
land

Article

Spatiotemporal Pattern and Driving Factors of Urban Sprawl
in China

Xin Zhang and Jinghu Pan *

����������
�������

Citation: Zhang, X.; Pan, J.

Spatiotemporal Pattern and Driving

Factors of Urban Sprawl in China.

Land 2021, 10, 1275. https://doi.org/

10.3390/land10111275

Academic Editor: Luca Salvati

Received: 23 October 2021

Accepted: 18 November 2021

Published: 20 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China;
2019212415@nwnu.edu.cn
* Correspondence: panjh_nwnu@nwnu.edu.cn

Abstract: Urban sprawl is a complex phenomenon related to abnormal urbanization, and it has
become a key issue of global concern. This study aimed to measure urban sprawl in China and explore
its spatiotemporal patterns and driving factors. Based on 343 Chinese cities at the prefecture level
and above, remote sensing-derived data from 2000 to 2017 were used to calculate the urban sprawl
index (USI). The evolutionary trend and spatiotemporal pattern of urban sprawl in China were then
analyzed using trend analysis and exploratory spatiotemporal data analysis, and Geodetector was
applied to investigate the factors driving the changes. The results show the following. 1© Moderate or
high urban sprawl development occurred in China from 2000 to 2017. In terms of spatial distribution,
the USI was high in northwest China and low in southeast China. 2© The local spatial stability of
the USI gradually decreased from southeast to northwest and northeast. USI had strong spatial
dependence. No significant spatiotemporal transitions in urban sprawl were observed, and the
spatial pattern was stable with strong spatial cohesion. 3© The gross regional product (GRP) of
the tertiary industry, the total GRP, and investment in real estate development have been the most
important factors affecting sprawl in cities at the prefecture level and above in China.

Keywords: urban sprawl; spatiotemporal pattern; driving factor; Geodetector; China

1. Introduction

Urban sprawl, a trend of abnormal and unrestricted urbanization development, has
been a controversial topic [1], and it continues to present a challenge to countries across
the world. Urban sprawl refers to unsustainable spatial expansion in a city in the process
of development: it tends to be random and unplanned, scattered and discontinuous, asso-
ciated with strong dependence on transportation for travel, and characterized by a single
land-use type and severe land-use conflicts [2]. With the advancement of industrialization,
the improvement of highway transport facilities, and the increased use of motor vehicles,
suburban areas have rapidly developed, urban centers have tended to decline, and sprawl
has gradually become a prevalent urban development issue in developed Western coun-
tries [3]. Since the initiation of the “Reform and Opening-Up” policy, urbanization has
advanced extremely rapidly in China [4]. In 1978, the urbanization rate, calculated as the
resident population, was only 18%, and by 2019, it had increased to 60.6%, which requires
a larger urban capacity to accommodate the dramatically increasing urban industry and
population. In 2019, the per capita construction land in Chinese cities was as high as
200 m2, which was much higher than that in developed countries. The outward expansion
of the city has become the “normal” condition of many cities, and the blind expansion of
built-up areas is ubiquitous [5]. Urban sprawl usually has adverse effects on the devel-
opment of a city, causing issues such as traffic congestion, environmental pollution, and
social differentiation [6–8]. In addition, the outward expansion of a city often occurs at
the expense of the quantity and quality of cultivated land. The increase in the city scale
also increases the cost of public infrastructure construction, and inadequate infrastructure
may lead to the “empty city” or “ghost city” phenomenon [9,10], reducing the land-use
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efficiency. Furthermore, urban sprawl also significantly affects the ability to realize sus-
tainable development. For example, insufficient ecosystem services related to phenomena
of uncontrolled urban expansion in cities have prevented many countries from making
significant progress toward sustainable development goals [11]. The economic impacts
of urban land-use transformation are complex and debated [12], and urban expansion
and socioeconomic transformations may negatively impact the environmental quality and
functions of peri-urban landscapes [13]. The continuous emergence of the above drawbacks
has attracted the attention of the government, the public, and scholars [14].

