
Minimum 0.002 0.007 0.01 0.07 2.00 1.52
Maximum 439.91 214.50 79.07 48.29 21.57 21.59
Mean 18.26 17.84 10.38 10.36 10.61 10.49
SD 12.01 10.90 5.14 5.07 3.97 4.01

Figure 9a shows that extremely steep slopes are not found on the arable land parcels.
For the masked arable land parcels in Figure 9b, a mean value was derived from the dataset
in Figure 9a and classified according to the P-factor determination in ABAG [14]. The
calculated mean values range from 1.52 to 21.59%. Parcels with lower mean values are
located in the valleys of the flowing waters and at the edge of the catchment on the upper
plateaus. In contrast, parcels with steeper mean slopes are located on the slopes between
the outer plateaus and the streams. The spatial distribution of slope values as a function of
location within the watershed cannot be determined.

Mean Slope per Parcel DEM5

T P

Slope DEM5
P 430.91% P sw-12%
12 % -16 %
K M 0.0027% K 16 % 20 %
N T <M r— e
0 05 1 2 0 05 1 2 B > 0%
(a) (b)

Figure 9. Slope in Fischbach catchment including area of arable land parcels under investigation: (a) Slope DEMS5;

(b) mean slope of DEMS5 for masked arable land parcels following classification of ABAG for determining the P-factor;
data source: [14,30,40].

Using the zonal statistics method (see Section 2.3.1), the differences between the
parameters for DEM1 and DEMS in Table 3 were found to be very small. This is true for
the population of all elements as well as for each individual arable land parcel in Figure 10.
Here, in ascending order, all mean values for slope per land parcel were calculated based
on DEMS5 on the x-axis and based on DEM1 on the y-axis. The figure shows that for
17 out of 300 land parcels (5.7%) the absolute difference in mean slope is greater than
0.5%. These points are marked with a red outline in Figure 10. The maximum value for
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absolute difference is 1.42%. For all other parcels the absolute difference is smaller than
0.5%. Absolute differences greater than 0.5% are distributed over the entire range of mean
slope values and are not limited to a low, medium, or high slope.
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Figure 10. Comparison of mean slope per arable parcel for DEM1 and DEMS5. Red points indicate an
absolute difference greater than 0.5%; data source: [30,40].

3.2.2. Aspect Analysis

The orientation of the land slope in the catchment is based on the streams that run
in the valleys. This characteristic orientation is largely evident for the calculated mean
aspect per parcel from DEMS in Figure 11, where the mean slope direction for each arable
land parcel is indicated by an arrow that points downslope. As the distance to the stream
increases, the mean slope direction no longer necessarily points to the stream direction.
This is especially true for the land parcels located at the border of the catchment on upper
plateaus. However, as already indicated in Section 2.1, the topography, especially with
respect to the aspect, is often more complex in low mountain ranges and the parcels are
often sloped in several different directions. This feature is illustrated in Figure 11 with blue
color coding for the SD. The darker the blue shade of the arrows is, the higher is the SD for
the respective parcel. Areas with a high SD are located in particular on the upper plateaus
at the border of the catchment, although not exclusively there.

The SD for all arable land parcels in the catchment is significantly increased, suggesting
a complex topography and thus a large proportion of surfaces that are sloped in multiple
directions. Comparing the input datasets of DEM1 and DEMS5, the correlation for the mean
aspect per parcel is even more significant than that for the slope determination when the
limit value for an acceptable deviation is set to 5.0°. This results in only 4 out of 300 land
parcels, marked with a red outline in Figure 12, where the absolute difference in mean
aspect is greater than 5.0°.
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Mean aspect of DEM5 for masked arable land parcels including SD in relation to streams

in the Fischbach catchment; data source: [29,30,40].
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Comparison of mean aspect per arable parcel for DEM1 and DEM5. Red points indicate

an absolute difference greater than 5.0°; data source: [30,40].

The final comparison of aspect and slope in Figure 13 indicates a weak linear correla-
tion between mean slope and SD of aspect. At low mean slope <8%, the SD of aspect can
reach values above 100°. With increasing values for mean slope, the SD value for aspect
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decreases and thus indicates the complexity of the topography with respect to the aspect.
As a result, the steeper sloped land parcels usually have a more uniform direction of slope.
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Figure 13. Comparison of mean slope per arable parcel for DEM5 and SD of aspect for DEMS5;
data source: [30,40].

3.3. Image Analysis

In the initial application, the FLD algorithm was designed to determine the main
cultivation direction of the arable land parcels in a simplified way. Among the 300 images of
arable land parcels extracted from Google Earth™, there were 18 images with an ambiguous
main cultivation direction. Therefore, these were not considered further in the analysis.
Similarly, the four arable land parcels with holes in their geometry (see Section 3.1.2) were
not included in the initial application. The remaining 278 masked arable land parcels with
a definite main cultivation direction and without holes were categorized by crop type.
Initially, the physical reasonable range of the parameters Length Threshold t, Distance
Threshold dt, Canny Threshold 1 cth1, and Canny Threshold 2 cth2 was assessed. Then, the
parameters were assigned to achieve the best line detection results. For both procedures,
the image dataset of the crop type spring barley with its eight images was used because it
contained images with well-visible and less well-visible tramlines. Furthermore, it included
images with partly extending trees and their shadows at the parcel border. Additionally,
we used the smallest arable land parcel of the investigation with the crop type winter
oats. Finally, the results for the application of the FLD with the parameters applied to
all 278 images and parameter constellations for each crop type are shown.

3.3.1. Adjustment of FLD Parameters

First, we investigated the influence of the individual parameters on the detection of
single lines as well as their average orientation. For this purpose, we varied the value for
the parameter Length Threshold t in Figure 14 for two arable land parcels with different
area sizes while keeping the other parameters constant. An increasing value for t filtered
out shorter lines, so the average length of the detected lines increased for an increasing t.
Filtering out smaller lines ensured that fewer lines would be detected by the FLD in total.
This applied to all images regardless of shape and size.

