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Abstract: Scientific functional zone planning is the key to achieving long-term development goals for
cities. The rapid development of remote sensing technology allows for the identification of urban
functional zones, which is important since they serve as basic spatial units for urban planning and
functioning. The accuracy of three methods—kernel density estimation, term frequency-inverse
document frequency, and deep learning—for detecting urban functional zones was investigated
using the Gaode points of interest, high-resolution satellite images, and OpenStreetMap. Kuancheng
District was divided into twenty-one functional types (five single functional types and twenty mixed
ones). The results showed that an approach using deep learning had a higher accuracy than the other
two methods for delineating four out of five functions (excluding the commercial function) when
compared with a field survey. The field survey showed that Kuancheng District was progressing
towards completing the goals of the Land-Use Plan of the Central City of Changchun (2011–2020).
Based on these findings, we illustrate the feasibility of identifying urban functional areas and lay
out a framework for transforming them. Our results can guide the adjustment of the urban spatial
structure and provide a reference basis for the scientific and reasonable development of urban
land-use planning.

Keywords: urban functional zone; U-Net; spatial distribution; Kuancheng District

1. Introduction

Urban spaces are places where urban residents live, work, and relax. According to
the place-based theory [1], an urban space comprises multiple functional zones that serve
different purposes. Urban functional zones were first proposed in the Athens Charter [2]
and are important space carriers for realizing urban socioeconomic functions. They provide
precise boundaries for urban planning and management that can support infrastructure
construction, coordinated regional development [3], and the environmental governance of
projects (e.g., highway construction and other essential public services) [3,4]. In addition
to influencing the urban process [5], urban functional zones can also be considered a
suitable monitoring unit of urban sustainability [6]. The scientific delimitation of urban
functional zones is conducive to the rational control of urban sprawl and the formulation
of urban planning—which can provide ideas, strategies, frameworks, and guidelines to the
government for urban development—as well as being important for supporting sustainable
urban development, efficient planning, and accurate industrial distribution.

Research related to the urban functional zone focused on identifying said zones and
their related applications. Urban functional zones are widely used in urban studies, such as
heavy metal pollution [7], population density [8], urban heat island [9], air pollution [10],
and traffic congestion [11].

Rapid urbanization has made the identification of urban functional zones a popular
research topic. Traditional methods have relied on field surveys and remote-sensing

Land 2021, 10, 1266. https://doi.org/10.3390/land10111266 https://www.mdpi.com/journal/land

https://www.mdpi.com/journal/land
https://www.mdpi.com
https://doi.org/10.3390/land10111266
https://doi.org/10.3390/land10111266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land10111266
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land10111266?type=check_update&version=2


Land 2021, 10, 1266 2 of 21

images [12,13]. However, crowdsourced geographic information (e.g., point-of-interest,
mobile, and traffic-flow data) provides a new channel for describing and understanding
urban spatial structures [4,14–21]. Combining these two types of methods can make the
identification of urban functional areas more accurate [22–25]. Identification methods
include probability estimation approaches (e.g., kernel density estimation), as well as
machine learning methods, such as Latent Dirichlet allocation (LDA) [18,20], support vector
machines (SVM) [26], clustering algorithms [20,27], and neural networks [28]. An AI-based
approach in the field of machine learning [29], deep learning uses a deep neural network
(DNN) to learn object features from massive datasets, enabling it to recognize objects [30].
Deep learning has advanced research in many fields, including object classification [31],
target detection [32,33], and semantic segmentation [34,35]. A major advantage of deep
learning is that it automatically learns feature information from a large amount of image
data [23], which can provide new avenues for research on the semantic segmentation of
remote-sensing images. Among these, the most widely used models are convolutional
neural networks [23,28,31,36]. Despite this, only a few studies have used deep learning
to recognize urban-function areas. This is because it is time-consuming to manually
select segmentation parameters and extract object features; moreover, the formation of
urban functional areas is influenced by many factors, such as nature, the economy, history,
and society.

Related studies have typically focused on economically developed cities, such as Bei-
jing [19,26,27,37], Shenzhen [25,36,38], Guangzhou [14,39], Wuxi [40], and New York [41].
While Klapka and Halás [17,42] studied urban functional zones in the Czech Republic,
few studies have focused on old industrial cities (except for Wuhan [20]) and Rust Belt
cities. In particular, Changchun, the central city of the Northeast Asia economic circle, is a
leading area for industrial transformation in Northeast China and strategic cooperation
with Northeast Asia; there, rapid urban expansion has led to the disordered distribution
of urban functional areas [43]. As such, there is an urgent need to improve the functional
zoning of Changchun.

This study adopted a U-Net model and used high-resolution remote-sensing images
to identify specific urban functional zones, including residential zones (RN), commercial
and commercial services facilities zones (CN), public administration and public service
zones (PN), industrial and mining storage zones (IN), and ecological zones (EN). Using
kernel density estimation based on point-of-interest data, we aimed to discover the overlay
of urban functional zones. Finally, a confusion matrix was used to verify accuracy. This
study introduced the U-Net model of deep learning to investigate urban functional zones,
which can effectively identify them and avoid the problem of reduced accuracy caused by
the absence of POI in old industrial cities, especially suburbs. The results can guide the
adjustment of the urban spatial structure from the macro and are beneficial to the layout,
coordination, and matching of the city’s overall function, which can provide an effective
reference for sustainable urban planning and development. Further, the method appears to
be practical for mapping urban functional zones for application in other cities with similar
socioeconomic attributes. It could even be used to map urban functional zones for earlier
years if early remote-sensing images are available.

