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Abstract: Urban air has its typical structural characteristics. With the continuous optimization of
urban human settlement indicators, the key issue and single system of “air quality” in urban human
settlements needs to be further discussed. Based on air conditions, this paper attempts to visually
measure the spatial-temporal distribution of human settlements in 283 prefecture-level cities in China
using ArcGIS and Matlab and tries to reveal the influencing mechanisms: (1) There is no significant
difference between the average of the comprehensive score of human settlements in 6 years. The
overall level of those in all cities decreases from 0.6581 to 0.6004 year by year, and the average
level order in the seven regions of China is Southern China (0.7310) > Southwest China (0.6608) >
East China (0.6515) > Northeast China (0.6496) > Northwest China (0.6049)> Central China (0.5901)
> North China (0.5565). (2) The global Moran’s I index of China’s human settlements is between
0.3750–0.7345, showing a positive spatial correlation, and the comprehensive development level has
the characteristics of local spatial convergence of low-value clusters in the middle and lower reaches
of the Yellow River and high-value clusters in the south coast and Heilongjiang Province. (3) The
spatial econometric model tests the influencing mechanism. There is a significant spatial positive
correlation between science and technology investment in each city. The urbanization rate, the degree
of advanced industrial structure, and the urban average elevation have a certain spatial spillover,
showing a negative correlation. Science and technology investment and the degree of advanced
industrial structure have the greatest impact.

Keywords: air quality; human settlements; spatial-temporal differentiation; spatial econometric
models; China’s prefecture-level city

1. Introduction

According to Maslow’s hierarchy of needs, the first level need emphasizes the basic
survival and life of human beings, including resources of air, water, ecology, and envi-
ronment. Compared with water and food, air is the biggest consumable of the human
body. Air is needed by everyone; its quality not only affects people’s health, but is also the
most intuitive and basic factor for them in choosing concentrated settlements [1,2]. Human
settlements are a complex system, and human dwelling districts are places where complex
systems interact with human beings [3]. UN-Habitat reports that by 2050, two-thirds of
the world’s population is expected to live in urban areas. Cities can efficiently accommo-
date a large number of people in a relatively limited space, and the quality of urban air
can directly affect residents’ health, economic investment, and social development [4,5].
Therefore, it is necessary to adjust the urban base intuitively and directionally through
the research on human settlements based on air quality, so as to make new progress in
ecological civilization as well as achieve sustainable, green, and sound urban development
during the 14th Five-Year Plan.

Studies on how to improve the quality of urban residents’ lives, and the influencing
factors of residential areas, have become the main focus of livable city research since 1970.
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After 1980, with the continuous improvement of the idea of sustainable development,
Georges and others have studied indicator systems of urban sustainable development
in Western developed countries, and proposed the selection strategy of sustainable de-
velopment indicators [6]. Henry Rasch believes that we should focus on the long-term
livability of cities, and the nature of a livable city proposed by Kaserati includes “living”
and “ecological” sustainability [7]. Timothy analyzes it from the perspective of ordinary
citizens and believes that a better environment for residents is one of the factors, and Evans
proposes that “livability” includes two definitions: one is suitable for residents, and the
other is meeting the requirements of sustainable development [8]. In the Introduction to
Human Settlement Science, Wu Liangyong proposes that a “sustainable and pleasant living
environment is the goal of human settlements science”. In the research of geography and
human settlements, we must take sustainable development as the link [3].

Dahiya links the new urban agenda with key global sustainable and inclusive urban
development issues, forecasting emerging trends in urban sustainability [9]. Shaparev uses
annual data on environment in sustainable development indicators developed in the United
States and Russia [10]. Corbane uses data, such as the global human settlements urban
center database, to quantify and analyze the changes in greenness in urban centers, which
are very important to achieve the UN sustainable development goal [11]. Scholars studying
sustainable development from different perspectives of human settlements, embody the
concept of creating a low-carbon or even zero-carbon emission city in practice, and have
finally turned to a new field: creating a sustainable city. In order to optimize the regulation
and control of the sustainable development of urban human settlements, it is necessary to
establish urban human settlements evaluation indicator system. Because it is an important
basis for the comprehensive evaluation of the sustainable development stage, degree, and
quality of urban human settlements [5].