The variation of the Length Threshold t in Figure 14 shows that lines less than or equal
to 10 px (6 m) have a significantly larger variance in the orientation. Comparing the area of
the parcels, this variance is more pronounced for larger fields (see bottom row of Figure 14)
than for smaller fields (see upper row of Figure 14). This behavior is evident in the analysis
of the SD for the detected lines in Figure 15. With increasing t, the SD of all detected lines
decreases. The SD for small fields is generally lower than the SD for large fields. Therefore,
the minimum value for t was set to 10 px (6 m).
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Figure 14. Results for increasing Length Threshold t from (a-e) for one small parcel 1421 (1551 m?, winter oats) in the upper
row and one medium-large parcel 1324 (25,456 m?, spring barley) in the bottom row (images of land parcels are not to scale;
dt=21/2 px, cthl = 150, cth2 = 75); detected lines by FLD in red color; data source: [40,41].

SD of detected Direction (°)
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Figure 15. SD for orientation of detected lines depending on Length Threshold t for one small (green, 1421) and one
medium-large parcel (blue, 1324); data source: [40,41].

However, for a value of t greater than 50 px, lines tend not to be detected anymore
because the gradients in image values are too large (see Figure 14e). This value is corre-
spondingly smaller for parcels with a smaller area due to the reduced number of pixels.
Due to this relationship, it is suggested that t (px) is best determined as a function of field
area according to the following Equation (5):

t = 0.8 (fieldarea)/3 — 2.5. (5)

Afterwards, the calculated value was converted to an integer as input for the FLD
algorithm. Here, ‘fieldarea’ is specified as a number of pixels in order to be able to define
t independently of the image resolution. Figure 16 shows the graph of the function with
converted integers. Results that are smaller or larger than the two threshold values take
the corresponding lower value of t = 10 px or upper value of t = 50 px.

However, this behavior of not detecting lines for large t values depends on the Distance
Threshold dt, among others. The smaller the threshold value for dt is, the more likely the
detection of a line is interrupted. Figure 17 visualizes the bivariate relationship between
the combination of parameters t and dt exemplified on an image with spring barley (Parcel
1323). On the horizontal axis, dt increases from left to right. The value for t increases on the
vertical axis from top to bottom.
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Figure 16. Calculation of Length Threshold t depending on the field area.
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Figure 17. Matrix of combinations showing bivariate relationship between t and dt for Parcel 1323
(spring barley). The numbers below the images represent the number of detected lines/average line
length (px)/SD of the orientation of all lines (°) (cth1 = 150, cth2 = 75); lines detected by FLD in red
color; data source: [40,41].
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As already shown in Figure 14, the number of detected lines decreases, the average
length of lines increases, and the SD for the orientation of the lines decreases as the value
for t increases in Figure 17. These trends can be observed for different values of dt. All
three trends are strongest for an increasing t value for dt = 2!/2 px. The FLD algorithm
already detected an SD of 1.6° at t = 20 px, for dt = 2!/2 px. For all larger values of dt, the
SD is clearly higher at 14.7° or even 16.0°. For dt > 2!/2 px, the FLD detected significantly
more lines that, however, show a greater variance in the orientation. In this plot, only
minimal differences can be detected visually and quantitatively for dt > 21/2 px. Results
for dt > 10 px show no further changes in line detection both visually and quantitatively.
Therefore, a value of dt = 21/2 px provides low SDs even at low values for t. However, a
strongly decreasing number of lines has to be considered in this case. Thus, it occurs with
other images from the dataset with application of the FLD that with a very small number
of lines already, small deviations in the orientation of the single lines are responsible for
an increased SD. This results in an unclear or only impaired determination of the main
cultivation direction. In addition, the FLD no longer detects any lines if the values for t are
too high in some cases, depending on the parcel area. Therefore, a relatively small value
for dt should be chosen (dt < 5.0 px) in order to connect continuous objects. The minimum
was set as the distance from a neighboring pixel (dt = 2!/2 px), which is the standard value
for dt in the FLD.

The parameters cthl and cth2 describe the upper and lower threshold values, respec-
tively, in the final step of Canny edge detection (see Section 2.3.3). The Canny Threshold
parameters have a significantly less sensitive effect on the results than the parameters t
and dt. Therefore, we used statistical parameters instead of image results in Table 4 to
present the results from investigating these parameters. Upper and lower values were
automatically assigned so that cthl and cth2 are interchangeable without changing the
results of the line detection algorithm. Canny [60] recommends a threshold ratio for cth2
and cthl between 1:2 and 1:3. In the following, cthl describes the upper threshold, and
for cth2, we multiply cthl by the corresponding ratio. For this representation, we used
Equation (5) for calculating the parameter t in combination with dt = 21/2 px.

Table 4. Results of FLD for different combinations of Canny Threshold parameters cthl and cth2; numbers on the bottom line represent

the result of all values for cthl.