2. Materials and Methods
2.1. Study Area

This study used the Kuancheng District of Changchun, China, which spreads from
rural–urban fringe areas to urban areas (Figure 1). Kuancheng District is located in the
north of Changchun, with an urban area of 245 km2. It is in the transition zone between
the eastern mountainous humid region and the western-plain semiarid region, belonging
to the temperate continental subhumid monsoon climate type. The terrain in the area
is relatively flat, with a large distribution of typical black soil resources. As one of the
main districts of Changchun, Kuancheng is one of the city’s earliest urban districts. It
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is recognized by China’s Ministry of Civil Affairs as an experimental zone for national
community governance and service innovation.

Figure 1. Location of Kuancheng District.

2.2. Data Processing

Data for administrative divisions were obtained from the National Bureau of Statistics
of China. We employed a GaoFen-2 (GF-2) image covering the study area that was acquired
in September 2019. Using ENVI 5.3, images with a resolution of 3.24 m in the multispectral
GF-2 image were merged with images with a panchromatic resolution of 0.8 m to produce
a pan-sharpened image of 1 m resolution with four bands. Field survey data were obtained
from the GF-2 image by visual interpretation manually and field investigation.

Road-network data for Kuancheng District were collected from OpenStreetMap (OSM),
a popular volunteer geographic information (VGI) source that provides free, open geo-
graphical data. The data are in vector format and contain different classes of streets,
consisting of the following: motorway, motorway_link, primary, primary_link, tertiary,
tertiary_link, secondary, pedestrian, residential, footway, track, trunk, and service, which
form the boundary of functional zones.

In addition, point-of-interest (POI) data can record the geospatial and attribute infor-
mation of a single point [21] (e.g., a house, store, or bus stop). After removing duplicate
samples, we obtained a dataset of 17,665 POI data points indicating the functional and
locational properties of sites as of 30 September 2020. These were generated from Gaode
Map Services (https://ditu.amap.com/ (accessed on 30 September 2020)), a well-known
map service provider in China. In the POI dataset, there were 23 labels in the top-level
category, 264 in the second-level category, and 869 in the third-level category. Based on the
Code for Classification of Urban Land Use and Planning Standards of Development Land
(GB 50137-2011), the POI dataset was divided into five labels at the first level (i.e., RN, CN,

https://ditu.amap.com/
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PN, IN, and EN) and twenty-two at the second level (see Appendix A), where roads and
traffic facilities were abandoned since the elementary unit was divided by roads.

2.3. Method

Figure 2 shows the study framework. A traffic network is the skeleton of the urban
functional area; thus, the OSM road network was first used to segment the study area. Next,
hotspot analysis was conducted based on POI data, and we then compared the results
derived from the U-Net deep learning (UDL), kernel density estimation (KDE), and term
frequency-inverse document frequency (TF-IDF) methods.

Figure 2. Flowchart of the study.

2.3.1. Unit Division of Urban Functional Zones

An urban functional zone is a fundamental unit carrying socioeconomic functions in
urban planning and management. The parcel formed by a road network is the basic unit of
urban planning and management, and it serves the socioeconomic functions of a city [44].
In this study, road vectors obtained from OSM were used to delineate functional zones,
and each zone was spatially represented by a block. First, motorway, motorway_link,
primary, primary_link, tertiary, tertiary_link, cycleway, residential, track, and trunk roads
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were selected and topology-processed; this involved extending roads by 100 m to process
unconnected road networks and trimming road networks in suspension roads and separate
roads. Then, the road space was created by establishing 20 m buffer zones for the roads.
The space was used to generate a binary road grid image, and then the centerline extraction
function under the ArcScan module in ArcGIS 10.4 was used to extract the centerline of
the road. After manual correction, urban functional zone units were generated and, after
deleting smaller land units, 707 zones were finally generated.

2.3.2. Classification System

A city-function zoning system is a division of zones in a city based on dominant
functions. It forms a coherent functional aggregation, establishes relatively independent
and interconnected functional zones, and forms an organic whole through rational planning.
As the base map for territorial spatial planning, the main functional zones provide a
common basis for all manner of spatial governance policies, planning, and evaluation [45].
Thus, functional zones, based on the agglomeration of urban elements, are important for
the urban functional layout, facilitating the macroscopic specification, coordination, and
matching of urban functions.

Researchers have offered various classifications (Table 1) for the urban functional zone,
including residential, commercial, ecological, industrial, public, and transport classifica-
tions. According to the Code for Classification of Urban Land Use and Planning Standards
of Development Land (GB 50137-2011), urban development land includes the following
types: residential, administration and public services, commercial and business facilities,
industrial, manufacturing, logistics and warehouse, road, street and transportation, munic-
ipal utilities, and green space and square. Thus, this study used the following functional
classifications, as mentioned previously: RN, CN, PN, IN, and EN. There is no transport
zone since zones were divided based on the central line of the roads.