Scholars at home and abroad use different methods to explore the distribution of air
quality [12,13] and analyze the dynamic trends and change rules of different air pollu-
tants [14]. Natural environmental factors, such as topography, green space coverage, and
meteorological conditions, can have a certain impact on air quality in urban areas [15].
Direct consumption of fossil fuels and transportation energy [16,17] and urban industrial
scale and structure [18] can increase the concentration of pollutants. In addition, urban
population size [19], age characteristics [20], family types [21], and urbanization levels [22]
also have different effects on pollution emissions and restrict the development pattern of
settlements [23]. The above air research exists in many residential environment evalua-
tion systems: Wu calculates the regional climate comfort index by using meteorological
conditions, such as air temperature and relative humidity [24]. Yang establishes the com-
prehensive evaluation system of green human settlements and ecological environment
elements, including atmospheric, urban form, and temperature environment [25,26]. Tang
constructs a comprehensive evaluation system focusing on living conditions, urban eco-
logical environment, and social economy [27]. Sykes attaches importance to all aspects
of urban livable environment, including the environment of socio-economy, living, and
ecology [28].

The balance between the built residential environment and the natural environment is
a key link in urban planning and construction, and it is also an important foundation and
guarantee for improving the well-being of residents [29–31]. Evaluation of urban human
settlements at home and abroad mostly uses the comprehensive index system to measure
the regional advantages and disadvantages. Among them, the meteorological data of
urban human settlements are important for sustainable development [32] because they can
quantify and analyze the change of urban human settlements greenness, as well as evaluate
the urban disaster resilience and urban environmental cleanliness [11]. Moreover, the
atmospheric environment also exists in the evaluation factor of urban systems [33], which
can quantitatively evaluate the quality and the livability of urban natural and cultural
environments [34,35], theoretically guiding the construction of a livable city [36].



Land 2021, 10, 1207 3 of 22

With the progress of geography and related disciplines, many modern remote sensing
and computer technologies are applied to human settlements assessments to provide basic
support for environmental quality assessment. In recent years, with the combined data of
satellite image, space, and other multi-sources as the frontier, mainstream methods, such as
fuzzy mathematics, fuzzy measure theory, and vector operator have been adopted. Useful
information such as disaster prevention and planning, surrounding regional linkage, and
management policies have been determined, promoting the establishment, evaluation, and
model discussion of human settlements system indicators [37–39]. The correlation between
air quality and surrounding areas makes the link between human settlements and the
surrounding cities attract people’s attention [40,41]. Scholars at home and abroad combine
traditional and emerging methods and technologies, formulate evaluation indicators, and
establish mathematical models to conduct research, evaluation, and prediction of spatial-
temporal differences [42,43]. They focus on urban planning and future research from the
perspective of livability and the sustainability of human settlements, so as to study the
relationship between air quality and urban health [43,44].

At present, there are few studies on examining an important issue from a single
perspective, formulating targeted policies and measures to serve a wide range of social
groups in order to protect existing urban bases [44–46]. To sum up, in order to effectively
improve the health of residents and the quality of living atmosphere, as well as solve the
problems of human settlements, this paper takes the basic needs of urban residents as the
core and selects the air-oriented evaluation system, which is a unique indicator combi-
nation type, in order to study the spatial-temporal differentiation of human settlements
in 283 prefecture-level cities in China. It also analyzes these influencing factors through
the spatial dependence and spillover effect of geographical elements, so that decision-
makers can have the most intuitive understanding of the distribution and determinants of
air livable cities, and provide a new perspective for the subsequent evaluation of urban
livable environments.

2. Data Sources and Research Methods
2.1. Data Sources

According to the principle of spatial consistency and the comparison of administrative
division directories published by the Ministry of Civil Affairs over the years, 283 prefecture-
level Chinese cities in 2013 are consolidated as sample areas (Figure 1). In order to explore
the spatial-temporal differentiation of human settlements and influencing factors from
2013 to 2018, the data used consider the scientificity, availability, and practicability of the
indicators, and data sources are as follows (Table 1). Some missing values are completed
by SPSS regression analysis.