Many scholars have carried out in-depth research on issues related to urban sprawl,
largely focusing on its definition, evaluation methods, internal mechanism, regulatory
measures, and ecological and environmental effects. Defining urban sprawl is the primary
task of urban sprawl research [15]. Although scholars have an in-depth understanding
of urban sprawl, due to its complexity and multidimensional nature, a unified definition
of urban sprawl has not yet been established. At present, related concepts are mainly
defined on the basis of the manifestations, formation characteristics, and impacts of urban
sprawl [16]. In the existing literature, the sprawl in Western countries is generally described
as the expansion of cities beyond urban boundaries to extra-urban areas, accompanied by
low density and transport dependency [15,17]. However, because developing countries are
in a stage of rapid urbanization, they differ from Western countries in terms of population
density, urban–rural structure, land system, and socioeconomic development level. China
is no exception. Compared to the definition of sprawl in Western countries, the definition
in China is more specific and focuses on describing the manifestations of a certain type of
urban sprawl. Yue et al. [18] defined urban sprawl as a low-density type of urban expansion
occurring beyond the urban built-up area, including low-density edge-growth or leapfrog
growth, such as industrial development zones or college towns. However, many scholars
confuse urban sprawl with urban expansion; this paper distinguishes between these terms.
Urban expansion characterizes the pursuit of “absolute scale” through spatial–temporal
changes in urban land use. In contrast, urban sprawl describes the changing development
of cities in terms of three dimensions: low density, scale-up, and negative impacts, which
can reflect imbalances and inadequate development. Therefore, it is inaccurate to treat
urban expansion and urban sprawl as the same phenomenon.

The lack of defined measures of urban sprawl is a difficult problem. Measures of
urban sprawl have diverged as the concept has evolved. In particular, China and the West
differ in their concept of urban sprawl and, hence, in its measures. Western scholars have
calculated the urban sprawl index by applying a quantitative metric in combination with
space. Early studies used a single-indicator measure, but with increasing understanding of
sprawl and the region under study, a multi-indicator approach was gradually adopted to
construct a comprehensive urban sprawl index. The study of urban sprawl in China started
relatively late, and the measures were more haphazard. Urban sprawl in China is mostly
based on single-indicator measures. For example, Lang and Lefurgy [19] measured urban
sprawl with population density indicators in the United States. Taiwo [20] constructed
the Urban Sprawl Index, which is the ratio of the area growth rate of built-up area to
the population growth rate (elastic coefficient), to measure the urban sprawl in Nigeria.
However, the above studies failed to distinguish between uniform and concentrated
population distributions within a city. Scholars have proposed urban sprawl indices that
account for differences in population distribution within cities. Lopez and Hynes [21] and
Fallah et al. [22] constructed a sprawl index based on the spatial distribution of population
density within a city and subtracted the population proportion of low-density areas within
the city from that of high-density areas to reflect the extent of urban sprawl in the United
States. Li and Li [8] used the difference between the urban area growth rate and the
population growth rate to measure urban sprawl in China. If the proportion of a low
population density area is relatively large, then the intensity of land use is low, and the
degree of urban sprawl is high. Scholars have since improved the above indicators in an
attempt to obtain urban sprawl measurements that better reflect the spatial details of cities
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and are less disturbed by the abnormal distribution of the local population. Based on the
analysis of urban land sprawl and urban population sprawl, Qin et al. [23] constructed a
new urban sprawl index to study urban sprawl in China.

After identifying an urban sprawl measurement method, Chinese and Western schol-
ars gradually focused their research efforts on the spatial characteristics presented by
urban sprawl. In general, spatial characteristics are relatively easy to observe, such as
low-density development, leapfrog or scattered development, and poor accessibility [16,18].
Later, scholars added a temporal dimension on this basis and explored the spatiotemporal
evolution characteristics of urban sprawl, which has strengthened our research to some
extent. Nazarnia et al. [24] explored the spatial pattern of urban sprawl in Montreal, Quebec
City, and Zurich from 1951 to 2011. Feng et al. [3] investigated the spatial correlations
and spatial distribution patterns of urban sprawl in China by utilizing Global Moran’s I
(GMI) and Local Moran’s I (LMI). The study of spatiotemporal changes has been relatively
generalized, and remains superficial, and the study of the spatiotemporal pattern of urban
sprawl has received little attention.

As research has become more in-depth, understanding the intrinsic mechanism of
urban sprawl has also become a research hotspot. In the long term, identifying the drivers
of urban sprawl is important to promote urban development policies. According to the
existing literature, the driving forces of urban sprawl can be explored from political,
economic, sociological, and environmental aspects [3,8,25]. In Western countries, market
forces, consumer preferences, public subsidies, and land-use regulations are considered
the main drivers of urban sprawl [26]. Burchfield et al. [27] reported that ground water
availability, temperate climate, rugged terrain, decentralized employment, early public
transport infrastructure, uncertainty about metropolitan growth, and unincorporated land
in the urban fringe all increase sprawl. Research by Pirotte and Madre [28] showed that the
French urban development model is highly dependent on the density of surrounding farms
and their ability to provide facilities. Because of its very different institutional context,
the causes of urban sprawl in China include many aspects, among which government
regulatory factors, economic factors, and social factors predominate [3,29]. Most of the
related research has been qualitative, and quantitative and spatialized studies at large scales
have been extremely rare. Yue et al. [24] discussed the impacts of farmland preservation
policy, population policy, and urban planning on urban sprawl in Hangzhou City. Overall,
the research on urban sprawl has mostly focused on a single city (or urban agglomeration)
at a small scale [30–32], whereas analysis of spatial–temporal differentiation and spatial–
temporal correlation characteristics of urban sprawl at a large scale has been overlooked.