Table 1. Functional zoning classifications by different researchers.

Order Functional Classifications Authors

1

Diplomatic and political zone, science and education zone,
mature residential zone, new residential zone, commercial and

entertainment zone, tourist attraction zone, area to be developed,
unclassified area

Miao et al. [19]

2 Commercial zone, campuses, parks and greenbelts, industrial
zone, residential districts, shantytowns Zhang et al. [26]

3

Corporate business area or factory, shopping mall, tourism
attraction place, public facility, transportation facility, science and
education place, medical service place, food and beverage place

and daily life service place, governmental and
public organizations

Hu et al. [20]

4
Residential, education and training, recreation and entertainment,
medical and public health, commercial and finance, incorporated
and business, party and government organization, scenic areas

Luo et al. [46]

5 Office building/space, financial services, medical/education,
entertainment, life services, residence communities, government Hong and Yao [21]

6 Ecological area, transit region, urban buffer, suburbs, subcenter,
urban center Tu et al. [25]

7 Urban green, industrial districts, public services, residential
districts, commercial districts, hospitals, schools, shantytowns Bao et al. [36]

8

Developed working and industrial regions, developed public
service region, emerging working and industrial regions,

emerging residential region, developed residential region, nature
park, developing rural region, undefined region

Zhai et al. [40]

9 Mixed use, residential, industry, business, conservation Malik and Dewancker [47]

2.3.3. U-Net Deep Learning

U-Net was first proposed for biomedical image segmentation [48]. Given the advan-
tages of its simple, effective symmetrical encoder–decoder structure, U-Net has been widely
used for various remote-sensing tasks, such as semantic segmentation. Most researchers
use the U-Net framework or an improved version of it. ResUNet-a is a U-Net-based
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deep learning architecture that can improve the semantic segmentation of high-resolution
remote-sensing images [35]. Peng et al. [49] proposed UNet++ for semantic segmenta-
tion based on the encoder–decoder architecture. He et al. [50] proposed HFSA-Unet to
explore the correlations among the immediate layers for automatic building segmentation
in remote-sensing images.

Therefore, we chose U-Net to classify urban functional zones. The architecture of
U-Net can be thought of as an encoder network followed by a decoder network. Unlike
a classification, where the end result of the deep network is the only important thing,
semantic segmentation requires not only pixel-level discrimination but also a mechanism
to project the discriminative features learned at different stages of the encoder onto the
pixel space.

The encoder is the first half of the architecture diagram (Figure 3). It is usually a
pre-trained classification network, such as VGG/ResNet, where convolution blocks are
applied, followed by max pool downsampling to encode the input image into feature
representations at multiple levels. The decoder is the second half of the architecture. The
goal is to semantically project the discriminative features (lower resolution) learned by the
encoder onto the pixel space (higher resolution) to get a dense classification. The decoder
consists of upsampling and concatenation, followed by regular convolution operations.

Figure 3. U-Net architecture.

U-Net is a classification method with supervised learning; thus, the samples, which
are fundamental for recognizing zone functions, should be selected first. We used fieldwork
information for 25 km2 of urban area in the Kuancheng District for sampling. This area
stretches from rural-urban fringe areas to urban areas and includes all urban functional
types. The function “Label Objects for Deep Learning” under “Classification Tools” in
ArcGIS Pro 2.7 was used to export the training data. Metadata were formatted as “Classified
Tiles” so we could train the U-Net model.

The training model was implemented in the PyCharm development environment
using Python so that more details could be identified, and some parameters could be
adjusted and optimized. Finally, the function “Classify Pixels Using Deep Learning” under
“Image Analyst” in ArcGIS Pro 2.7 was used to identify the urban functional zones.

The function of each zone was determined by the area proportions of different func-
tional areas in the zones. A type ratio of 50% was selected as the functional zone standard.
When a type of area proportion reached 50% or more in the unit, it was considered a single
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functional zone. When all area proportions were less than 50%, it was considered a mixed
functional zone, which was determined by the two main types in the unit, whose area
proportions were between 30% and 50%. When all area proportions were greater than
0% but less than 30%, it was considered a mixed uniform functional zone. When all area
proportions were 0, it was considered a no data zone.

2.3.4. Verification

The accuracy of KDE, UDL, and TF-IDF was assessed against the field survey data
using confusion matrices, which was summarized to provide further accurate information
by computing quantity disagreement, shift disagreement, and exchange disagreement [51].
Quantity disagreement is the difference between the prediction and field survey categories
due to an imperfect match in the overall proportions of all mapped categories. Shift
and exchange are allocation disagreements which are the difference between the field
survey and the prediction due to an imperfect match in the spatial allocations of the
mapped categories, given the categorical proportions in the field survey and prediction [52].
Exchange is the disagreement of allocation disagreement that pairwise confusions cause,
and shift is the disagreement that non-pairwise confusions cause [52].

