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Abstract: Soil is an important natural resource. The excessive amount of heavy metals in soil can
harm and threaten human health. Therefore, monitoring of soil heavy metal content is urgent.
Monitoring soil heavy metals by traditional methods requires many human and material resources.
Remote sensing has shown advantages in the field of monitoring heavy metals. Based on 971 heavy
metal samples and Sentinel-2 multi-spectral images in Tai Lake, China, we analyzed the correlation
between six heavy metals (Cd, Hg, As, Pb, Cu, Zn) and spectral factors, and selected As and Hg as
the input factors of inversion model. The correlation coefficient of the best model of As was 0.53
(p < 0.01), and of Hg was 0.318 (p < 0.01). We used the methods of partial least squares regression
(PLSR) and back propagation neural network (BPNN) to establish inversion models with different
combinations of spectral factors by using 649 measured samples. In addition, 322 measured samples
were used for accuracy evaluation. Compared with the PLSR model, the BP neural network builds
the model with higher accuracy, and B1-B4 combined with LnB1-LnB4 builds the model with the
highest accuracy. The accuracy of the best model was verified, with an average error of 19% for
As and 45% for Hg. Analyzing the spatial distribution of heavy metals by using the interpolation
method of Kriging and IDW. The overall distribution trend of the two interpolations is similar. The
concentration of As elements tends to increase from north to south, and the relatively high value
of Hg elements is distributed in the east and west of the study area. The factories in the study area
are distributed along rivers and lakes, which is consistent with the spatial distribution of heavy
metal enrichment areas. The relatively high-value areas of heavy metal elements are related to the
distribution of metal products factories, refractory porcelain factories, tile factories, factories and
mining enterprises, etc., indicating that factory pollution is the main reason for the enrichment of
heavy metals.

Keywords: anthrosols; BPNN; multi-spectral; PLSR; soil heavy metal; spatial distribution

1. Introduction

Soil is not only an important natural resource but also an environment which human
beings depend on. With the rapid development of the economy, human activities such as
mineral resources exploitation, metal processing, smelting, chemical production, factory
drainage, and sewage irrigation, the content of soil heavy metals has increased and put
great pressure on human production, life, and soil resources [1,2]. Excessive soil heavy
metal content could cause irreparable damage to human health. For instance, acute and
chronic As exposure could lead to cardiovascular disorders, while excessive Pb can damage
the central nervous system, leading to headache, insomnia, and memory loss [3,4]. Heavy
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metal pollution is exacerbated by metal based industrial activities, and heavy metals can
enter the human body through contaminated food, inhaled through the atmosphere, drunk
via contaminated water, through skin contact from agriculture, etc. The toxicity of heavy
metals can increase the incidence of many human cancers. There is a need for regular
testing and control of heavy metals to protect human health [5,6]. Therefore, the monitoring
of soil heavy metal content is urgent.