Based on the above analysis, the urban sprawl indices of 343 Chinese cities at the
prefecture level and above were analyzed. This study included three main parts. First, we
established an urban sprawl index capable of capturing the detailed differences that define
inner-city areas by using nighttime light remote sensing data and LandScan population
spatial distribution data. The index was further used to measure urban sprawl in China
between 2000 and 2017. Second, we analyzed the spatial–temporal patterns by applying
the Exploratory Spatial–Temporal Data Analysis (ESTDA) method. Third, we explored the
drivers of urban sprawl. The ultimate goal of the third part was to provide decision-making
references for New Urbanization Construction and Regional Planning.

2. Data Sources
2.1. Data

Four types of data were used in this analysis: Nighttime Light, LandScan Global
Population, Administrative Boundary, and Statistical Data. Nighttime Light Data were col-
lected from the National Oceanic and Atmospheric Administration/National Geophysical
Data Center (https://www.ngdc.noaa.gov/eog/download.html (accessed on 20 March
2020)). The annual cloud-free-composited stable NTL imagery obtained by DMSP-OLS is
30 × 30 arc-seconds gridded cell-based nocturnal luminosity spanning from 2000 to 2013
with DNs ranging from 0 to 63. The VIIRS products contain spatially gridded nocturnal

https://www.ngdc.noaa.gov/eog/download.html
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radiance values at a spatial resolution of 15 arc-seconds across the latitudinal zone of
65◦ S–75◦ N. The monthly “VIIRS Cloud Mask (vcm)” version was used, which excludes
observations affected by stray light, with a time series of 2012–2017. LandScan Global
Population Data were collected from Oak Ridge National Laboratory’s website (available
at https://landscan.ornl.gov/landscan-datasets (accessed on 27 March 2020)). The above
three sets of data are grid data. Administrative Boundary Data were collected from the
National Geomatics Center of China (available at http://www.ngcc.cn/ngcc/ (accessed on
20 March 2020)) and are vector data. All of the driving forces analyzed in this study are
from China City Statistical Yearbook, which is statistical data. The evaluation units were
343 cities at the prefecture level and above in China.

2.2. Data Processing

DMSP-OLS NTL data have disadvantages, such as their tendency for saturation and
the discontinuity of multiplatform data [33]; as a result, these data need to be preprocessed.
Projection conversion, pixel resampling, area clipping, desaturation spillover effect, and
interannual continuity corrections were successively conducted to obtain data that meet
the research requirements. As a result, corrected DMSP-OLS data were obtained for
2000–2013 [34]. Then, the NPP-VIIRS monthly NTL data were converted to projection
coordinates, resampled, and clipped. The annual mean data of NPP-VIIRS NTL from 2013
to 2017 were obtained by removing background noise and abnormal pixels, correcting
relative radiation, and eliminating unstable light sources.

Since DMSP-OLS NTL data were not released after 2013, and NPP-VIIRS NTL data
have only been provided since 2012, in order to study a longer time series, it was neces-
sary to integrate the two data resources [35]. Referring to the data integration method of
Li et al. [36], a fitting equation was established for the two datasets for coinciding years
using a power function, and then the image was denoised by a Gaussian low-pass func-
tion [37]. The 2013 DMSP-OLS NTL image was used as the reference, and the NPP-VIIRS
NTL data of 2014–2017 were corrected using the fitting equation, resulting in the simulated
DMSP-OLS NTL image with 1 km spatial resolution for 2014–2017. Finally, nighttime light
data with a spatial resolution of 1 km in China from 2000 to 2017 were obtained.