3. Results
3.1. Identification of Functional Zones
3.1.1. Single Functional Zone

Kuancheng District can be divided into five single functional zones. Figure 4 shows
the distribution of single functional zones in the study area based on the methods of KDE
(Figure 4a), UDL (Figure 4b), and TF-IDF (Figure 4c).

KDE, TF-IDF, and UDL identified, respectively, 359, 640, and 635 single functional
zones. In the KDE results, IN accounted for the largest number (190 zones). The number of
single functional zones gradually increased in the following order: CN, EN, NN, and RN.
Except for the southern part of the Kuancheng District, which is close to the city center,
most single functional zones were spread out across the region.

In the TF-IDF results, CN accounted for the largest number (295 zones). The number
of single functional zones gradually increased in the following order: RN, EN, PN, IN, and
NN. Single functional zones were evenly distributed in Kuancheng District.

In the UDL results, RN accounted for the largest number (300 zones). The number
of single functional zones gradually increased in the following order: PN, NN, IN, and
EN. The single functional zone for CN was zero. This indicates that either CN and others
became mixed functional areas or CN was not identified by the UDL method. Single
functional zones were evenly distributed in the study area.

3.1.2. Mixed Functional Zones

Figure 5 shows the spatial distribution of mixed functional zones in the Kuancheng
District; the colors indicate different mixed functional zones. Table 2 shows the results.
The horizontal axis is the largest of the functional areas in the zone, and the vertical axis
is the second-largest, which determines what kind of mixed functional zones the mixed
zone contains.

The KDE results included 16 types of mixed functional zones, among which the
number of PN-CN zones (54 zones) was the largest, followed by IN-CN (43 zones), CN-
IN (41 zones), and PN-IN (32 zones). The TF-IDF results contained ten types of mixed
functional zones, among which the number of CN-PN zones (22 zones) was the largest,
followed by PN-CN (16 zones). The UDL results had the fewest types (eight types) of mixed
functional zones, among which the largest were EN-IN (16 zones) and IN-EN (15 zones),
followed by RN-EN (11 zones) and RN-IN (10 zones).
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Figure 4. Spatial distribution of single functional zones in Kuancheng District predicted by (a) Size KDE, (b) UDL, and
(c) TF-IDF (RN, residential zone; CN, commercial and commercial services facilities zone; PN, public government and
public service zone; IN, industrial and mining storage zone; EN, ecological zone; NN, no data zone).

3.2. Verification

We evaluated the KDE, TF-IDF, and UDL results as described below. Table 3 shows the
results; the horizontal axis is the field survey results, and the vertical axis is the predicted
results of three methods.

The overall error for KDE of urban functional zones was 83%, divided between
quantity disagreement (66%), exchange (9%), and shift (9%) (Figure 6). MN had the highest
overall error, followed by RN. RN, IN, EN, and MN extended beyond the Quantity Overall
line (Figure 7), which indicated that these types had more intensive quantity disagreements
relative to the quantity disagreement overall. The intensity of exchange overall is the
difference between the Quantity Overall line and the Quantity + Exchange Overall line. PN
and IN had more intensive exchange relative to exchange overall, while EN had exchange
equal in intensity to exchange overall. The Quantity + Exchange Overall of 89% implied
that the intensity of Shift Overall was 11%, meaning 100% minus 89% (Figure 7). The shift
intensity for CN, PN, and NN is entirely to the left of the Quantity + Exchange Overall line;
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therefore, CN, PN, and NN had a more intensive shift relative to shift overall. NN had a
shift equal in intensity to shift overall.

Figure 5. Spatial distribution of mixed functional zones in Kuancheng District predicted by (a) Size KDE, (b) UDL, and
(c) TF-IDF.

The overall error for TF-IDF of urban functional zones was 71%, divided between
quantity disagreement (57%), exchange (6%), and shift (8%) (Figure 6). EN and NN had the
highest overall error, and RN, CN, EN, and MN had more intensive quantity disagreements
relative to the quantity disagreement overall. Only MN had a quantity component less
intensive than the intensity of the overall quantity component. PN, IN, and MN had more
intensive exchange relative to exchange overall, and PN, IN, and MN had a more intensive
shift relative to shift overall.

The overall error for UDL of urban functional zones was 43%, divided between
quantity disagreement (21%), exchange (11%), and shift (10%) (Figure 6). EN had the
highest overall error, followed by RN and MN. CN, PN, EN, and NN had more intensive
quantity disagreements relative to quantity disagreement overall. RN and MN had more
intensive exchange relative to exchange overall, while IN had exchange equal in intensity
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to exchange overall. RN, IN, and MN had a more intensive shift relative to shift overall.
Besides, CN and NN had no exchange and shift disagreements.

Table 2. Confusion matrix of functional zones where diagonal number is the number of single
functional zones, and the other number is the mixed functional zones.