At present, the traditional monitoring of soil heavy metals is a chemical analysis
method, which has high observation accuracy, but is only suitable for small-scale local
areas. Wide-scale monitoring of soil heavy metal content requires a lot of human and
material resources [7]. Remote sensing technology has the characteristics of fast monitoring
speed, wide range, short cycle, non-destructiveness, etc. It overcomes the shortcomings
of traditional monitoring methods and has been widely used in the field of soil monitor-
ing [8–11]. Kemper and Sommer (2002) predicted the content of six heavy metals using
multiple linear regression models and artificial neural network models. The study proved
the feasibility of using multiple linear regression models and artificial neural network
models to establish reliable chemical metrological models [7]. Luce et al. (2017) demon-
strated that it is possible to predict a smaller degree of water-soluble soil heavy metals
by using the partial least squares model (PLSR) in visible near-infrared spectroscopy [12].
The methods of univariable regression and principal component analysis were used to
predict the concentration of Hg and the best model (R = 0.69, RMSE = 0.15) proved that it
was feasible to predict Hg in agriculture by reflection spectroscopy [13]. Yan et al. (2009)
carried out a differential transformation, baseline correction, and other pretreatments of
hyperspectral data to establish a PLSR of heavy metal elements and selected the best
model to invert the content of As, Fe, and Cu elements [14]. Pyo et al. (2020) used CNN
(convolutional neural network) learning models to predict the concentrations of Cu and
Pb, and used spectral data to establish machine learning models to invert heavy metal
concentrations [15]. Liu et al. (2019) established the PSO-BPNN model to invert the content
of Cd, Hg, and As elements, which improved the prediction accuracy of the heavy metal
inversion model greatly, and indicated that machine learning methods had great potential
to estimate the content of soil heavy metals accurately [16]. Choe et al. (2009) used heavy
metals to establish EMLR (stepwise multiple linear regression) and SMLR (enter multiple
linear regression) prediction models based on the spectral response of heavy metals to
visible near-infrared bands and predicted the possibility of visible near-infrared bands in
the spatial distribution prediction of heavy metals [17]. Shi et al. (2007) used the method of
Kriging interpolation to describe the spatial distribution of six heavy metals in Changxing
County, Zhejiang Province and assessed the risk of heavy metal pollution [18]. Mapping
the distribution of heavy metal concentrations in the study area provides a more visual
and detailed understanding of the spatial distribution between heavy metal concentrations
and industrial activities, which can be applied to prevent soil contamination and, in some
cases, to use microorganisms to cleanse the soil of heavy metals and scientifically restore
soil health [19,20].

In summary, most of the areas of research for remote sensing inversion of soil heavy
metals have focused on mining areas and river coasts, while the inversion of heavy metals
content in the Tai Lake is rarely involved. Tai Lake is located near the Yangtze River Delta
region, one of the most economically developed regions in China, and its urbanization and
industrialization have accelerated the accumulation of heavy metals in the soil, posing a
potential hazard to the soil. Based on fieldwork, the study area is relatively well-developed
in terms of industry, especially pottery production. Heavy metal content monitoring
can measure the impact of industrial activities on the soil, which provides important
information for scientific soil protection. Multispectral data has the advantages of low cost
and availability. This study used a Sentinel-2 satellite image, and the image has a spatial
resolution of up to 10 m in the B2, B3, B4, and B8 bands. The spectral data of Sentinel-2
is mathematically transformed to reduce the spectral characteristics of non-heavy metals
and highlight the spectral characteristics of soil heavy metals. The selection of the model
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affects the accuracy of heavy metal prediction, and partial least square regression (PLSR)
and back propagation neural network (BPNN) models are used as soil heavy metal content
prediction models [21].

In this study, we analyze spatial distribution characteristics of heavy metals in the
study area based on 971 measured samples in Tai Lake, Jiangsu Province, including Cd,
Hg, As, Pb, Cu, and Zn, and analyzed the correlation between spectral factors and the six
heavy metals. We selected the target heavy metals with high correlation and established
inversion models by combining spectral data from Sentinel-2 images. The main research
contents are as following: (1) To analyze the distribution characteristic of six heavy metals
and compare with the background value of heavy metals in Jiangsu Province and the
national soil pollution screening value. (2) To analyze the correlation between heavy metals
and Sentinel 2 spectral factors, and select the target heavy metals with high correlation
as the input factors of the inversion model. (3) To establish the inversion model by using
the method of partial least squares model (PLSR) and back propagation neural network
model (BPNN), and evaluate the accuracy of the model. (4) To predict the content of heavy
metals by combining with the optimal inversion model, analyzing the spatial distribution
characteristics of the target heavy metals in the region, and the relationship between
high-value areas of heavy metals and factory distribution.

2. Materials and Methods
2.1. Sample Collection and Chemical Analysis

As shown in Figure 1, the research area is located in Tai Lake, Jiangsu Province. Soil
sampling was carried out near Tai Lake. There are six soil types in this study region, includ-
ing Anthrosols, Ferralisols, Luvisols, Skeletol primitive soils, Dark Semi-hydromorphic
soils, and Hydromorphic soil. Most soil samples (783, 80.6%) were distributed in An-
throsols, followed by Ferralisols (101, 10.4%), Luvisols (23, 2.3%), Skeletol primitive soils
(18, 1.8%), Dark Semi-hydromorphic soils (7, 0.7%), and Hydromorphic soils (0, 0%).
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Figure 1. Spatial distribution of measured samples and soil type in the study area.