Ratio Mean of SD . Mean Number Mean Line

Cth1 Cth2:Cth1 Cth2 for Orientation Sum of Lines of Lines Length
150 5.50 300 8.57 34.51
1:4 37.5 5.50 60 8.57 34.51
1:3 50.0 5.50 60 8.57 34.51
2:5 60.0 5.50 60 8.57 34.51
1:2 75.0 5.50 60 8.57 34.51
2:3 100.0 5.50 60 8.57 34.51
200 5.21 296 8.46 34.40
1:4 50.0 5.50 60 8.57 34.51
1:3 66.67 5.50 60 8.57 34.51
2:5 80.0 5.50 60 8.57 34.51
1:2 100.0 5.50 60 8.57 34.51
2:3 133.33 4.06 56 8.00 33.93
300 4.65 280 8.00 34.49
1:4 75.0 5.50 60 8.57 34.51
1:3 100.0 5.50 60 8.57 34.51
2:5 120.0 2.84 56 8.00 34.91
1:2 150.0 3.87 56 8.00 34.13
2:3 200.0 5.53 48 6.86 34.36
25-300 5.31 1776 8.46 34.49
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For one image of the category spring barley, no tramlines were visually recognizable.
The quality of the results for this image was rather random regardless of the parameters
and therefore not used for further adjustment. Table 4 shows the influence of cth1 and cth2
on the results of FLD in terms of number of lines as well as SD of detected line orientation
at the different ratios of 1:4, 1:3, 2:5, 1:2, and 2:3. Values of 25, 50, and 100 for cthl did
not result in any changes for all ratios regarding number of lines and SD for images of
spring barley compared with the results for cthl = 150. Therefore, Table 4 only contains
the results for cthl > 150 with a stepwise increase up to a maximum of cth1 = 300. With
the increasing value for the upper threshold cth1, the mean number of recognized lines
per image, and therefore the sum of lines, decreased, while the mean of the SD for line
orientation decreased slightly. The mean line length did not show any changes. The
influence of different ratios on the results for the crop type spring barley only became
apparent for cthl > 200 in combination with high ratios of cth2:cth1 > 1:3. Considering all
images simultaneously, better results became apparent for cthl = 300, since the SD for the
lines was lowest here. At the same time, however, the number of detected lines became
smaller. Considering the single images separately, different results were obtained. In most
cases, the number of detected lines changed, mostly in the form of a decrease. At the same
time, the SD changed, yet with different effects. In some cases, the changes were very small
(<2°), while in other cases there were larger positive or even negative effects on the SD.

Table 5 shows the best results of the FLD for different Canny Threshold parameter
constellations considering all seven remaining images for spring barley. It contains the
absolute number of images with successful detection of the main cultivation direction by
FLD (MAE < 5°) compared with the visual detection of Google Earth™ images. Further-
more, the numbers of images with unsuccessful detection and with no line detection are
listed. Table 5 shows similar results to Table 4. The FLD successfully determined the main
cultivation direction for six of the seven images at cth1 < 200 regardless of the ratio. The
FLD showed the best result for cthl = 300 and a ratio of 2:5. In none of the seven fields did
the FLD detect no lines at all. However, no optimal parameter constellation for the Canny
Threshold parameters can be derived from the results.

Table 5. Final results of FLD for the whole dataset of seven images with spring barley crop type.

Cth1l 25 50 100 150 200 300
. . . 1:4, 1:3, 2:5, 1:4, 1:3, 2:5, 1:4, 1:3, 2:5, 1:4, 1:3, 2:5, 1:4, 1:3, 2:5, .
Optimal Ratio(s) Cth2:Cth1 1:2, 2:3 1:2,2:3 1:2,2:3 1:2,2:3 1:2,2:3 z5
Detection of main
cultivation direction
Successful 6 6 6 6 6 7
Unsuccessful 1 1 1 1 1 0
No lines detected 0 0 0 0 0 0

3.3.2. Application of the Adjusted Parameters to the Image Data Set

For the spring barley image dataset, the parameters t and dt were identified as very
sensitive. Cth1 and cth2 showed less sensitive effects on the FLD results. Therefore, Table 6
presents the best results for different values for cthl and ratios of the Canny Threshold
parameters to account for their impact on the entire dataset. In this case, we used all
278 images even if no tramlines were visually detectable. The table contains the absolute
number of images with successful detection of the main cultivation direction by FLD
(MAE < 5°). Furthermore, we list the number of images with unsuccessful detection and
with no line detection. Even though the best results were obtained for different upper
thresholds in combination with different ratios, the rate of successfully detected main
cultivation direction was the same for all applied thresholds, with a success rate of 77.7%.
In addition, it is obvious that the FLD did not detect any lines at all for significantly more
images at an upper threshold of cthl = 300, which were only unsuccessfully detected
at lower thresholds. Changing the Distance Threshold to dt = 3 px, the results became
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minimally worse with fewer successfully detected main cultivation directions. The same
applies to a manual selection of the parameter t for all images of land parcels in range of 15
to 50 px.

Table 6. Final results for the whole dataset of 278 images with adjusted parameters and different ratios for Canny
Threshold parameters.

Cth1l 25 50 100 150 200 300

. . 2:3,1:2, 2:5, 2:3,1:2, 2:5, = 1m 1. . . .
Optimal Ratio Cth2:Cth1 1:3, 1:4 1:3, 1:4 2:5,1:3, 1:4 1:4 2:5 1:2

Detection of main
cultivation direction

Successful 216 216 216 216 216 216
Unsuccessful 59 59 59 59 58 54

No lines detected 3 3 3 3 4 8

Selecting the optimal Canny Threshold parameters cthl and cth2 for the respective
crop type resulted in a success rate of 79.9%. Table 7 contains the individual results for
this application. However, when analyzing these results, the very small number of image
acquisitions for some crop types must be taken into account, which means that the results
are not representative for all crop types. The FLD did not detect lines for one image each
of winter spelt, winter barley, potatoes, and sugar beet. Furthermore, detection of the
main cultivation direction was less successful for maize (non-silage) and winter rapeseed.
Considering the crop categories (see Table 2), different trends can be observed for the upper
threshold value cthl. For root crops, summer cereals, and other crops, the FLD provided
better results for smaller values of cthl from 25 to 150, while for oil crops and winter cereals,
it achieved better results for a large value of cthl = 300. In this study, the value for cthl
showed little to no influence on horticultural crops and plants for green harvesting.

Table 7. Best results of FLD with individual adjusted Canny Threshold parameters for each crop type; data source: [40].