The Largest Functional Area

RN CN PN IN EN MUN NN Total
Th

e
se

co
nd

fu
nc

ti
on

al
ar

ea

a. KDE

RN 30 19 10 10 1 70
CN 12 16 54 43 125
PN 12 72 28 24 136
IN 9 41 32 190 3 275
EN 1 3 2 26 32

MUN 40 40
NN 29 29

Total 63 149 127 269 30 40 29 707

b. TF-IDF
RN 11 5 3 19
CN 295 16 4 315
PN 1 22 77 2 102
IN 8 4 83 95
EN 2 16 18

MUN
NN 158 158

Total 12 332 100 89 16 158 707

c. UDL
RN 300 7 9 316
CN
PN 2 1 3 6
IN 10 67 16 93
EN 11 15 264 290

MUN
NN 2 2

Total 321 2 90 292 2 707
Note: RN, residential zone; CN, commercial and commercial services facilities zone; PN, public government and
public service zone; IN, industrial and mining storage zone; EN, ecological zone; MUN, mixed uniform functional
zone; NN, no data zone; KDE, kernel density estimation; TF-IDF, term frequency-inverse document frequency;
UDL, U-Net deep learning.

Figure 6. Overall errors of three methods.
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Table 3. Verification confusion matrix of functional zones.

Field Survey Data

RN CN PN IN EN MN NN ON Total

Pr
ed

ic
ti

on
da

ta

a. KDE
RN 17 3 9 1 30
CN 7 2 5 1 1 16
PN 3 2 1 1 15 3 3 28
IN 22 21 6 39 68 24 10 190
EN 1 2 2 1 19 1 26
MN 236 43 34 9 31 29 6 388
NN 1 10 18 29

Total 286 68 45 54 157 58 38 1 707

b. TF-IDF
9 2 11

CN 199 35 11 8 16 25 1 295
PN 26 8 17 3 15 8 77
IN 3 13 3 31 25 8 83
EN 2 2 12 16
MN 33 3 5 3 12 11 67
NN 16 7 7 9 75 6 38 158

Total 286 68 45 54 157 58 38 1 707

c. UDL
RN 233 27 14 4 8 13 1 300
PN 1 1 2
IN 13 19 13 12 2 8 67
EN 27 12 11 12 143 23 35 1 264
MN 13 10 6 25 4 14 72
NN 2 2

Total 286 68 45 54 157 58 38 1 707

Figure 7. Cont.
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Figure 7. (left) Size and (right) intensity of differences for Table 3. A positive sign in the quantity disagreement denotes the
number of the functional zones in a prediction is greater than in the field survey; a negative sign denotes the number of the
functional zones in a prediction is less than in the field survey.

Figure 8 shows the spatial distribution of the prediction results of KDE, TF-IDF, and
UDL with field surveys. The KDE results had more IN zones, especially in Lanjia Town,
Beihu Street, and Xingye Street. The reason could be that there are many industrial or
storage POIs but few other POI types. Therefore, the distribution of POIs in suburban and
rural areas may have reduced the accuracy of identification.

The TF-IDF results identified more CNs than in the field survey, and the distribution
of different functions was not very accurate. This is because in TF-IDF, the smaller the text
frequency (i.e., the number of texts containing a certain word) of a word, the greater its
ability to distinguish between different categories of text. If one functional type is in every
zone, its IDF is zero; so, TF-IDF thinks it is a noise word, leading to an incorrect result.
Thus, TF-IDF is minimally effective for special functional zones.

The UDL results were the most accurate, showing almost the same distribution as the
field survey, except for CN. There were no CNs in the UDL results, although commercial
and financial land existed in the field survey. This is because there were few CNs in the
sampling area, which could be used as samples, making it difficult to identify them through
remote sensing.

Figure 8. Cont.



Land 2021, 10, 1266 13 of 21

Figure 8. Spatial distribution of the prediction results of (a) KDE, (b) TF-IDF, and (c) UDL, with (d) field surveys.

Figure 9 shows the comparison of the UDL and the field survey results. The different
functional zone (237) results of UDL and the field survey are mainly distributed in Zhanqian
Street, Xinfa Street, and Dongguang Street, which are urban central areas. There are also
some in Beihu Street, which is part of Changchun’s new district. The functional zones,
where there are overlaps of functional types (74), are distributed in all the streets within
Kuancheng Street, except Balibao Street, Nanguang Street, and Xingye Street. Identical
functional types (396) are mainly distributed in Lanjia Town, Fenjin Town, Xinghongshan
Town, Xingye Street, north of Tuanshan Street, and west of Beihu Street, which are urban
and rural zones.

Figure 9. Comparison of (a) UDL and (b) field survey results.
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3.3. Spatial Pattern of Urban Functional Zones

Kuancheng District is north of Changchun (Figure 10). EN is the largest functional
classification area; it is found mostly in peri-urban regions, with many forests and cultivated
lands. RN is concentrated in the southern part of Kuancheng, close to Changchun’s city
center. There are also a few RNs in the northern region since there is some rural residential
land there. RNs are mainly distributed in Lanjia Town and Beihu Street, with a small
amount distributed on Zhanqian Street and the intersection of Liuying Street, Kaixuan
Street, and Qingnian. Most PNs and CNs are located in the southern region, especially in
the city center, while RNs are scattered throughout the study area.

Figure 10. Spatial distribution of the urban functional classifications of Kuancheng District.