According to the grid layout, a total of 971 sampling points were collected during
2010–2011, included 854 farmland samples, 98 dryland samples, and 11 paddy land samples,
and accurate longitude and latitude coordinates were recorded with GPS. Overall, most
of the sampling points were distributed on the farmland of the research area. To ensure
that the modeling set and the validation set represented the statistical characteristics of
the sample, we used the random function to randomly extract a 2:1 scale from the 971 soil
samples, using 649 as the modeling set and the remaining 322 as the validation set.

During the sampling process, the soil sampling depth was 0~20 cm. To avoid the
effects of soil which were transferred from somewhere else or disturbed by some human
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activities, as well as newly disturbed soil layers, five-point sampling methods were used to
remove surface debris and gravel in the soil, retaining 1kg of polyethylene self-capsuling
soil sample for each collected sample. In this study, the contents of six heavy metals, Cd,
Hg, As, Pb, Cu, and Zn, were determined. Cd and Pb in soil were determined by graphite
furnace atomic absorption spectrometry (Optima 2100DV, Perkin Elmer, USA), Cu and Zn
in soil were determined by flame atomic absorption spectrometry (Optima 2100DV, Perkin
Elmer, USA), Zn, Hg, and As in soil were determined by atomic fluorescence spectrometry
(Primus-II, Rigaku Corporation, Japan), and Cr in soil was additionally determined by
inductively coupled plasma atomic emission spectrometry (Optima 2100DV, Perkin Elmer,
USA). The process of measuring heavy metal concentration is consistent with Hou [22].

2.2. Image Data Source and Processing

The study utilized cloud-free high-quality sentinel-2 multispectral images (2015.12)
from the United States Geological Survey (https://earthexplorer.usgs.gov/ accessed on
7 November 2021). Sentinel 2 is a high-resolution multispectral imaging satellite carrying a
multispectral imager (MSI) for land monitoring, providing images of vegetation, soil, and
water cover, inland waterways and coastal areas, and emergency relief services. Given that
most crops in the farmland have been harvested and the surface vegetation is sparse in
winter, the image data chosen was 25 December 2015. ENVI 5.3 radiated Sentinel 2 satellite
imagery, atmospheric correction, and other pretreatments were used to obtain the actual
reflectance of the surface. Because the imaging of the study area contains plant spectral
information and the spectral characteristics of heavy metals in the soil were relatively weak,
to eliminate soil background noise and enhance the information related to heavy metals
in the spectral band, this study considered the results of spectral bands, their number
transformation, and NDVI factors as spectral factors to be modeled [23,24].

2.3. Model and Method
2.3.1. Selection of Modeling Factors

The selection of modeling factors is determined by the correlation between the spectral
band and heavy metal content, where Ln represents the logarithmic operation on the
band. The correlation coefficient represents the ability of the spectral characteristic to
explain the content of heavy metals. The higher the correlation coefficient, the stronger the
interpretation ability. By calculating the correlation coefficient between each spectral factor
and the soil heavy metal content, the target heavy metal and spectral factor variables were
selected as the input variables of the model.

2.3.2. Model Method

The partial least squares regression method was used to establish the relationship
between spectra and soil variables. The partial least squares method is the most widely
used method in multivariate correction and is based on a latent variable decomposition
of two blocks of variables, containing spectral data and soil properties, respectively. The
purpose of the method is to identify a small number of latent factors that can be effectively
predicted and used. The model of PLSR (partial least square regression) has the advantages
of principal component analysis, typical correlation analysis, and ordinary multivariate
linear regression, which overcomes multiple linear correlations between independent
variables and makes the model more stable and accurate [25].