The extraction of urban boundaries is an important step in the study of urban sprawl.
With the continuous enrichment of NTL products, the use of NTL data to extract urban areas
has attracted widespread attention from scholars who study urban sprawl [18,38]. In order
to exclude city areas that are developed but lack population activities, the developed areas
in the suburbs were also included. In this paper, areas meeting both the nighttime light
coverage and population distribution criteria are defined as urban areas. Because of their
urban geographical locations and economic development, Beijing, Shanghai, Guangzhou,
Shenzhen, and Chongqing were used as the samples. MATLAB software was used to
determine the best threshold, and the average value of the threshold of each city was
taken as the best threshold of the national urban area in that year [39]. Fifteen cities were
used for verification, and the city areas extracted by the optimal threshold in 2017 were
compared with those extracted by visual interpretation of high-resolution images. The
overall accuracy is above 83.24%, which meets the accuracy requirement of this study.
Secondly, referring to the standard proposed by Mao et al. [40], a population density of
1000 person·km2 was used as the threshold of urban regional division. Finally, the two sets
of data were superimposed to obtain a more accurate urban boundary of each city.

3. Methods

The method involved three steps: (1) quantitative measurement of urban sprawl in
China after data processing; (2) exploration on the spatial-temporal patterns of urban
sprawl using the ESTDA method; (3) estimation of the impacts of economic, social and
government regulation factors on urban sprawl using Geodetector model. For a more
intuitive presentation of the workflow, a flow chart diagram is shown in Figure 1.

https://landscan.ornl.gov/landscan-datasets
http://www.ngcc.cn/ngcc/
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Figure 1. Flow process chart.

3.1. Urban Sprawl Index

Combined with the low-density expansion of urban sprawl, both urban population
and land area aspects were used as a basis for constructing the sprawl index. If the
proportion of the population in low-density areas of a city increases, or if the living area
proportion of the population in low-density areas increases (which means that the density
of urban low-density areas continues to decrease), then the degree of urban sprawl is
rising [23]. The formula of the urban sprawl index (USI) is

USIi =
√

USAi × USPi (1)

USAi = 0.5 × (LAi − HAi) + 0.5 (2)

USPi = 0.5 × (LPi − HPi) + 0.5 (3)

where USAi and USPi denote area sprawl and population sprawl, respectively. LAi is the
ratio of the area of low population density in city i to the total area occupied by urban land
in the city. LPi is the population ratio between the low-population-density area in city i
and the city as a whole. HAi is the ratio of the area of high population density in city i to
the total area occupied by urban land in the city. HPi is the population ratio between the
high-population-density area in city i and the city as a whole. A low-population-density
area in a city is defined by a population density below the national average, whereas an
area with high population density is above the national average. The urban sprawl index
ranges from 0 to 1, and the closer the value is to 1, the more intense the urban sprawl is.

In contrast to the commonly used average density method to measure urban sprawl,
the USI captures detailed differences within urban regions. It does not regard the city as
a homogeneous area, thus preventing abnormally high or low densities in the city from
influencing the overall density of the city; thus, the USI is more reliable for estimating the
urban sprawl.

3.2. Exploratory Spatiotemporal Data Analysis (ESTDA)

In this study, the spatial pattern differentiation and temporal evolution characteristics
of urban sprawl at the global and local levels were comprehensively analyzed through
ESTDA. The ESTDA method effectively integrates time and space and realizes space–time
interaction analysis [41]. Local Indicators of Spatial Association (LISA) time path analysis
was used to study the dynamic migration law of local autocorrelation in a Moran scatter
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diagram from the perspective of time evolution by introducing the time dimension. In
addition, with the use of the paired migration analysis of the attribute values and the
spatial lag values of the USI of each city in the time series, changes in the spatial–temporal
interaction and the dynamic characteristics of spatial–temporal differences in urban sprawl
at the local level were explored and explained. Thus, the continuous expression of the
local spatial dependence from the “instantaneous scene” to the “interactive dynamic
scene” was realized. The LISA time path is generally described by relative length and
tortuosity. Rey et al. [42] improved the classical Markov chain by including such factors as
the migration path, orientation, and aggregation of each measurement unit in a Moran’s I
scatter diagram, and they defined the concepts of local Markov migration and space–time
transition. The space–time transition is divided into four types: I, II, III, and IV. Rey and
Janikas [41] proposed spatiotemporal flow and spatiotemporal aggregation to characterize
the relationship between the number of specific transition types in the study period and
the number of all transitions in the global range. Further details are provided in the
Methods section.

3.3. Indicator System of Driving Factors

Urban sprawl and its regional differences are affected by many factors. Based on
previous studies [3,4,8,18,43,44], 40 candidate factors affecting urban sprawl from three
aspects—economy, society, and government regulation—were selected. Then, the canonical
correlation coefficient between each candidate factor and the dependent variable was
calculated by performing canonical correlation analysis, and the factors with a small
correlation coefficient were excluded. An index system of 12 influential factors with a high
correlation with the USI was finally obtained (Table 1).