Optimal

No. of FLD FLD Not No Line
Crop Type Parcels Cth1? Cch:.Ct? 1 Successful ~ Successful Detected
Ratio
I I |
Summer durum 1 All All 1 0 0
Winter spelt 2 All All 1 0 1
Winter wheat 78 300 1:2 60 18 0
Summer wheat 1 25,50, 300 None 1 0 0
Summer spelt 2 All All 2 0 0
Winter rye 3 All All 3 0 0
Winter mixed grain 5 >100 None 4 1 0
Winter barley 68 300 2:5,2:3 61 6 1
Spring barley 8 >100 >1:4 7 1 0
Winter oats 2 All All 2 0 0
Summer oats 17 <300 None 13 4 0
Winter triticale 25 All All 21 4 0
Maize (non-silage) 20 <200 All 11 9 0
Buckwheat 2 <200 <1:3 2 0 0
Broad bean 3 All All 3 0 0
Winter rapeseed 6 <200 <1:4 2 4 0
Summer rapeseed 1 All All 1 0 0
Soybean 1 All All 1 0 0
Silage maize 20 All All 16 4 0
Potatoes 3 All <1:4 2 0 1
Sugar beet 8 <150 <1:4 6 1 1
Vegetables 1 All All 1 0 0
Giant pumpkin 1 All <1:4 1 0 0 oo
Sum 278 222 52 4 0% 50% 100%

1“All’ contains parameter values 25, 50, 100, 150, 200, and 300. 2 /All’ contains ratios of 2:3, 1:2, 2:5, 1:3, and 1:4.
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Figure 18 shows the evaluation of the results taking into account the parcel geometry
with the parameters parcel area (a) and the compactness factor Cipg (b). For a comparative
presentation, both parameters were classified and the absolute values for successful and
unsuccessful line detection are listed as well as the number of images for which the FLD did
not detect any lines at all. With increasing area, the relative amount of successfully detected
main cultivation directions increased from 75 to 100%. The three images for which the
FLD did not detect any lines were within the classes with a smaller parcel area <20,000 m?.
Considering the Cipg, the success rate ranged from 68.8% for very large Cipg values to
100% for values smaller than 0.3. However, the success rate was apparently independent
from the compactness factor, as no functional relationship between successful detection of
the main cultivation direction and the Cipg could be established.
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Figure 18. Results of FLD with parameters of (a) the shape area (different class widths) and (b) the compactness factor

CIPQ; percentages describe the success rate of the FLD per interval.

Finally, we present the results of the comparison of mean aspect and main cultivation
direction in Table 8 for all 278 arable land parcels. From the smallest difference of these two
directions, we categorized the support practice measure contouring into three categories.
Optimal contouring occurs when the two lines are orthogonal and the difference is in
the interval [67.5°, 90°]. The category of no contouring exists for a cultivation along the
direction of the aspect if the directions are almost parallel and the difference is in the
interval of [0°, 22.5°). For values of the difference that lie in the interval [22.5°, 67.5°), we
define an oblique cultivation. From this comparison, we deduced for the individual arable
land parcels that the support practice measure contouring is used for 149 parcels (53.6%)
within the Fischbach catchment. For 33 (11.9%) of the analyzed arable land parcels, the
mean aspect corresponds to the main cultivation direction (no contouring). The conclusion
for the FLD is comparable, only rather worse. At 50.0%, slightly fewer arable land parcels
are categorized as having contouring, while 13.7% belong to the category no contouring.
The value for oblique cultivation is almost the same at 35.3%. The FLD was not able to
determine a cultivation direction at all for three images.

Table 8. Final results for the application of the support practice measure contouring comparing the mean aspect vs. the

main cultivation direction. Example illustration on the left: Representation of the classification for contouring with mean

aspect (black arrow) and cultivation direction manually derived (blue) and automatically derived (green).
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Cultivation Direction
Contouring [67.5°,90°] 149 53.6% 139 50.0%
Oblique Cultivation [22.5°, 67.5°) 96 34.5% 98 35.3%
No Contouring [0°, 22.5°) 33 11.9% 38 13.7%
No Detection 0 0.0% 3 1.1%

! Contains absolute and relative number of images for each category of contouring; 278 images in total.
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4. Discussion
4.1. Land Use and Land Parcel Analysis

The analysis of land use and arable land parcels has shown that areas with an above-
average slope dominate the Fischbach catchment and are predominantly forested. The
share of arable land is therefore lower than that in Hesse and Germany. In the category of
agricultural land, less steeply sloping terrain offers more opportunity for arable land, while
permanent grassland is more likely to be found in regions with steeper slopes. On the one
hand, this is due to the risk of soil erosion on steeper slopes, but on the other hand, it is
more difficult to machine steeper sloped plots [1]. This phenomenon is applicable for Hesse
and especially for the investigated catchment area. The study area shows, in accordance
with the statistics for Hesse and Germany, typical cultivation structures for arable land
with a large share of cereals containing typical grain crops such as winter wheat and winter
barley. These accounted for a share of over 55% of the cultivated area in 2019. The arable
land parcels in the Fischbach catchment are, on average, smaller in relation to Hesse, which
is due to the topography. The steeper and more complex terrain is responsible for the
frequently alternating land uses in the form of forest and permanent grassland. Fault
scarps in the terrain as well as additional landscape features such as hedges, hems, copses,
or small water bodies limit the extent of the arable land parcels. This leads to smaller
parcels on average. Smaller parcels in turn have a positive effect on the slope length, since
this is automatically accompanied by a shortening of the maximum possible slope length.
This in turn results in a shorter flow path and thus in a lower transport force of the surface
runoff. However, there is still an increased risk of erosion in the catchment area due to an
above-average slope and a high share (>70%) of erosion-prone loess soils such as brown
earth and parabrown earth in the uppermost soil horizon with a high share of silt [63-65].