BPNN (back propagation neural network) is a kind of artificial neural network. It
is based on the error reverse propagation algorithm. The learning process consists of the
forward propagation of the input signal and the reverse propagation of the error. The
training process includes constantly adjusting the connection weight until the output error
reaches the required standard [26]. To build the model, a 3-layer neuron network is used,
including the input layer, hidden layer, and output layer; the Sigmoid transfer function
is used for the hidden layer neurons and the Purelin function is used for the output layer.
In this paper, the previously selected modeling factors were used as the learning input

https://earthexplorer.usgs.gov/
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samples of the network model, and the corresponding heavy metal content was used
as the expected output of the learning matrix. By repeatedly learning and training the
correspondence between input and output sequences, and continuously adjusting the
input and hidden layers of the network model, the mapping relationship between remote
sensing reflectance and heavy metal content can be established [21].

2.3.3. Spatial Interpolation Method

We used the best inversion model to estimate the content of heavy metal of each
pixel by combining the spectral band, and then used the Kriging and IDW interpolation
to obtain the content of heavy metal for the whole study region. Kriging interpolation is
the core of local statistical interpolation. This interpolation method is based on the spatial
characteristics of heavy metal content to determine the weight of the sampling point on
the predicted value. It gives an overall optimal unbiased estimate of the content of heavy
metals in the region. Kriging interpolation is used to interpolate the research area based on
the measured sample data [27].

IDW stands for Inverse Distance Weight Interpolation. IDW interpolation is an accu-
rate interpolation method, which determines weighting according to the distance impact.
The more significant the distance weighting coefficient, the more extensive the impact range
of the local maximum, and the larger the prediction range of the contaminated area [28,29].

2.3.4. Model Evaluation Method

The partial least squares regression model and BP neural network model of the target
heavy metals and spectral factors were established by MATLAB R2020a. The R correlation
coefficient and the root mean square error of RMSE were used as the evaluation parameters
of the model [30]. The closer R is to 1, the more stable the model is and the better the
fit is. The RMSE indicates the model’s predictive power. The larger the coefficient of
determination R of the model, the smaller the root mean square error RMSE, and the more
accurate the model inversion is judged. According to the R correlation coefficient, screening
the target heavy metal and spectral factors allows the choice of optimal inversion model
of the target heavy metal. The error judgment model accuracy is verified between the
measured value of the sample point and the best model inversion value.

The following parameters are used to evaluate the accuracy of the model:

R =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(1)

RMSE =

√
1
n ∑n

i=1

(
Yi − Yi

)2 (2)

where n is the number of samples, Yi represents the real value of heavy metal content of
the samples, and Xi is the predicted value of heavy metal content of the ith samples. Xi
represents the real value of the band of the ith samples, and i is the predicted value of the
band of the ith samples.

3. Results and Discussion
3.1. Analysis of Heavy Metal Characteristics

Statistical analysis of six heavy metals in 971 soil samples in the study area showed in
Table 1. The most extensive content of heavy metals was Cu, with a maximum of 593 mg/kg
and an average of 29.348 mg/kg. The smallest content of heavy metals was Hg with a
minimum value of only 0.018 mg/kg, and an average value of 0.132 mg/kg. Comparison
of the content of heavy metal with the background values of Jiangsu Province showed the
average values of Hg and As were smaller than that of Jiangsu Province, while the average
content of the other four heavy metals (Cd, Pb, Cu, Zn), exceeded the background value of
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Jiangsu Province, indicating that the content of heavy metal elements in the soil had been
affected by human activities.

Table 1. A statistical contrast of the contents of six metals with national data (mg/kg).

Element Cd Hg As Pb Cu Zn

Maximum 3.450 1.340 18.900 146.000 593.000 582.000

Minimum 0.028 0.018 2.410 21.100 14.400 37.500

Mean 0.216 0.132 8.625 28.003 29.348 72.574

Standard deviation 0.177 0.081 2.249 9.629 21.800 27.803

Coefficient of variation (%) 81.9 61.3 26.0 32.1 74.2 38.3

Background value 0.13 0.29 10 26.2 22.3 62.6

Chinese soil criteria 0.3 0.5 40 80 150 200

Measured distribution maps of heavy metal content were made by ArcGIS10.5 soft-
ware. Compared with the national soil pollution standards [31], the average value of all six
heavy metals content was less than the national soil pollution standard; e.g., the average
value of Hg element was only one-third of the national standard value. The maximum
value of As element was also lower than the national standard value, indicating that the soil
quality was sufficient to meet the needs of agricultural production and human activities.