Table 1. The driving factors of USI.

Target Layer Indicator Layer Unit

Economic factors

Gross Regional Product (GRP) X1 CNY 10,000
Per capita GRP X2 yuan

The total value in secondary industry X3 CNY 10,000
The total value in tertiary industry X4 CNY 10,000

Employees in the secondary industries X5 person
Employees in the tertiary industries X6 person

Investment in real estate development X7 CNY 10,000
Amount of foreign capital actually utilized X8 USD million

Social factors
Total population at year-end X9 10,000 persons

Total retail sales of consumer goods X10 CNY 10,000

Government regulation factors Public finance expenditure X11 CNY 10,000
Area of city paved roads X12 hm2

3.4. Geodetector

Geodetector is a statistical method for detecting spatial heterogeneity and the degree
of influence of driving factors on dependent factors [43]. Factor detection was used in this
study to identify factors that affect the spatial–temporal differentiation pattern of urban
sprawl, and interaction detection was used to explore the degree of influence of interactions
among factors on the urban sprawl. Factor detection uses the q value to describe the extent
to which a certain factor X explains the spatial differentiation of attribute Y. Interaction
detection was used to measure the interaction between factors.

4. Results
4.1. General Characteristics of Urban Sprawl

In this study, 343 Chinese cities at the prefecture level or above were the research
object. The USI of each city in the country was calculated for the period from 2000 to
2017 using Formula (1), and the spatial distribution of the USI in each year was obtained.
Combined with the data distribution, to facilitate comparison, the natural discontinuity
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method and manual classification were used to divide the USI into five categories based on
data from 2008, and the classification standard was applied to all other years between 2000
and 2017 to compare the spatial and temporal patterns of urban sprawl in China (Figure 2).
Overall, the national average USI was declining over the 18 study years, from 0.483 in
2000 to 0.468 in 2017. The average value of the USI between 2000 and 2017 was 0.476,
which places it in the middle class and close to the fourth class of the urban sprawl index
classification, indicating that Chinese city sprawl was above the intermediate level. The
geographical differences in urban sprawl were significant; the extent of urban sprawl in the
central and western regions was greater than that in the eastern and northeastern regions.
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The changing trend of urban sprawl (Figure 3) was obtained by calculating the interan-
nual rate of sprawl from 2000 to 2017. To present results that are clearer and more intuitive,
the quantile method was used to divide the data into four types: mild reduction, essentially
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unchanged, mild growth, and significant growth. Figure 3 shows that the USI of most
prefecture-level cities (162) in China remained largely unchanged, with 85 cities exhibiting
a significant growth trend. Of the top 20 cities with the greatest increase in sprawl, 9 were
in the western region and 7 were in the central region. Cities with significant growth
were mostly distributed near interprovincial borders, such as the Hunan–Guangdong–
Jiangxi, Anhui–Henan–Shandong, Zhejiang–Anhui–Jiangsu, Guizhou–Sichuan, and Hebei–
Shandong borders. Regions around interprovincial borders are frequently neglected in
regional economic development, and they show a lag and marginalization pattern com-
pared with more developed regions within a province. This study shows that this region
also tended to have the most drastic sprawl of cities. Mild reduction in the degree of sprawl
was observed in a small number of cities, particularly provincial capital cities, or regional
central cities.
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4.2. Spatial and Temporal Patterns of USI

The spatial autocorrelation of the USI from 2000 to 2017 was measured by using the
Moran’s I index. The global Moran’s I index and z value were greater than 0 in each year,
and the p-value reached a confidence level of 99.9%, which indicates that the USI had high
spatial autocorrelation and spatial dependence in the 18 study years. The relative length
of the LISA time path and the curvature of the USI in various cities were calculated and
classified into five types using the natural interrupted point method: low, relatively low,
medium, relatively high, and high.

As observed in Figure 4a, from 2000 to 2017, the relative length of the USI showed
an overall increasing trend from southeast to northwest and northeast, with a higher
value in the north than in the south and a higher value along the coast than inland. This
indicates that the urban sprawl in the southeastern region had a more stable local spatial
structure. Eight cities have paths categorized as relatively high, and they are grouped
into two categories: Karamay, Shihezi, Jiayuguan, and Fushun are important resource-
based cities for oil and steel in the region; the city scale is generally not large, but the
development is rapid. Dongguan, Shenzhen, Zhuhai, and Sanya are all coastal open cities
with considerable geographical advantages.