Depending on the geometric shape and the orientation of a parcel in relation to the
terrain topography, the direction of cultivation must be considered from an economic
point of view. With an unfavorable ratio of width to length of a field, machining is only
possible in the direction of the longer side, as frequent turning maneuvers would make
machining of the field uneconomical [43]. If narrow fields or fields with an unfavorable
width-to-length ratio are mismanaged, then the likelihood of soil erosion from downslope
tramlines is significantly increased. Other land uses, such as permanent grassland, or land
consolidation may need to be considered. This would transpose the field boundaries to
achieve a more favorable arrangement of individual croplands, taking into account the
topography. Furthermore, a joint, cross-border field management within a field block is
conceivable in cooperation with the field neighbor [1].

The compactness factor Cipg was introduced with the aim of taking the geometric
shape and the area of the individual land parcels into account. In addition, the factor
should be used to examine the influence of the area and geometric shape during line
detection. For this purpose, the Cjpg was chosen because it is easy to calculate using
perimeter and area data, thus allowing quantification of the polygon shape. The factor
could be applied to all studied geometric shapes of arable land parcels since there was
no overlap of the outer edges of the polygons. The application worked well, with a few
exceptions, yet was not always successful. It was found that the results do not allow an
explicit conclusion on the simplified, geometric basic shape in every case. This is due to
the topology of the fields, which, in practice, have significantly more nodes and edges than
regular triangles or quadrilaterals. More nodes lead to a concave shape of land parcels.
That is, they approximate a circular shape. Convex structures, on the other hand, reduce
the Cpg. Larger objects with irregular boundaries tend to have a higher compactness [66].
Although the Cipg can clearly distinguish between areas with unfavorable aspect ratios
and areas with favorable aspect ratios, there are some exceptions. Holes within polygons
significantly reduce the Cipg by increasing the perimeter. For a corrected calculation, only
the outer perimeter has to be considered. Nevertheless, the automatic identification of
these polygons with holes must be the first step. Therefore, the results of the Cipg can only
serve as a first approximation to estimate the geometric shape. In the future, it would be
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better to include other shape descriptors, such as the elongation shape factor or the aspect
ratio [67,68]. In particular, this is to identify narrow fields with unfavorable aspect ratios
in order to be able to check their orientation with respect to the topography. If necessary,
a combination of several factors can be used to make an appropriate classification of
the geometric shapes and to check for a correlation between the detection of the main
cultivation direction by the FLD and the geometric shape [69]. The results should be
applied to a study area with larger parcels to cover the full range of possible values for the
area of land parcels and not only rather small parcels as used in this study. This would
allow us to test the hypothesis of whether Cipg actually tends to be higher for larger plots.

4.2. DEM Analysis

The comparison of the statistical parameters for slope and aspect has shown that, with
respect to the entire catchment, there are significant differences in the calculated values
for the different datasets DEM1 and DEMS5. These result from the different accuracies
of the derived terrain models. If the spatial extent is restricted to the arable land parcel,
the differences between the results of DEM1 and DEMS5 are reduced. This applies to
both parameters, slope and aspect. Among other things, this is due to the fact that areas
with very steep slopes are unsuitable for agricultural cultivation and therefore tend to be
forested or covered with permanent grassland in the Fischbach catchment (see Section 4.1).
However, with the choice of an arable land parcel as the reference area or spatial unit for
the calculation of the P-factor, the determination of an average value for this area unit
is sufficient. In this case, the deviations between the different datasets are much smaller
and therefore negligible. The correlation for mean slope and mean aspect of the two
DEMs is very strong, although it depends on the defined threshold for a deviation. The
parameter SD shows the same behavior. It can be stated that a DEM with a resolution
of 5m x 5 m is completely sufficient for terrain analysis according to this method in the
Fischbach catchment. However, this decision is individual for each study area and is based
on the topography of the catchment. At least the SD should be used as an indicator for the
dispersion of these parameters. Especially for calculation of aspect, the applied method
has to be questioned critically. In areas with medium slopes and complex topography,
there may be different aspects within one land parcel (see Figure 13). In this case, the
SD only serves as an indicator for the uniqueness of the aspect. Figure 13 shows that the
complexity of the topography in relation to the SD of aspect decreases with an increasing
slope. Nevertheless, this complexity has to be considered especially for steep slopes during
an evaluation. The alternative is to use the individual contour lines within the land parcel
to compare the main cultivation direction with the local aspect [70].

For future applications, a split of the land parcels depending on different aspects
would be conceivable. In terms of mean slope, the Fischbach catchment is ideally suited as
a test area for the application of the presented method since contouring is recommended
as effective for slopes between 3 and 15% [1,14]. Overall, 84.7% of the arable land parcels
have slopes between 3 and 15%, with a mean slope of 10.5% for all arable land parcels.
Nevertheless, there are some arable land parcels (14.7%) with increased slope values greater
than 15%.