The coefficient of variation is the ratio of the standard deviation from the average
value of the original data, which was used to analyze the discreteness of the data. The larger
the value, the greater the variation of the data. The variation of the content of six heavy
metals in the surface soil was sequential: Cd > Cu > Hg > Zn > Pb > As. It was generally
recognized that the coefficient of variation reflects the degree of dispersion. When the
coefficient of variation is between 10% and 100%, medium variability is indicated, so the
content of all six types of heavy metals in the soil was of medium variability. The moderate
variation with a large coefficient of variation indicates that the internal structure of the
measured data may show a strong moderate variation influenced by human activities and
other factors.

Figure 2 shows that different heavy metals had different spatial distribution character-
istics. The content of Cd in the western part of the research area was relatively high, and
the overall distribution increased from east to west; the content of Hg was higher in the
eastern and western parts of the study area; the high value of As was mainly distributed in
the south of the study area; the content of Pb was relatively high in the eastern and western
parts of the research area; the relative height of Cu was mainly distributed in the northwest
of the research area; and the relatively high value of Zn was distributed primarily on the
western and northeast parts of the research area.
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3.2. Determine the Factors of Modeling

Pearson correlation coefficient was used to evaluate the correlation between heavy
metal content and spectral factors, and the results are shown in Table 2.

Table 2. Correlation analysis of six metals with bands.

Cd Hg As Pb Cu Zn

B1 0.045 0.212 ** −0.370 ** −0.071 0.089 0.013

B2 0.040 0.248 ** −0.385 ** −0.071 0.033 0.013

B3 0.034 0.222 ** −0.401 ** −0.085 0.013 0.014

B4 0.046 0.228 ** −0.321 ** −0.030 0.035 0.029

Note: * p < 0.05, ** p < 0.01.

As shown in Table 2, it was concluded that the As correlation coefficient was highest
in R (0.3–0.5), followed by Hg (0.2–0.3), and the remaining four heavy metals (Cd, Pb,
Cu, Zn) were low (R < 0.1). Therefore, the relatively relevant As and Hg elements were
selected as the target heavy metals. The correlation between As, Hg, and spectral factors
was analyzed, and is shown in Table 3.

From Table 3, the correlations of target heavy metals with B6~B8 and B8A were lower
than those with B1~B5 bands. The correlations between the target heavy metals and the
logarithmic operation of the spectral factors were all improved. The spectral factors were
negatively correlated with As and positively correlated with Hg, and the correlations were
all at the p < 0.01 confidence level. The correlation coefficient between the target heavy
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metal and lnB1~B4 was higher than that with spectral reflectivity B1~B4, which was also
related to NDVI. The results showed that the content of heavy metals in the study area
had a good correlation with spectral factors B1~B4 and lnB1~lnB4, indicating that spectral
factors B1~B4, LnB1~LnB4, and NDVI could be used to predict the soil heavy metal content
and spatial distribution.

Table 3. Correlation analysis of target metals with spectrum indicators.

B1 B2 B3 B4 B5 B6 B7 B8 B8A

As −0.370 ** −0.385 ** −0.401 ** −0.321 ** −0.245 ** −0.067 −0.035 −0.02 −0.003
Hg 0.212 ** 0.248 ** 0.222 ** 0.228 ** 0.156 ** 0.057 0.053 0.057 0.055

LnB1 LnB2 LnB3 LnB4 NDVI
As −0.397 ** −0.430 ** −0.431 ** −0.342 ** −0.127 **
Hg 0.222 ** 0.254 ** 0.231 ** 0.234 ** 0.128 **

Note: * p < 0.05, ** p < 0.01.