As shown in Figure 4b, from 2000 to 2017, the curvatures of the USI in 343 cities
were all greater than 1, which indicates the strong spatial dependence of urban sprawl.
The number of cities with local indicators of spatial association curves that moved from
low to high present a pyramid structure, and the cities with a low curvature account for
79.3% of the total number, indicating that the USI in most cities showed relatively weak
volatility [16]. Cities with a relatively high degree of curvature were mainly concentrated
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in the provincial border areas and Hainan province. These cities were subject to the spatial
spillover or spatial polarization of neighboring cities and had high volatility in the spatial
dependence direction. In other words, they are characterized by relatively high volatility
in the process of urban sprawl.
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The results of space–time transition are shown in Table 2 and Figure 5. There was no
significant spatial–temporal transition in urban sprawl from 2000 to 2008 or from 2008 to
2017. Moran’s I scatter is always located in the same quadrant, which is type I transition.
The probability of urban sprawl in the two periods was 64.4% and 74.6%, respectively,
which indicates that the spatial agglomeration of urban sprawl in China was strong, and
the amount of spatial migration was small. Moreover, there was a degree of transfer inertia
and high stability among different types. If the spatial effect is considered, the relative
mobility (0.390) from 2000 to 2008 was greater than that (0.298) from 2008 to 2017. This
indicates that the dynamic change in spatial structure decreased and the stability increased
in the latter period. Few cities are characterized by type IV transition, which makes it
difficult for cities and neighboring cities to change their urban sprawl status at the same
time. It is difficult for each city to change its current relative urban sprawl status.
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Table 2. Spatiotemporal transition matrices of USI in China.

Time Interval 1/t2 HH LH LL HL Transition Type n Proportion SF SC

2000–2008

HH 0.730 0.085 0.053 0.132 Type I 221 0.644
0.289 0.190LH 0.243 0.615 0.071 0.071 Type II 50 0.146

LL 0.137 0.118 0.510 0.235 Type III 49 0.143
t = 0.390HL 0.257 0.043 0.114 0.586 Type IV 23 0.067

2008–2017

HH 0.850 0.059 0.006 0.085 Type I 256 0.746
0.233 0.125LH 0.2 0.646 0.108 0.046 Type II 39 0.114

LL 0.064 0.128 0.595 0.216 Type III 41 0.120
t = 0.298HL 0.192 0 0.090 0.718 Type IV 7 0.020

4.3. Driving Factors of Urban Sprawl

The average data for 2000, 2008, and 2017 were used as samples, and Geodetector
was utilized to detect the influence degree of individual driving factors and the interaction
effects between factors on urban sprawl in China.

4.3.1. Factor Detection Analysis

The factor detection result in Figure 6 shows that economic factors had the greatest
impact on urban sprawl. The q value range of each driving factor was 0.227–0.536. The
impact on urban sprawl in descending order of strength is as follows: the total value in
tertiary industry (X4) > Gross regional product (X1) > Investment in real estate development
(X7) > The total value in tertiary industry (X3) > Employees in the tertiary industries
(X6) > Area of city paved roads (X12) >Total retail sales of consumer goods (X10) > Public
finance expenditure (X11) > Employees in the secondary industries (X5) > Amount of foreign
capital actually utilized (X8) > Per capita GRP (X2) > Total Population at year-end (X9).
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The primary driving factor of urban sprawl was the total value of the tertiary industry,
with q = 0.536. Actively promoting the tertiary industry is essential for promoting economic
development, providing employment opportunities, and increasing residents’ income. The
cultivation and expansion of professional markets will also help to develop the tertiary
industries of transportation, post and telecommunications, financial services, and various
intermediary services. These industries have higher requirements for the agglomeration of
human resources and capital, which can promote the continuous expansion of the city. The
expansion of the city increases demand, resulting in a positive feedback cycle.

The impact of GRP on urban sprawl ranked second among the contributing factors,
with a q value of 0.490. GRP has always been considered the most important indicator of
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regional economic capacity, representing the level of economic development of a region.
The rapid development of the economy may mean that the current development scale is
insufficient to meet development needs, and its expansion is promoted in an attempt to
create greater benefits. This has stimulated a large increase in the size, volume, and rate of
growth of urban land under construction, so the GRP has largely driven the disordered
growth of cities. In addition, some local governments blindly consume land resources to
elevate their political status, further intensifying urban sprawl.