2.2. Research Methods
2.2.1. Weight Assignment

As an objective weight method, CRITIC determines the objective weight of indicators
based on two basic concepts. The first is contrast strength between various indicators.
The standard deviation is used to show the gap between values of indicators in multiple-
evaluation schemes. There is a positive correlation between the value of standard deviation
and the degree of the gap. The second is conflict among indicators. The index weight is
calculated through index data fluctuation or their correlation. If there is an obvious positive
correlation, it shows that their conflicts are not obvious [47]. AHP combines qualitative
analysis with quantitative analysis. It mainly depends on the experience of decision-makers
to judge and distinguish relative importance of indicators to give reasonable weights to
various indicators. It also sorts the advantages and disadvantages of various schemes
according to the size of the weights [39].
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Table 1. Data sources (accessed on 2 September 2021).

Data Type Specific Variables Data Sources

Administrative map Urban planning Standard map service system (http://bzdt.ch.mnr.gov.cn/)

Air quality
monitoring data AQI, SO2, NO2, PM2.5, PM10, CO, O3

1. Air quality online monitoring and analysis platform
(https://www.aqistudy.cn/);

2. Air quality history data
(https://aqicn.org/city/dalian/cn/)

3. Atmospheric Composition Analysis Group: Surface PM2.5
(http://fizz.phys.dal.ca/~atmos/martin/?page_id=140)
4. Earth Observing System Data and Information System

(https://sedac.ciesin.columbia.edu/data/set/sdei-global-
annual-gwr-pm2-5-modis-misr-seawifs-aod/data-

download)

Meteorological data Temperature, rainfall, wind speed,
and humidity

National Meteorological Science Data Center
(https://data.cma.cn/data/cdcindex/cid/0b9164954813c5

73.html)

Urban social and economic
development index data

Evaluation index: highway freight
volume, green coverage rate, second

output value, etc.
Driving mechanism: urbanization

rate, industrial structure, education
expenditure, etc.

Urban Statistical Yearbook, Water Resources Bulletin,
Environmental Quality Report, China Environmental
Statistics Yearbook, China Energy Statistical Yearbook,

Bulletin on National Economic and Social Development
(https://data.stats.gov.cn/;

https://navi.cnki.net/knavi/yearbooks/index)

http://bzdt.ch.mnr.gov.cn/
https://www.aqistudy.cn/
https://aqicn.org/city/dalian/cn/
http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod/data-download
https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod/data-download
https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod/data-download
https://data.cma.cn/data/cdcindex/cid/0b9164954813c573.html
https://data.cma.cn/data/cdcindex/cid/0b9164954813c573.html
https://data.stats.gov.cn/
https://navi.cnki.net/knavi/yearbooks/index
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Table 1. Cont.

Data Type Specific Variables Data Sources

Topographic relief Average urban elevation

Geospatial data cloud
(http://www.gscloud.cn/sources/index?pid=302&ptitle=

DEM%20%E6%95%B0%E5%AD%97%E9%AB%98%E7
%A8%8B%E6%95%B0%E6%8D%AE&rootid=1) DEM digital

elevation data, with a resolution of 30 m

Residential activity data Population density and resident
activity intensity

1. Fifth and sixth census data
(https://navi.cnki.net/knavi/yearbooks/index)

2. Night light value
(https://www.ngdc.noaa.gov/eog/dmsp.html)

3. Urban Statistical Yearbook

This paper makes a comprehensive evaluation with research based on the volatility,
correlation, and size of data. Using CRITIC and AHP, the calculation results are fused to
obtain the optimized index weight. It can effectively reduce the one-sidedness of using
only one method to determine the weight and make up for the lack of information reflected
by the two (Table 2).

The analytic weight of AHP is Bj, and the objective weight is Wj:

Uj =
WjBj

∑n
i=1 WjBj

(1)

Table 2. Comparison of the CRITIC method and AHP method.

Comprehensive Evaluation Data Fluctuation Correlation between Data Figure Size

AHP No No Yes
CRITIC Yes Yes No

Human settlements cover the natural and man-made sources of air, which coincide
with the natural and humanistic elements. Based on this, this paper considers the elements
of residents’ perception of air conditions, and determines the natural and humanistic
elements as the indicators for evaluating the quality of human settlements. When selecting
the factors, the scientificity, availability, and practicability of them are mainly considered.
Based on the research of domestic and foreign scholars, two primary indicators, five
secondary indicators, and twenty-five tertiary indicators are preliminarily established. The
indicators are as follows (Table 3):

Table 3. Evaluation indicators and comprehensive weight of human settlements based on air quality from 2013 to 2018.