4.3. Image Analysis

The method presented in this study is a simplified application of line detection on
arable land parcels to automatically derive a main cultivation direction from the image
data. The main cultivation direction was determined by an average orientation of the lines,
weighted by their length. The aim of line detection is to detect a certain number of lines
with a certain minimum length in order to be able to make a valid statement about the
orientation of the lines. Only if the FLD algorithm detects a minimum number of lines
does the standard deviation become meaningful. With a smaller number of lines, even
a few outliers ensure that the determined orientation of the lines has a high variability
and is therefore not reliable. In addition, the lines should not be too short since tramlines
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usually run across the entire field without interruption. However, since the FLD can only
detect linear elements, it was necessary to choose a threshold value for the line length
depending on the field size. The adjustment in Section 3.3.1 illustrates that the parameters
Length Threshold t and Distance Threshold dt have a very sensitive effect on the result of
the line detection. When varying these parameters, the FLD showed significant changes
in the results with respect to the number of lines, average line length, and the SD of the
alignment of the lines. For the parameter Length Threshold, a function for t depending on
the field size could be successfully defined with Equation (5). It was taken into account
to define an upper and a lower limit for the line length. This ensured a minimum line
length of 6 m for small fields. The required line length must not exceed the field length, but
only represent a certain percentage of it. On larger fields, the required minimum length is
increased depending on the area. However, the required length should not be too long. It
was limited by an upper threshold value of 30 m so that tramlines with a slight curve could
be detected (see Section 3.3.1). In addition, variations in the gradient of the gray levels can
occur, resulting in an interruption or splitting of the line elements. If the threshold value
is too high, both linear elements would then be evaluated as too short and not detected.
Furthermore, we found a suitable default value for the parameter Distance Threshold dt
for the application on arable land parcel images with the FLD of dt = 2!/ px. The Distance
Threshold shows effects on the result in interaction with t, yet is a little less sensitive than t.
Furthermore, there is a dependency between the parameters dt and the Canny Aperture
Size cas, yet this was not investigated further in this study.

The upper threshold for Canny edge detection cthl and, depending on the ratio, the
lower threshold cth? are less sensitive than t and dt. Different ratios were chosen based
on Canny’s recommendation [60]. However, no clear values could be derived from the
adjustment and from the application on the entire image dataset. As a conclusion, it can be
stated that the combination of a high, upper threshold cthl and large ratios (1:2 and 2:3)
leading to a high cth2 value often reacted with a higher sensitivity than other parameter
constellations. However, the result for each image was often individual, so the FLD results
were both better and worse in terms of the number of lines and SD for alignment. The
final recommendation for the Canny Threshold parameter is to choose a ratio of 1:2 or
smaller (2:5, 1:3, or 1:4) to avoid negative effects on line detection. For the application of
the adjusted parameters to the entire image dataset in Section 3.2.2, we set the maximum
absolute deviation MAE to 5° so that the automatic derivation of the main cultivation
direction is evaluated as successful. This included both a positive and a negative deviation
of 5° with respect to the manually determined main cultivation direction from the Google
Earth™ image dataset. We set this limit of 5° because the measured deviation in the manual
detection was approximately £2°. In addition, the deviation should not be too large as
there is a risk of lateral runoff and thus linear erosion if the field is worked oblique to
the contour lines [1]. Figure 19 presents the influence of the selection of the limit value
MAE for a successful line detection by the FLD. Figure 19a shows the results for different
upper thresholds cthl with a ratio of 1:2 and Figure 19b plots the results for an upper
threshold of cth1 = 300 with different ratios. The x-axis shows the absolute limits for MAE,
while the y-axis contains the shares of a successful detection. Both graphs clearly show
an increase in the FLD success rate with increasing MAE limit value. This increase is
stronger for smaller limit values. However, it decreases with increasing MAE values and
corresponds in its form to a logarithmic relationship. In addition, Figure 19a shows that no
clear statement can be made about an optimal value for the parameter cth1 since the success
rate for different absolute MAE thresholds provides an optimal result for different upper
thresholds in each case. Figure 19b shows a similar result for the lower cth1 threshold. This
plot for cthl = 300 contains the largest variation in the success rate for the different ratios
among all the values examined for cthl. Once again, no optimal ratio was evaluated as a
function of MAE. However, the detection success rate was already above 50% for a MAE of
2°, which corresponds to the estimated measurement error.
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Figure 19. Results of successful detection of main cultivation direction by FLD with adjusted parameters considering
different threshold values of MAE for (a) different cth1 values with ratio of 1:2; (b) cth1 = 300 with all ratios.

Crops of different categories differ significantly in their morphology, their seasonally
recurring development, and, thus, their phenological properties. This results in some
differences in the optimal values of the Canny Threshold parameters that, related to the
small size of the dataset, indicate a first tendency for the crop categories. Cereals show
the clearest formation of seed rows, including small row spacing and very little individual
grain spacing within the seed row. Only a few leaves grow directly on the woody stem.
Herbaceous plants such as rapeseed grow without lignification of the stem [71]. Leaf and
stem parts are rather unsorted, with multiple junctions on which small leaves grow. From
a plan view, these plants tend to show patchy, gapless growth between the seed rows.
Tramlines are visible depending on the stage of development. Due to the single-grain
sowing method for root crops and the large grain spacing within the seed row, the seed
rows are not yet linear elements and the tramlines are thus impaired [72]. In addition,
the headland for maize and other root crops varies in size depending on the polygon
shape. However, it is in some cases significantly larger than for other crop types. These
morphological influences are evident both in terms of crop categories and the time of
sowing. For summer cereals, root crops, and others, which are all sown in spring, growth is
not yet sufficiently advanced [53,72]. These crops show the best result for low cth1 values
between 25 and 150 (see Section 3.3.2). Winter cereals and oil crops are more advanced in
their growth towards the end of June. They show an optimal result for a large threshold of
cthl = 300. However, seed row detection is limited for rapeseed and all root crops because
of the non-linear shape in the top view [53,72]. The recording time of the images seems
to be well suited on average, although possibly a little later, around mid-July, is optimal
for this catchment. However, calibration of the individual crop types does not seem to be
possible with the available parameters. The result is only minimally better for an individual
adjustment for each crop type. However, the number of images for the individual crop
types is too small for a general statement. Only winter wheat and winter barley allow a
meaningful result based on the large number of images. The success rate of the FLD for
these crop types was over 75%. The results of the FLD for maize (non-silage), potatoes,
winter spelt, and winter rapeseed were below average poor. These findings need further
investigation based on a larger population.

No clear influence on the result was found for the compactness factor Cipg. Perhaps
the application of an alternative geometric shape factor can produce a correlation between
FLD success rate and the polygon shape. In terms of land parcel size, a higher success rate
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was obtained especially for parcels >20,000 m2. However, the distribution of land parcels
for the defined classes in Figure 18a with a positive skewness is very unequal. Therefore,
it is necessary to conduct an independent study with a much larger population for an
investigation of the influence of area size on the FLD success rate.