The third driving factor affecting urban sprawl was the investment in real estate
development, with a q value of 0.476. Real estate development investment is closely
related to urban sprawl. With the development of urbanization, the population scale
continues to grow, and the growing demand for housing necessitates the conversion of
substantial amounts of land to residential districts. Land finance has become the main
source of government revenue in many cities. Land finance has also been widely used as an
important means of urban expansion and development and has become a major promoter
of urban sprawl.

4.3.2. Interaction Detection Analysis

The interaction detector identifies the strength of the explanatory power of the interac-
tion between each factor on the urban sprawl. As shown in Table 3, the impact of any two
factors is the nonlinear growth of urban sprawl. This indicates that each factor has a degree
of correlation with urban sprawl, and there is no independent influence factor. The factor
interaction is not only greater than the individual effect of a single factor but also greater
than the sum of the effects of these two factors. The q values of interactions between factors
are more than 0.791, which indicates that the interactions between indicators have high
explanatory power on urban sprawl.

Table 3. Interaction analysis results.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 0.490
X2 0.958 0.372
X3 0.791 0.961 0.460
X4 0.829 0.957 0.886 0.536
X5 0.826 0.934 0.854 0.874 0.383
X6 0.926 0.983 0.968 0.942 0.925 0.459
X7 0.902 0.872 0.883 0.883 0.879 0.932 0.476
X8 0.918 0.903 0.923 0.946 0.898 0.966 0.885 0.377
X9 0.961 0.976 0.964 0.964 0.952 0.938 0.974 0.965 0.227
X10 0.875 0.936 0.883 0.901 0.910 0.875 0.878 0.911 0.913 0.434
X11 0.918 0.903 0.938 0.937 0.858 0.900 0.906 0.903 0.936 0.855 0.424
X12 0.857 0.964 0.824 0.866 0.930 0.933 0.852 0.940 0.932 0.899 0.885 0.454

The total population at year-end interacts significantly with other factors, with q
values ranging from 0.911 to 0.974. The interactions between the total city population and
the gross regional product, the per capita GRP, the total value of the secondary industry,
the total value of the tertiary industry, employees in secondary industries, investment in
real estate development, and the amount of foreign capital actually utilized were explored.
All of these factors explain the urban sprawl with q values greater than 0.9, which indicates
that the population index greatly enhances the impact of other indicators on urban sprawl.
Population-scale growth requires more resources to meet the needs of residents. This also
shows the high development potential of the region. In order to obtain greater development,
it is necessary to push the sprawl in the city to the surrounding areas.

The interaction between per capita GRP and other factors is very strong, and the q
value range is 0.872–0.983. The amount of foreign capital actually utilized strongly interacts
with the other factors, with q values ranging from 0.885 to 0.966. The amount of foreign
capital actually utilized mainly acts on the economic and technological development zones,
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and economic and technological development zones tend to develop in urban fringe areas.
In addition, the injection of foreign capital has attracted a large number of workers and
resources, driving economic growth, and has led to the aggravation of urban sprawl.

The total population at year-end, the per capita GDP, and the amount of foreign capital
actually utilized has strong interactions with other factors, and the explanatory power
of interactions is greater than 87.2%. However, the q values of these factors are all small,
which is attributed to the shortcomings of urban sprawl. When a factor acts alone, the
impact on urban sprawling is weak, but the explanatory ability is significantly enhanced
when it interacts with other factors. These auxiliary factors can enhance the impact of other
factors on urban sprawl.

5. Discussion

In contrast to the process of urbanization in developed Western countries, which is
largely market driven, the driver of urbanization in China is often the government [45,46].
Local governments intervene in the spatial allocation of resources, which in turn determines
the formation and development of urban spatial shape through the regulation of the land
system and household registration system. Because of the “finance of land” and the
pursuit of an expanded scale of urban space [46], in most cities in China, land urbanization
increases at a significantly faster pace compared to population urbanization.

5.1. Comparison with Other Studies

Because of the complex and multidimensional nature of the urban sprawl problem,
most scholars measure it by constructing indicators. Although single-index measures
have the benefit of simple calculations, they have a limited ability to comprehensively
characterize urban sprawl [47]. The combination of multiple indicators has higher relevance
and, in turn, increases the risk of including the causes and consequences of sprawl. In this
study, we used indicators of the population and area aspects of the phenomenon of urban
sprawl with the aim of reflecting its multidimensional nature. The urban sprawl index
described in this paper can subdivide the city based on its internal differences rather than
treating the city as a whole, making the measurement of urban sprawl more representative.
The results show that geographical differences in urban sprawl are significant. The extent
of urban sprawl in the central and western regions was greater than that in the eastern and
northeastern regions, which is consistent with the study by Liu et al. [16].