In general, Kuancheng District forms three development zones. The southern develop-
ment area is a comprehensive area of the district’s main functions. The eastern development
area, composed of urban industrial areas and ecological wetland, is the main expansion
area for future land development. The western development area is a compound area of
industrial and agricultural township development, where the function of Lanjia Town is
mainly industrial, supplemented by residential functions.

4. Discussion
4.1. Development Current Situation

Kuancheng District, Fenjin Town, and Beihu Street, which belong to the Northeast
China Development Open Pilot Area of Changchun, are rapidly expanding urban–rural
transition zones. A reasonable layout of functional zones is conducive to the coordinated
development of urban and rural areas. This region will be a major expansion space for
the future development of the Kuancheng District. It is therefore of great significance
for Changchun’s sustainable development and will provide an effective reference for
establishing land-use planning to scientifically design urban functional layouts. Overall,
Kuancheng District is progressing toward achieving the goals of the Land-Use Plan of
the Central City of Changchun (2011–2020) (Figure 11), indicating that the plan has had
practical instructive significance.
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Figure 11. Comparison of (a) field survey and (b) land-use plan.

4.2. Comparison with Exiting Studies

Many studies have attempted to produce urban functional zone maps using remote-
sensing images and POI data. Here, we compare our study with several previous studies
in terms of data sources, study area, and methods (Table 4). First, regarding data sources,
the distribution and number of points of interest have some effects. POI data are points
of different activities, such as shopping, working, studying, and dining, which reflect
people’s preferences and social functions [53]. Although POI data provides good semantic
information, there is a greater concentration of POIs near areas that have a high population
density [26] because POIs are associated with people’s activities. There are fewer POIs in
suburban or rural areas, which may lead to a lower level of accuracy for identifying urban
functional zones. In addition, there may be many small shops, restaurants, barbershops,
public baths, and other service functions scattered around residential areas, whose distribu-
tions are more intensive than residential distributions. This could have an adverse effect on
the identification results for functional zones. Apart from POI data, vector data from OSM
also contains geospatial semantics for its geo-objects [54] and can also provide semantics
for urban functional zones.

As for remote sensing, in submeter-level high-resolution images, ground object types
are more diverse, texture types and regions are significantly increased, and texture features
are more variable. They are, however, more expensive. Although medium-resolution
images are easy to acquire and can cover large spatial areas, it is difficult to produce
fine-grained urban functional zones based on them because of their lower spatial reso-
lution [55]. The cost and spatial resolution of meter-level high-resolution images range
between the two. Therefore, many aspects should be considered in remote-sensing image
selection. Compared with only using remote-sensing images, adding semantic informa-
tion to remote-sensing images has higher classification accuracy. Urban functional zones
composed of various geographic objects (such as buildings, roads, and vegetation) [55]
are regions with unified functions, relatively independent and connected with each other,
and constituting an organic whole with a reasonable layout. As buildings in the city are
divided by roads, urban functional zones have a close relation to the regions formed by the
city road network [21]. Moreover, the fixed-size grid division method destroys the integrity
of the land use pattern [55], so the division of units by road network is more consistent
with the definition and scope of the urban functional area than the grid. However, if the
study area is large (such as a country), the larger size of the grid partition performs better
macroscopically [56].
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Table 4. Comparison with existing studies.

Authors Data
Source Study Area Mapping Unit Methods

Xin et al. [6] MHRI
SHRI Beijing and Wuhan Roads

BOVW (bag of visual word)
model and SDA

(semi-supervised discriminant
analysis) dimensionality

reduction approach

Du et al. [55] MHRI Beijing and
Shanghai Objects Multi-scale semantic

segmentation network

Heiden et al. [12] MHRI Munich Pixels Automated multi-stage
processing system

Myint et al. [13] SHRI Phoenix, Arizona Objects Object-based classifier

Chen et al. [14] MPPD Yuexiu District,
Guangzhou Buildings Improved k-medoids method

Du et al. [22] MHRI
POI

Three districts in
Beijing Roads LDA, SVM

Hong and Yao [21] POI Guangzhou Roads Infomap community
detection algorithm

This study SHRI
POI

Kuancheng
District,

Changchun
Roads UDL, KDE, TF-IDF

Note: SHRI: submeter-level high-resolution images; MHRI: meter-level high-resolution images; MPPD: mobile
phone positioning data; POI: point of interest.

This study identified urban functional zones with POIs and GF-2 images using three
methods: KDE, TF-IDF, and UDL. We first consider the limitations of KDE. Different band-
widths affect the results [18,57,58]. When the bandwidth is small, details can be detected,
and a finer mesh density estimate can be obtained, while a larger bandwidth produces a
smoother distribution and is suitable for the overall analysis [58]. In this study, 500 was
chosen as the bandwidth for KDE, which was determined by the functional areas. It will
be necessary to conduct further research to compare the effects of different bandwidths.
TF-IDF is a natural language processing method that cannot explain how one spatial point
is determined by its surroundings [40]. In this study, TF-IDF performed poorly in identify-
ing urban functional zones because it only considered distribution frequency and ignored
potential semantic information behind the POIs. Researchers use this method to mine static
functions from POIs [59] or measure the importance of different POI categories [41]. For
deep learning in supervised learning, deep neural networks [60], deeper-feature convolu-
tional neural networks [36], KDE [46], and hierarchical semantic cognition [26] have been
used to identify urban functional zones. Their accuracy is a little bit higher than that of
unsupervised learning, such as the clustering algorithm.