Target Layer Criterion Layer Index Level Criterion Attribute

Natural
environment

Meteorologic
condition

Annual average temperature (◦C) *
Average annual relative humidity (%) *

Average annual rainfall (mm) +
Mean wind speed (m/s) *

Air pollutants

AQI −
PM2.5 (µg/m3) −
PM10 (µg/m3) −
NO2 (µg/m3) −
SO2 (µg/m3) −
CO (µg/m3) −
O3 (µg/m3) −

http://www.gscloud.cn/sources/index?pid=302&ptitle=DEM%20%E6%95%B0%E5%AD%97%E9%AB%98%E7%A8%8B%E6%95%B0%E6%8D%AE&rootid=1
http://www.gscloud.cn/sources/index?pid=302&ptitle=DEM%20%E6%95%B0%E5%AD%97%E9%AB%98%E7%A8%8B%E6%95%B0%E6%8D%AE&rootid=1
http://www.gscloud.cn/sources/index?pid=302&ptitle=DEM%20%E6%95%B0%E5%AD%97%E9%AB%98%E7%A8%8B%E6%95%B0%E6%8D%AE&rootid=1
https://navi.cnki.net/knavi/yearbooks/index
https://www.ngdc.noaa.gov/eog/dmsp.html
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Table 3. Cont.

Target Layer Criterion Layer Index Level Criterion Attribute

Cultural
environment

Air control

Green and cover rate in the built-up area (%) +
Per capita park green area (m2) +

Number of days with good or above Grade 2 air quality (days) +
Industrial smoke (powder) dust treatment rate (%) +

Economic
development

Highway passenger Volume (10,000 persons) −
Highway freight volume (10,000 tons) −

Number of operating vehicles (vehicles) with bus
(electric) vehicles +

Construction of urban housing (10,000 square meters) −
The second output value accounted for the GDP proportion (%) −

Urban population density (people/km2) −

Energy
consumption

Total gas supply (artificial and natural gas) (ten thousand
cubic meters) −

Total LPG gas supply (ton) −
Dust industrial dust emission per capita (ton) −

Per capita industrial sulfur dioxide emissions (ton) −
Note: The nature of each indicator is relative to the evaluation target, + refers “positive”, and higher values mean the better. − refers
“negative”, and lower values mean the better. * refers to moderation, and moderate values are fine. When the index value is less than the
moderate value, it conforms to a positive index. Moreover, when it is greater than the moderate value, it conforms to an inverse index.

2.2.2. Spatial-Temporal Differentiation Measurement Model

Global spatial autocorrelation is used to analyze the overall spatial distribution mode
and state of urban human settlements in China. It can accurately reflect whether there are
random, clustered, or discrete spatial distribution between cities and their surrounding
areas. This paper uses the Moran’s I index to measure whether there is autocorrelation of
human settlements in prefecture-level cities in China [48].

Global autocorrelation only evaluates the overall state of the investigation object, but
it cannot reflect the specific correlation between each region and its surrounding adjacent
regions. In order to intuitively reflect the spatial correlation of local research objects, it is
necessary to use ArcGIS spatial clustering and outlier methods (Anselin Local Moran’s I) to
analyze China’s urban human settlements, so as to intuitively observe the agglomeration
state of local regions [49].

2.2.3. Calculation Method of Influencing Factors

Based on the basic principles of spatial geography, the basic ideas of geography are
applied to the study on regional practical problems, highlighting the spatial effect in the
econometric model. Firstly, the spatial autocorrelation of human settlements is tested to
determine whether it is necessary to expand the time series data of influencing factors
into a spatial econometric model. Common models include Spatial Lag Model (SLM), also
known as Spatial Auto-regressive Model (SAR), Spatial Error Model (SEM) and Spatial
Durbin Model (SDM) [50].

(1) Spatial Lag Model (SLM): if there is a substantial correlation between geographical
elements, such as inter-regional economy, terrain, etc., it can be analyzed by adding the
spatial lag factor of the dependent variable. All explanatory variables will directly act on
dependent variables through the spatial transmission mechanism.