Sources of error in the context of image analysis are partly due to the crop type.
However, a major part is caused by the individual characteristics of the images. We
identified the following causes for unsuccessful line detection during the analysis:

Soil erosion/albedo;

No tramlines detectable;

Landscape features and their cast shadow;
Headland;

Unfavorable polygon shape;

Curve elements/no linear tramlines.

Table 9 shows the causes for unsuccessful line detection differentiated for the cat-
egories ‘Unsuccessful' —for example, line detection with a deviating main cultivation
direction—and ‘No lines detected’—for example, no detection of a line at all. Consider-
ing that Table 9 sometimes lists multiple reasons for one image, the main problems for
determining a deviating main cultivation direction are identifying headland, existing soil
erosion, and widely varying albedo as well as outliers. Figure 20 illustrates examples of
the abovementioned causes of line detection errors for the different categories. We discuss
the individual categories separately below.

Table 9. Percentage distribution of reasons for unsuccessful line detection; partly multiple reasons for one image.

Cause for
Unsuccess- No Landscape .
ful Line sion/Albedo Tramlines Shape Features Headland Curves Outlier
Detection
Unsuccessful 11.9% 3.4% 1.7% 44.1% 15.3% 30.5%
No lines 100.0% 66.7% 0.0% 0.0% 0.0% 0.0%
detected

Soil erosion/albedo

(@)

AMYENY

No tramlines Landscape Headland Curves Outlier
features
(b) (©) (d) (e) ®

Figure 20. Examples of unsuccessful line detection and their different causes, except the category ‘unfavorable polygon
shape’; lines detected by FLD in red color (figures do not have the same scale); data source: [40,41]. (a) Soil erosion/albedo,
(b) No tramlines, (c) Landscape features, (d) Headland, (e) Curves, (f) Outlier.

4.3.1. Soil Erosion/Albedo

Existing soil erosion as well as varying albedo of soils, often caused by a spatially
differentiated growth stage within a land parcel, pose a major problem in line detection (see
Figure 20a). In this case, irregularities in the grayscale of the image are responsible for the
lines being interrupted at different points. In addition, the FLD detects both linear erosion
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structures and the outer edges of sheet erosion as well as the deposits. The orientation of
the detected lines of the erosion structures significantly influences the result of the main
cultivation direction. If the growth stage of the plants is sufficiently advanced, they will
quickly cover the erosion structures present at the soil surface. However, soil erosion
often has a negative impact on the structure of plant growth and is still clearly visible at
later growth stages. These problems caused the FLD to be unsuccessful in detection for
about one-third of the images (see Table 9). Erosion is present regardless of geometry or
plant type.

4.3.2. No Tramlines/Polygon Shape

The image in Figure 20b shows no tramlines. Seed rows or tramlines must be present
and identifiable for successful detection of the main cultivation direction. For all three
images for which the FLD could not detect any lines (100%), no tramlines were visually
detectable. All in all, the detection was unsuccessful for 11.9% of all images due to missing
tramlines (see Table 9). The reason for the lack of visually detectable tramlines or seed rows
may be the early stage of the plant growth for certain crop types [53]. This means that the
plants have just been sown and no fertilization or other mechanical treatment has taken
place yet, so no tramlines are present. In this case, plant growth is usually not advanced and
the FLD is not able to detect lines on the remote sensing images. Furthermore, identification
of lines is not possible with herbaceous, ground-covering vegetation such as grass. No-till
farming or undersown crops can have an influence on the appearance of tramlines and seed
rows. Here, the timing of the image recording in relation to the developmental progress
of the plants is decisive, too. Furthermore, the poor line detection can be attributed to a
too-narrow field. The reason for unsuccessful detection was due to a too-narrow polygon
shape in 3.4% of the images. In some cases, a very complex shape with convex formations
was the source of error. Furthermore, the FLD did not detect any lines at all for a total of
two images because of the polygon shape.

4.3.3. Landscape Features/Headland

Arable land parcels usually do not contain landscape features [39]. However, due
to inaccuracies in digitizing and defining these areas, elements such as copses, shrubs, or
forests may extend into the field (see Figure 20c). In addition, depending on the position in
the sky, the sun creates shadows on the ground due to these objects when recording these
images. In this study, the application of an additional buffer prior to application of the FLD
proved to be effective (see Section 2.3.3). The buffer size depends on the field area such
that a large part of the headland as well as landscape features and their cast shadows at
the field edges are not considered in the line detection. However, for some parcels, the
buffer was not large enough, so partial headlands were considered during line detection
(see Figure 20d). This was the main reason for unsuccessful detection. In only one case
landscape features still had a disturbing effect on the detection. However, in 44.1% of the
unsuccessful cases, headland was responsible for incorrect line detection (see Table 9).

4.3.4. Curves

The FLD algorithm can only detect linear elements. Therefore, we removed all parcels
that had multiple cultivation directions from the analysis before applying the FLD. On
a few remaining parcels, slightly curved tracks were visible because the farmer adapted
the cultivation to the field boundaries. Since the FLD does not detect the existing lines to
the same extent on the whole field in Figure 20e, the final weighted mean of the direction
does not correspond to the main cultivation direction of the field. Tramlines with curved
elements were responsible for 15.3% of all unsuccessful detections (see Table 9).

4.3.5. Outlier

In combination with existing soil erosion, landscape features, or albedo gradients, the
FLD detected individual lines in some images that deviated significantly from the main
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cultivation direction (see Figure 20f). With a sufficiently large number of detected lines,
individual outliers do not have such a strong effect on the weighted result. However, with
fewer lines and particularly strong deviation, the influence of one single outlier line is
so strong that a successful determination of the main cultivation direction fails. Outliers
caused unsuccessful detection for 30.5% of all images (see Table 9).