4.3. Limitations and Future Work

This study’s results indicate that we can effectively identify urban functional zones,
especially mixed functional zones, which is of great practical significance to the optimiza-
tion and coordination of urban space. Nevertheless, this research has certain limitations.
First, the deep learning method had little accuracy when identifying CNs. One reason
is that there are few commercial lands to use as samples; the other is that it is difficult
to separate commercial land from residential land using remote sensing. Because of the
mixed functional zones, the UDL results were not accurate. There are multiple functional
types in one zone, especially in economically developed urban central areas. The area ratio
of different functional areas results in a lower accuracy of UDL when identical functional
types are compared.

Second, this study used single datasets to identify urban functional zones, only from
the functional perspective of land-use types, without integrating remote-sensing images
and POI data; thus, the social and economic functions were ignored. In addition, although
the division of units by road networks is feasible in many studies [21,61,62], there may
be mixed functions in these units. As buildings are more detailed than road networks
when dividing urban units, they have more potential for researching urban functions and
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structures [14,38]. In future research, we plan to integrate different datasets to exhaustively
analyze the various functions of urban functional areas and explore urban functional
structures. As a basic unit for identifying urban functions, we plan to use buildings, if
possible, to determine functional areas more accurately.

5. Conclusions

As the basic unit of urban development and planning, urban functional zones can
help urban planners develop better strategies, while also helping researchers to better
understand the urban structure and environment. With the development of remote-sensing
images and crowdsourced geographic information data, it has become easier to identify
urban functional areas. We used Kuancheng District, Changchun, China, as the study area.
We obtained 17,665 Gaode POIs, acquired on 30 September 2020, and used GF-2 images
and OpenStreetMap road data for this study, which were acquired in September 2019 and
30 September 2020, respectively. Then, we used OSM road data for map segmentation and
KDE, TF-IDF, and UDL methods to identify urban functional zones. These zones included
residential zones (RN), commercial and commercial services facilities zones (CN), public
administration and public service zones (PN), industrial and mining storage zones (IN),
and ecological zones (EN). Finally, we compared the results of the three methods with a
field survey. The results suggested that deep learning had the lowest overall error (43%)
compared with KDE (83%) and TF-IDF (71%).

This study confirmed the feasibility of using remote-sensing images and POI data
to detect urban functional zones. This approach can provide a perspective on urban
transformation processes and prove useful for city management and planning. Further, we
identified the current distribution of urban functional zones in the Kuancheng District. This
can help city managers make adjustments, especially with regard to the Territorial Spatial
Planning of Changchun (2020–2035). In general, using remote-sensing images with UDL
methods to explore urban functional zones can provide new ideas for investigating urban
functional areas and the urban spatial structure. Such work can support the intensive and
economic use of urban land and achieve the sustainable development of cities. In future
work, open social data will be combined with remote-sensing images to better identify
urban functions, such as POI, mobile phone positioning, and social software check-in data.
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Appendix A

The appendix is a table of types of original and aggregated POIs, which contains five
labels at the first level, twenty-two labels at the second level, and the original labels at the
third level.
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Table 1. Types of original and aggregated POIs.

Aggregated Type Big Category * Mid Category *

Residential Residential Area Residential Area

Commercial And
Commercial Services

Facilities

Accommodation Service Hotel, Hostel, Accommodation Service Related

Auto Dealers

Audi Franchised Sales, BMW Franchised Sales, Porsche Franchised Sales, Beiben Trucks
Sales, BAIC MOTOR Sales, Honda Franchised Sales, Peugeot Citroen Franchised Sales,

Peugeot Citroen, Chengdu Dayun Automotive Sales, Volkswagen Franchised Sales,
MAN Sales, Dongfeng Truck Sales, DFM Franchised Sales, Ferrari Franchised Sales, Fiat

Franchised Sales, Toyota Franchised Sales, Ford Franchised Sales, Foton Truck Sales,
Qoros Sales, GAC Trumpchi Sales, Haima Sales, Hongqi Sales, CAMC Sales, Truck Sales,
Geely Franchised Sales, JAC Truck Sales, JAC Sales, JAGUAR Franchised Sales, Chrysler

Franchised Sales, Renault Franchised Sales, Land Rover Franchised Sales,
Mercedes-Benz Truck Sales, Mercedes-Benz Franchised Sales, MG Sales, Luxgen Sales,
Chery Franchised Sales, KIA Franchised Sales, Automobile Sales, Nissan Franchised
Sales, ROEWE Sales, Mitsubishi Franchised Sales, Shaanxi Heavy-duty Truck Sales,

Subaru Franchised Sales, SCANIA Sales, General Motors Franchised Sales, Volvo Truck
Sales, Hyundai Franchised Sales, FAW Jiefang Sales, Chang’an Sales, Great Wall Sales,