Yi,t = α + ρ
N

∑
j=1

Wi,jYi,t + βXi,t + Ci + µt + εi,t (2)

(2) Spatial Error Model (SEM): the spatial spillover effect formed by the region is
caused by random impact. The change of a factor not only has a certain impact on the
research object itself (direct effect), but also on its surrounding regions (indirect effect).
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Control variables are used to represent the impact of adjacent areas on the local human
settlements and to investigate whether the impact of spatial spillover is positive or negative.

Yi,t = α + βXi,t + Ci + µt + νi,t (3)

νi,t = λ
N

∑
j=1

Wi,jνi,t + εi,t (4)

(3) Spatial Durbin Model (SDM): it is also called panel spatial interaction model.
Endogenous and exogenous interactions among regions and the error terms with autocor-
relation jointly form the spatial dependence of geographical elements.

Yi,t = α + ρ
N

∑
j=1

Wi,jYi,t + βXi,t + θ
N

∑
j=1

Wi,jXi,t + Ci + µt + εi,t (5)

In (2)–(5), Yi,t is the explained variable, i is the number of spatial regions, and t is the
time dimension (i = 1, 2, . . . , N; t = 1, 2, . . . , T). Xi,t is the exogenous explanatory variable
matrix of n*k. β is the regression coefficient of the explanatory variable in the form of k*1
dimensional coefficient vector. ρ is spatial autocorrelation coefficient with a value between
−1 and 1, which is used to describe the interaction between explained variable Yi,t and that
of adjacent units. Wi,j is the non-negative space weight matrix of n*n. εi,t is the error term,
whose value is (0, σ2) and λ is the spatial autocorrelation coefficient of random error term.

Lagrange Multiplier Error, Lagrange Multiplier Lag, Robust-Lmlag and Robust-
Lmerror are used to judge the specific form of the model. If LM cannot reject SLM and
SEM, Wald tests (including Wald-Lag and Wald-Error) need to be further used to determine
whether SLM or SEM should be adopted. If both tests reject the original hypothesis, we
should use SDM. Finally, the Hausman test is used to judge whether to use a fixed effect
model or random effect model. Meanwhile, Likelihood Ratio (LR) is used to judge whether
to use individual fixed effect and time fixed effect.

3. Results
3.1. Spatial-Temporal Distribution Characteristics of Human Settlements
3.1.1. Weight Calculation

Air quality index (AQI) is not limited to natural systems. According to index attributes,
the original data of different properties are dimensionless, and the weight values of various
factors of human settlements are calculated (Table 4). The score of them is obtained
according to the corresponding weight and the grade is divided according to the value.

3.1.2. Spatial State Mode

ArcGIS is used to combine the research and calculation data with geographical space
and analyze the spatial state mode and pattern evolution of human settlements according to
seven administrative geographical divisions. It is also used to study spatial differentiation
patterns in Chinese cities every year. In terms of basic spatial pattern, North China is
always in the inferior area of human settlements, while Southern China is a prefecture-level
city, which is in the advantageous area of high-level human settlements all year round.
On the whole, the average level order of urban human settlements in the seven regions
of China is Southern China (0.7310) > Southwest China (0.6608) > East China (0.6515) >
Northeast China (0.6496) > Northwest China (0.6049) > Central China (0.5901) > North
China (0.5565) (Figure 2). The distribution characteristics of human settlements are not
consistent with those of air quality index.
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Table 4. Weight of comprehensive indicators.

Index Level
2013

Comprehensive
Weight

2014
Comprehensive

Weight

2015
Comprehensive

Weight

2016
Comprehensive

Weight

2017
Comprehensive

Weight

2018
Comprehensive

Weight

Annual average temperature (◦C) 0.019186 0.015905 0.015588 0.016971 0.015306 0.017485
Average annual relative humidity (%) 0.028799 0.024098 0.023433 0.025708 0.024022 0.026126

Average annual rainfall (mm) 0.061549 0.061281 0.057241 0.065213 0.054655 0.022764
Mean wind speed (m/s) 0.048002 0.049271 0.049399 0.049417 0.046642 0.049372