Most of the problems encountered in applying the FLD to arable land parcels can be
solved using improvements within the algorithm or previously in data preparation. By
applying a mask with an adjusted buffer radius based on a new shape factor and field area,
the landscape features and headland at the edge of the field can be excluded from the line
detection. With a sufficient number of detected lines per parcel, individual outliers can be
identified as significant and disregarded in the subsequent calculation of the mean line
orientation. For this application, however, the number of detected lines must be higher for
some parcels for which the FLD has only detected a very small number of lines so far. The
consideration of curve elements for seed rows and tramlines is more difficult since they
require either automatic splitting of the parcel into different sections based on parameters
to be defined or another detection algorithm for curve elements [73]. Improvement within
the FLD algorithm or calculating the mean line orientation is not possible for problems
of soil erosion, albedo, and non-detectable tramlines. We think that an improvement of
the detection for these categories can be achieved by applying filter methods, such as
sharpening [50]. If available, higher-resolution images can be used in the analysis. In
this study, we did not choose the best possible resolution for the data export from Google
Earth™ for the image analysis. Although a better resolution is available for the study area
and the time of the analysis, this results in a larger dataset and thus more time-consuming
export and data preparation. In addition, the availability of data resolution varies by
region with an increasing trend towards better resolution [37]. However, due to data
processing, the images are available with a time delay. In recent years, the availability
of images for this study area has increased significantly: for the period 2015 to 2020, one
image is available for every year except 2017, although the month of recording varies.
The latest image of 2020 has a maximum resolution of about 0.2 m x 0.2 m per pixel [41].
However, as the size of the study area increases, the probability increases that different
recording times and thus different light conditions or even resolutions are present in
Google Earth™. When considering the available resolution, it is necessary to take a possible
loss of quality during data processing into account. During data export and import as
well as associated georeferencing and image mosaicking, there may be a noticeable loss
of data quality. Image distortion during rectification or even a reduction in the original
resolution due to compression should be avoided at all costs [50]. In further studies, the
influence of the image resolution should be investigated stepwise in order to define a
minimum resolution for the application with an adequate result. Furthermore, the time of
recording is an interesting point of investigation for follow-up studies with regard to the
plant growth stages.

With an improved method of calculating the buffer and successful detection of the
outliers, it is estimated that 35 to 50% of previously unsuccessful detections could be
improved in the adapted application of the method. This could increase the detection
success rate up to 88%.

5. Conclusions and Outlook

The objective of this study was to develop an automated method for determining the
main cultivation direction of agricultural land parcels with seasonal crops. To detect the
main cultivation direction on each land parcel, the Fast Line Detector (FLD) for detecting
linear elements was applied to open remote sensing data retrieved from Google Earth™.
The method was tested for the low mountain range catchment of the Fischbach, Germany.

The mean slope and mean aspect from the digital elevation models DEM1 and DEM5
were derived for each parcel. Subsequently, the main cultivation direction was compared
to the mean aspect with the objective of obtaining information about the soil conservation
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practice of contouring for each arable land parcel. The results were able to provide a helpful
tool for soil loss estimation and for the determination of the P-factor within the USLE.

The research area, namely the Fischbach catchment, located in the low mountain range
with typical medium slopes and erosion-prone loess soils was proven well suitable for the
application of contouring and the potential of applying the P-factor. The crop types in the
study area are typical for Hesse. They encompass a high proportion of cereals, although
the parcel sizes are rather small compared to other patches in Hesse and Germany. The
differences in the results for DEM1 and DEMS5 for the mean slope and mean aspect were
negligible given that this study utilized the land parcel as a spatial unit. Thus, DEM5 was
shown to be suitable for this application.

The initial application of the FLD for the automated derivation of the main cultivation
direction achieved appropriate results with a success rate of 77.7% for a uniform specifica-
tion of parameter settings for all images of 278 arable land parcels. The FLD parameters
Length Threshold t and Distance Threshold dt were particularly sensitive. In addition, the
FLD parameters for the Canny Threshold indicated tendencies with respect to the appear-
ance of unique seed rows and tramlines in the remote sensing images depending on the
time of sowing or the plant growth stage in relation to the time of image recording. How-
ever, the application of the FLD with crop-type-specific parameters yielded only a slightly
higher success rate of 79.9% and, therefore, did not result in any significant improvements.

The main reasons for the determination of a deviating main cultivation direction
within the FLD are due to problems with detected headland, existing soil erosion, and
strongly varying albedo within the parcels as well as single outliers in line detection. The
application of a corrected buffer to the remote sensing images with enhanced parameteri-
zation offers promising improvements for a higher success rate of the FLD.

For further development of this new method, it is necessary to verify the results on a
more extensive dataset with further crop types and larger land parcels. The requirements
for a possible application of the FLD algorithm include available information on the
topography (DEM5) and the geometry of the arable land parcels, including their associated
crops, if available. In addition, images for line detection should be available as remote
sensing data with a sub-meter resolution, preferably taken in the same year as the shape
data of the plots. Furthermore, the influence of the image resolution and the time of image
recording on the result of the line detection should be examined more closely. Finally,
calculation of the annual soil loss estimation considering the P-factor would show its
importance for the application of the USLE. Using this method, we identified a large
number of fields that apply contouring. Therefore, this method contributes to a realistic
determination of the factor for support measures and to better estimates of soil conservation
by using real data. In addition, governmental institutions could use the presented method
to identify land parcels that are not managed optimally in terms of contouring. This
may allow the institutions to suggest appropriate measures to farmers, such as land
consolidation or joint, cross-border field management for the affected land parcel.

This study takes a first step towards deriving the measure of contouring in an
automated way based on open data, making it easier to anticipate the P-factor in soil
erosion studies.
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