In our study period, urban sprawl in China consistently showed spatial autocorre-
lation, which was also observed in Switzerland and the United States [48,49]. However,
classical mathematical statistics and ESDA methods struggle to represent either the charac-
teristics of spatial correlations or those of the time dimension [41]. In contrast, exploratory
spatiotemporal data analysis (ESTDA) can more effectively integrate the temporal dimen-
sion with the spatial dimension for spatiotemporal interaction visualization, which has
been used in disease prevention and control, air pollution, resource allocation, land-use,
land-cover changes, and other fields [50–52].

In addition, among studies of drivers of urban sprawl, our results are largely consistent
with existing research. Zhang et al. [29] argued that economic dimensions have a greater
impact on urban sprawl in China compared to other dimensions. Li and Li [8] evaluated
the socioeconomic drivers of urban sprawl in China, arguing that urban sprawl is closely
related to urban population density, per capita GDP, and industrial structure. Their findings
are similar to those in this study. The Geodetector method has advantages over principal
component analysis and geographically weighted regression methods in determining the
influence of explanatory variables [53]. In addition to urban-related studies, Geodetector
models have received much attention in several other areas, such as vegetation change,
land pollution, and medical issues, due to their superior performance [54–56].
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5.2. Policy Implications

This study has some important and direct theoretical and practical policy implications.
First, rational control of urban growth requires the development of scientifically sound
urban development plans. Ineffective urban planning has often been deemed one of the
important factors contributing to urban sprawl in Chinese cities [46,57]. Planning should be
based on the development of the city itself, taking into account the differences among differ-
ent regions and cities. Suggested actions include actively carrying out urban regeneration
activities, enhancing the development potential of urban internal space, making rational
use of stock land, strengthening urban spatial constraints, and promoting urban sustainable
development. Secondly, multiple factors driving urban sprawl should be considered and
combined to formulate comprehensive policies that can control urban sprawl. For instance,
population growth causes an increase in housing demand, which promotes the migration of
the real estate industry to the periphery of cities. In addition, convenient urban transporta-
tion conditions promote the outward diffusion of the population, which accelerates urban
sprawl. Therefore, in order to control urban sprawl, multiple factors should be considered
comprehensively; economic development should be restrained in areas with excessive
expansion of urban space, and urban boundaries should be appropriately controlled to
effectively restrain urban sprawl.

5.3. Research Limitations and Prospects

Overall, this study generally achieved the research objectives, measured urban sprawl
in China, obtained the spatial and temporal patterns of urban sprawl in China, and defined
its main influencing factors. However, the study still has some shortcomings. Due to the
ambiguity of the concept, data inconsistency, and the subjectivity of index selection, this
paper has some limitations that need to be further studied. Firstly, the fuzzy concept of
urban sprawl and that of its process make it difficult to measure. A single-index measure
cannot explain the multidimensional nature of urban sprawl [57]. Many sub-indicators are
highly correlated, which increases the risk of capturing the causes and consequences of
urban sprawl rather than describing the phenomenon of urban sprawl itself [8]. Secondly,
the accuracy and inconsistency of the data presented challenges in this study. The research
period (2000–2017) was limited to the years in which DMSP-OLS and NPP-VIIRS data
were available. Although the two sets of data were integrated with reference to previous
studies [36,37], and attempts were made to reduce the data differences caused by different
spatial and radiative resolutions, it is still impossible to completely eliminate differences
caused by different data sources. Due to the different geographical environments of each
city, the great difference in urban morphology, the large differences in city size, and the low
spatial resolution of night light images, the built-up area range extracted by the change
detection method inevitably has some deviations. Urban sprawl is a complex process of
urban development, and more detailed research on urban sprawl, with a longer time series,
should be performed. In addition, we suggest expanding the research scale to understand
urban sprawl in the United States, Europe, and the rest of the world.

6. Conclusions

(1) China experienced moderate-to-high urban sprawl development from 2000 to 2017.
In terms of spatial distribution, the USI was high in the northwest and low in the
southeast. Changes in the USI increasingly appeared in prefecture-level cities located
at boundaries between provinces.

(2) The local spatial stability of the USI gradually decreased from southeast to northwest
and northeast. There was no evident spatiotemporal transformation, strong spatial
cohesion, relatively stable spatial pattern, or specific transfer inertia of the USI.

(3) The gross regional product (GRP) of the tertiary industry, the general GRP, and
investment in real estate development were the most important factors affecting the
sprawl in cities at the prefecture level and above in China.
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