AQI 0.042333 0.055785 0.066665 0.075073 0.069676 0.062174
PM2.5 (µg/m3) 0.054970 0.042038 0.047260 0.051424 0.050467 0.048745
PM10 (µg/m3) 0.046133 0.038082 0.048433 0.053159 0.047379 0.050701
NO2 (µg/m3) 0.016445 0.012690 0.017277 0.016062 0.012890 0.015858
SO2 (µg/m3) 0.017858 0.015636 0.017651 0.019439 0.018522 0.017570
CO (µg/m3) 0.015268 0.016656 0.013529 0.016141 0.015839 0.014444
O3 (µg/m3) 0.029677 0.025952 0.033510 0.034874 0.033105 0.019983

Green and cover rate in the built-up area (%) 0.038226 0.030201 0.040336 0.037270 0.028553 0.024926
Per capita park green area (m2) 0.026577 0.026536 0.024790 0.024517 0.028778 0.032346

Number of days with good or above Grade 2 air
quality (days) 0.125913 0.157345 0.178139 0.126340 0.175582 0.203186

Industrial smoke (powder) dust treatment rate (%) 0.119979 0.118696 0.108977 0.110473 0.114188 0.118164
Highway passenger Volume (10,000 persons) 0.014979 0.016717 0.012565 0.013426 0.015028 0.013418

Highway freight volume (10,000 tons) 0.010766 0.016967 0.009485 0.010096 0.016781 0.015835
Number of operating vehicles (vehicles) with bus

(electric) vehicles 0.011740 0.011242 0.013353 0.012783 0.011584 0.012609

Construction of urban housing
(10,000 square meters) 0.022987 0.021975 0.015328 0.015610 0.024970 0.016155

The second output value accounted for the GDP
proportion (%) 0.076449 0.083266 0.074329 0.078510 0.054512 0.075008

Urban population density (people/km2) 0.102396 0.092155 0.076169 0.075524 0.086972 0.077324
Total gas supply (artificial and natural gas) (ten

thousand cubic meters) 0.006516 0.006760 0.006070 0.006361 0.006031 0.006240

Total LPG gas supply (ton) 0.008423 0.008166 0.009590 0.009891 0.008388 0.011817
Dust industrial dust emission per capita (ton) 0.017259 0.021747 0.021214 0.024329 0.018918 0.020891

Per capita industrial sulfur dioxide emissions (ton) 0.037569 0.030831 0.019666 0.031389 0.021214 0.026860
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Figure 2. The average level of urban human settlements in the seven regions of China.

ArcGIS natural discontinuity method is used to classify data and form five types of
human settlements in prefecture-level cities in China: low level, lower level, medium level,
high level, and higher level (Figure 3).

In the past six years, the Hebei, Shanxi, Shandong, and Henan provinces have ac-
counted for the largest number of cities with low-level urban human settlements. There
are no low-level cities in the coastal provinces south of Shandong. Although the overall
score decreased in 2018, the low-level cities classified in this year accounted for 8.8% of
the cities in China, the least in six years, followed by 9.15% in 2017 and up to 10.92% in
2014. In the research time series, the lower-level cities are mainly concentrated in Shaanxi,
Gansu, Ningxia, and the Central Plains, whose distribution was the least in 2016 and
the most in 2015 and 2017. A total of 60 cities account for 21.13% of China. The urban
medium-level has almost been the largest number of distribution in the past six years, but
the overall trend is declining, gradually decreasing from 31.69% to 27.82%. Most of them
are located in Northern China and the provinces flowing through the trunk of the Yangtze
River to the east of the Sichuan Province. High-level cities are classified, and concentrated
provinces begin to move southward, with the majority of provinces and regions south of
the Yangtze River. In terms of time change, 2015 accounted for 21.13%, which is the lowest
year, increasing to both sides. The most occurred in 2018, with 86 cities accounting for
30.28%. The proportion of high-level urban human settlements is relatively small, only
above the low-level, which increased from 13.38% in 2013 to 17.96% in 2015. It decreased
to 13.73% with the lowest value in six years in 2017. It is mainly distributed in coastal
provinces to the south of Zhejiang and Heilongjiang Provinces.