SINOTRUK Sales

Auto Repair

Audi Franchised Repair, BMW Franchised Repair, Porsche Franchised Repair, Beiben
Trucks Repair, BAIC MOTOR Repair, Honda Franchised Repair, Peugeot Citroen

Franchised Repair, Peugeot Citroen, Chengdu Dayun Automotive Repair, Volkswagen
Franchised Repair, MAN Repair, Dongfeng Truck Repair, DFM Franchised Repair,
Ferrari Franchised Repair, Fiat Franchised Repair, Toyota Franchised Repair, Ford

Franchised Repair, Foton Truck Repair, Qoros Repair, GAC Trumpchi Repair, Haima
Repair, Hongqi Repair, CAMC Repair, Truck Repair, Geely Franchised Repair, JAC Truck
Repair, JAC Repair, JAGUAR Franchised Repair, Chrysler Franchised Repair, Renault

Franchised Repair, Land Rover Franchised Repair, Mercedes-Benz Truck Repair,
Mercedes-Benz Franchised Repair, MG Repair, Luxgen Repair, Chery Franchised Repair,
KIA Franchised Repair, Automobile Repair, Automobile Comprehensive Repair, Nissan
Franchised Repair, ROEWE Repair, Mitsubishi Franchised Repair, Shaanxi Heavy-duty
Truck Repair, Subaru Franchised Repair, SCANIA Repair, General Motors Franchised

Repair, Volvo Truck Repair, Hyundai Franchised Repair, FAW Jiefang Repair, Chang’an
Repair, Great Wall Repair, SINOTRUK Repair

Auto Service
Charging Station, Used Automobile Dealer, Filling Station, Filling Station, Other Energy
Station, Automobile Service Related, Automobile Rescue, Automobile Club, Automobile

Parts Sales, Automobile Maintenance/Decoration, Automobile Rental, Car Wash

Commercial House Industrial Park, Building, Commercial House Related

Daily Life Service

Move Service, Lottery Store, Electric Supply Service Office, Telecom Office, Travel
Agency, Beauty and Hairdressing Store, Job Center, Funeral Facilities, Photo Finishing,
Daily Life Service Place, Professional Service Firm, Ticket Office, Repair Store, Logistics
Service, Laundry, Bath & Massage Center, Information Centre, Baby Service Place, Post

Office, Agency, Water Supply Service Office

Finance & Insurance
Service

Insurance Company, Finance Company, Finance & Insurance Service Institution, Bank,
Bank Related, Securities Company, ATM

Food & Beverages
Food & Beverages Related, Tea House, Bakery, Coffee House, Fast Food Restaurant,
Icecream Shop, Dessert House, Foreign Food Restaurant, Leisure Food Restaurant,

Chinese Food Restaurant

Motorcycle Service Motorcycle Service Related, Motorcycle Repair, Motorcycle Sales

Shopping

Convenience Store, Supermarket, Clothing Store, Personal Care Items Shop, Shopping
Related Places, Plants & Pet Market, Home Electronics Hypermarket, Home Building

Materials Market, Shopping Plaza, Commercial Street, Special Trade House, Sports Store,
Stationary Store, Franchise Store, Comprehensive Market
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Table 1. Cont.

Aggregated Type Big Category * Mid Category *

Public Government And
Public Service

Culture & Education School

Governmental
Organization & Social

Group

Industrial and Commercial Taxation Institution, Public Security Organization, Traffic
Vehicle Management, Democratic Party, Social Group, Foreign Organization,

Governmental Organization, Governmental & Social Groups Related

Medical Service Veterinary Hospital, Emergency Center, Disease Prevention Institution, Medical and
Health Care Service Place, Pharmacy, Clinic, Special Hospital, Hospital

Public Facility Newsstand, Public Toilet, Public Facility, Public Phone, Emergency Shelter

Science, Culture &
Education Service

Museum, Media Organization, Archives Hall, Convention & Exhibition Center, Driving
School, Science & Technology Museum, Science & Education Cultural Place, Research

Institution, Art Gallery, Training Institution, Planetarium, Library, Cultural Palace, Arts
Organization, School, Exhibition Hall

Sports & Recreation Holiday & Nursing Resort, Golf Related, Sports & Recreation Places, Recreation Place,
Theatre & Cinema, Recreation Center, Sports Stadium

Industrial And Mining
Storage Enterprises Factory, Company, Enterprises, Farming, Forestry, Animal Husbandry and Fishery Base,

Famous Enterprise

Ecological Tourist Attraction Scenery Spot, Tourist Attraction Related, Park & Square, Park & Plaza

Transportation

Pass Facilities Gate of Buildings, Gate of Street House, Pass Facilities, Virtual Gate

Road Furniture Road Furniture, Service Area, Traffic Light, Warning Sign, Signpost, Toll Gate

Transportation Service
Commuter Bus Station, Taxi, Subway Station, Port & Marina, Bus Station, Border

Crossing, Railway Station, Airport Related, Transportation Service Related, Ferry Station,
Light Rail Station, Ropeway Station, Parking Lot, Coach Station

Note: Big category * and mid category * are original types of points of interest downloaded from https://lbs.amap.com/api/webservice/
download (accessed on 30 September 2020).
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