3.3. Model Accuracy Evaluation

A total of 649 soil samples were randomly extracted from 971 soil samples on a
2:1 scale as modeling sets. PLSR and BPNN models were established with target heavy
metals and spectral factors as model input variables.

As shown in Table 4, the results showed that for the modeling set of As elements based
on the PLSR model, R was between 0.431 and 0.462, and RMSE was between 1.943 and
1.976 (see Table 4); the verification set was between 0.498~0.526, and RMSE was between
2.007 to 2.045. The correlation coefficient difference based on the original band modeling
and adding the NDVI factor model was only 0.001, which was very small: the NDVI
factor cannot significantly improve the accuracy. For the Hg element modeling set, R was
between 0.257 and 0.268, and RMSE was between 0.062 and 0.066; the verification set
was between 0.149 and 0.161, and RMSE was between 0.105 and 0.191. Similarly, NDVI
cannot significantly improve the accuracy of mercury elements. For the PLSR prediction
models of As and Hg elements, both are logarithmically calculated by spectral factors
as input variables with higher model accuracy than spectral bands. The target heavy
metal prediction model established by spectral factors LnB1~LnB4 and NDVI had the
highest accuracy.

Table 4. The results of partial least square regression (PLSR) between heavy metal concentrations
and spectrum indicators.

Modeling Factors
Modeling Set Verification Set

R RMSE R RMSE

As

B1–B4 0.431 1.976 0.502 2.045
B1–B4 & NDVI 0.432 1.976 0.498 2.048

LnB1–LnB4 0.460 1.945 0.524 2.009
LnB1–LnB4 & NDVI 0.462 1.943 0.526 2.007
B1–B4 & LnB1–LnB4 0.446 1.961 0.536 1.999

Hg

B1–B4 0.257 0.062 0.155 0.105
B1–B4 & NDVI 0.263 0.062 0.149 0.125

LnB1–LnB4 0.259 0.062 0.155 0.191
LnB1–LnB4 & NDVI 0.268 0.066 0.161 0.105
B1–B4 &LnB1–LnB4 0.260 0.062 0.152 0.105

As shown in Table 5, based on the BP model, for the As modeling set, R ranged from
0.482 to 0.530, and RMSE was 1.860~1.909; for the verification set, R was 0.467~0.532, and
RMSE was 1.999 to 2.094. For the Hg element modeling set, R was between 0.263 and
0.318, and RMSE was between 0.061 and 0.062; the verification set was between 0.149 and
0.186, and RMSE was between 0.105 and 0.288. Compared with the five PLSR models, the
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correlation between the BP model of the target heavy metal content was correspondingly
improved, and the accuracy was relatively high.

Table 5. The results of back propagation neural network (BPNN) between heavy metal concentrations
and spectrum indicators.

Modeling Factors
Modeling Set Verification Set

R RMSE R RMSE

As

B1–B4 0.530 1.860 0.507 2.048
B1–B4 & NDVI 0.513 1.865 0.532 1.999

LnB1–LnB4 0.519 1.874 0.467 2.097
LnB1–LnB4 & NDVI 0.482 1.870 0.499 2.054
B1–B4 & LnB1–LnB4 0.497 1.909 0.525 2.006

Hg

B1–B4 0.273 0.062 0.149 0.105
B1–B4 & NDVI 0.318 0.062 0.177 0.105

LnB1–LnB4 0.263 0.061 0.163 0.105
LnB1–LnB4 & NDVI 0.269 0.062 0.156 0.288
B1–B4 & LnB1–LnB4 0.292 0.061 0.186 0.105

The larger the decision coefficient and the smaller the root mean square error, the
more stable and accurate the model is. It can be concluded that the model with the highest
accuracy of As was the BP model established by the B1~B4 spectral factor, R = 0.530; the
model with the highest accuracy of Hg was the BP model based on B1~B4 and NDVI
spectral characteristic, R = 0.318. For the As element, the relative error of modeling was
0.201, and for the Hg element, the relative error was 0.498. The PLSR model and BP model
can establish the target metal content and spectral reflection factor to predict the metal
content of the study area. It can be shown from the evaluation parameters of the model
that the modeling and prediction ability of the BP model was high, and it had a good
interpretation ability of the target soil heavy metals.