3.1.3. Pattern Evolution

(1) Global spatial autocorrelation

The Moran’s I estimate of the comprehensive level of urban human settlements in
2013–2018 are all positive (Figure 4). The test results in 6 years show that p-value is
about 0.0010 and z-value > 1.96, showing significant results. The level of urban human
settlements presents spatial positive correlation. Areas with the comprehensive level of
human settlements as “HH (first quadrant)” or “LL (third quadrant)” are concentrated
and distributed in space, meaning the high value is surrounded by the high value and low
value cities are also low value scoring cities.
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From 2013 to 2015, the Moran’s I value generally increased (Table 5), the spatial
distribution of human settlements showed a stronger HH and LL agglomeration pattern,
and it also showed a trend of increasing spatial agglomeration. The spatial differences of
urban human settlements were also gradually obvious. From 2015 to 2018, the spatiality
was reduced, and the level of human settlements in urban spatial units showed a certain
convergence, which is becoming increasingly prominent. It can be seen that after 2015,
the human settlements based on air quality in Chinese cities no longer exist in a single
individual form. The correlation between cities is becoming closer and closer.

Table 5. Moran’s I estimate of the level of human settlements from 2013 to 2018.

Year Moran’s I E(I) p-Value z-Value

2013 0.3750 −0.0035 0.0010 9.6651
2014 0.5994 −0.0035 0.0010 15.0378
2015 0.7345 −0.0035 0.0010 19.8175
2016 0.7190 −0.0035 0.0010 18.2767
2017 0.7090 −0.0041 0.0010 18.5267
2018 0.6710 −0.0044 0.0010 16.2060

(2) Local spatial pattern

From 2013 to 2018, the High-High cluster of urban human settlements was mainly
distributed in the southern region, and concentrated in the Heilongjiang province in some
years, which was relatively continuous in space. Low-Low cluster areas were mainly dis-
tributed in the Shanxi, Hebei, Shandong, and Henan provinces, and the cluster distribution
area was large. The number of Low-High clusters was small, with 1–2 cities each year,
mainly distributed in the Anhui and Jiangsu provinces. Except for 2016, there were no
High-Low cities. There were five cities in other years, which were distributed in the Gansu,
Hebei, Jiangsu, and Henan provinces. It can be seen that the spatial distribution of human
settlements based on air quality in Chinese cities is more dependent, and the number of
cities significantly dependent is gradually increasing. The number of Not Significant cities
gradually decreased from 199 to 152 (Figure 5).



Land 2021, 10, 1207 12 of 22

Land 2021, 10, x FOR PEER REVIEW 12 of 22 
 

(2) Local spatial pattern 
From 2013 to 2018, the High-High cluster of urban human settlements was mainly 

distributed in the southern region, and concentrated in the Heilongjiang province in some 
years, which was relatively continuous in space. Low-Low cluster areas were mainly dis-
tributed in the Shanxi, Hebei, Shandong, and Henan provinces, and the cluster distribu-
tion area was large. The number of Low-High clusters was small, with 1–2 cities each year, 
mainly distributed in the Anhui and Jiangsu provinces. Except for 2016, there were no 
High-Low cities. There were five cities in other years, which were distributed in the 
Gansu, Hebei, Jiangsu, and Henan provinces. It can be seen that the spatial distribution of 
human settlements based on air quality in Chinese cities is more dependent, and the num-
ber of cities significantly dependent is gradually increasing. The number of Not Signifi-
cant cities gradually decreased from 199 to 152 (Figure 5). 

 
Figure 5. Statistics on the number of Local Moran’s I of cities from 2013 to 2018. 

According to the spatial-temporal evolution of urban human settlements from 2013 
to 2018 (Figure 6), the spatial pattern remains unchanged as a whole, but some areas 
change between different years. Local spatial autocorrelation shows that the “cold spots” 
with low levels of human settlements are continuously distributed in the North China 
Plain in time and space, while the “hot spots” cities are continuously distributed in South-
ern China. Due to the natural factors, a large number of High-High agglomeration cities 
have been distributed in the Guangdong, Guangxi, Zhejiang, Fujian, and Yunnan prov-
inces, and scattered into a whole. Due to the low urban economy and population density 
and less energy consumption, Heilongjiang has a low score in human settlements where 
human factors affect urban air quality. Because of the guidance of policy and the improve-
ment of environmental protection awareness, the agglomeration of High-High cities is 
becoming increasingly obvious and the number of cities is also increasing. At the same 
time, Low-Low cities are also gradually increasing, spreading from Beijing, Tianjin, Hebei, 
and Shanxi to most cities in Henan, Shandong, Shaanxi, and Ningxia. North China and 
the Central Plains are densely populated with large energy consumption, rapid economic 
development, and urban construction, so human factors have a great impact on air qual-
ity. Secondly, the vegetation coverage of the natural environment is relatively low, and 
the number of days of air pollution is more than that of southern cities. Therefore, there is 
a significant agglomeration in this area. From 2013 to 2018, the number of cities in the two 
categories of spatial evolution pattern increased, showing a convergent distribution. The 
number of Not Significant cities gradually decreased. 