Based on the verification set, the two models were accurately verified. The model was
inverted and the predicted value of the target heavy metal was obtained. The scatter plot
was drawn by the measured and predicted values of the verification set. As shown in the
following Figure 3, As elements were generally distributed near the 1:1 trend line (0.478),
while for Hg elements, the measured and predicted value distributions were discrete (0.452)
compared with the distribution of As element. This showed that the BP neural network
model had a good interpretation ability for the predicted value of heavy metals. The model
can invert and study the content of heavy metals in the target area.
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3.4. Spatial Distribution of Heavy Metal Content

The evaluation parameters R and RMSE of the model accuracy only reflected the
difference between the measured and predicted value of the target heavy metal in the study
area and the accuracy of establishing the model. Therefore, the spatial distribution of heavy
metal content was mapped to analyze the spatial change trend of heavy metal content.

We used the method of Kriging interpolation and IDW interpolation to analyze the
distribution of heavy metal content in the region. A prediction map of heavy metal content
in the study area was obtained. The interpolation results are shown in Figure 4; comparative
analysis of two spatial interpolation results, Kriging interpolation and IDW interpolation,
show the spatial change trend of the heavy metal elements. As elements tended to increase
from north to south, and Hg elements were concentrated in the eastern and western parts
of the research area. IDW interpolation can highlight the local spatial characteristics of
heavy metals more than Kriging interpolation. The northeast and northwest regions of the
study all had local maximums, and for the Hg element, there were local maximums in the
northeast of the research area. The reason for the high-value distribution in the study area
was analyzed: the relatively high values of the four heavy metals were mainly distributed
in the southwestern part of the eastern study area. The distribution law was consistent
with the environment of the field sampling point.
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3.5. Relationship between Heavy Metal Agglomerations and Factory Distribution

This study used Tuxin Earth to obtain the spatial distribution of factories in the study
area. The factory distribution was shown in Figure 5. The factory was distributed at the
river flow in the west of the research area, along the lake area in the southeast, and a small
number in the south. Most of the factories in the research area were located along lakes and
rivers. The high-value area of arsenic was partially consistent with the factory distribution
along the lake area in the southeast of the research area, and a small number of high-value
distributions in the northern part of the study area. The spatial interpolation distribution
of mercury elements was relatively consistent with that of factories. The high value of
mercury was distributed where rivers pass and along lakes. The high-value distribution
law of heavy metals was consistent with the actual spatial distribution of factories.
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4. Conclusions

This study focused on 971 measured samples of heavy metal elements in Tai Lake,
Jiangsu Province, China. None of the six heavy metals exceeded the national soil pollution
screening value, and the relatively high values of these four heavy metals (Cd, Pb, Cu, Zn)
were mainly distributed in the factory area in the western and southeast in the study area.
We analyzed the correlation between the heavy metal elements and the spectral factors
from Sentinel-2 images and selected As, Hg, and B1-B4 band as the input elements of the
inversion model with a high correlation. We established heavy metals inversion models
based on the method of PLSR and BPNN, and the BPNN model had a higher inversion
accuracy (R = 0.53 of As and R = 0.318 of Hg) than PLSR. We used the BPNN to invert
the concentration of heavy metal for those no sample region, and the results were used to
analyze the spatial difference by combining measured samples. The results indicated that
the As element showed an increasing trend from north to south due to the distribution
of dense factories in the southern region of the study area; the overall concentration
of the Hg element was low, and the relatively high content area was distributed in the
eastern and western parts of the research area. The high-value distribution law of heavy
metals had a high relationship with the actual spatial distribution of factories, which
suggested that human activities perhaps were the primary source of heavy metal. It is
worth recommending that the relationship between human activities and the content of
soil heavy metal should keep investigating in further work.
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