0 50 100 150 200 250 300

2013

2014

2015

2016

2017

2018

High-High cluster High-Low cluster Low-High cluster
Low-Low cluster Not significant

Figure 5. Statistics on the number of Local Moran’s I of cities from 2013 to 2018.

According to the spatial-temporal evolution of urban human settlements from 2013 to
2018 (Figure 6), the spatial pattern remains unchanged as a whole, but some areas change
between different years. Local spatial autocorrelation shows that the “cold spots” with
low levels of human settlements are continuously distributed in the North China Plain
in time and space, while the “hot spots” cities are continuously distributed in Southern
China. Due to the natural factors, a large number of High-High agglomeration cities have
been distributed in the Guangdong, Guangxi, Zhejiang, Fujian, and Yunnan provinces, and
scattered into a whole. Due to the low urban economy and population density and less
energy consumption, Heilongjiang has a low score in human settlements where human
factors affect urban air quality. Because of the guidance of policy and the improvement of
environmental protection awareness, the agglomeration of High-High cities is becoming
increasingly obvious and the number of cities is also increasing. At the same time, Low-
Low cities are also gradually increasing, spreading from Beijing, Tianjin, Hebei, and Shanxi
to most cities in Henan, Shandong, Shaanxi, and Ningxia. North China and the Central
Plains are densely populated with large energy consumption, rapid economic development,
and urban construction, so human factors have a great impact on air quality. Secondly,
the vegetation coverage of the natural environment is relatively low, and the number of
days of air pollution is more than that of southern cities. Therefore, there is a significant
agglomeration in this area. From 2013 to 2018, the number of cities in the two categories of
spatial evolution pattern increased, showing a convergent distribution. The number of Not
Significant cities gradually decreased.

3.2. Factors Affecting the Distribution Difference of Human Settlements

The mechanism factor of urban human settlements by traditional measurement meth-
ods assumes that the research units are independent of each other. Due to the existence of
spatial autocorrelation, the spatial measurement model is used to calculate the spatial effect
of human settlements, and the comprehensive score is taken as the explained variable (Y).
The explanatory variables are: scientific and technological investment (X1), per capita GDP
(X2), urbanization rate (X3), education level (X4), advanced industrial structure (X5), urban
average elevation (X6), and resident activity (X7) [51–55]. T = 6, N = 283. Matlab 2012 is
used for estimation. The testing process and results of three types of models with fixed
effect and random effect are as follows.
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In the fixed effect spatial lag panel data model (Table 6), the impact of five explanatory
variables (X1-science and technology investment, X2-per capita GDP, X3-urbanization rate,
X5-advanced industrial structure, X6-urban average elevation) on urban human settlements
is significant in the statistical data. In the random effect spatial lag panel data model, the
impact of four explanatory variables (X1-science and technology investment, X2-per capita
GDP, X3-urbanization rate, X4-education level) is significant. The spatial lag model of fixed
effect and random effect have passed the maximum likelihood LM Lag test and LM Error
test, indicating that there is a spatial correlation impact on urban human settlements. Both
fixed effect and random effect spatial lag models have passed the Robust LM Error test. In
the fixed effect linear regression model, p-values of science and technology investment, per
capita GDP, urbanization rate, urban average elevation and residents’ activity are greater
than 0.05. It indicates that the three regression coefficients in this model are not significant.

Table 6. Estimation results of spatial lag evaluation model for urban human settlements characteristics.

Variables
Fixed Effect Random Effect

Coefficient t-Stat Probability Coefficient t-Stat Probability

lnX1 0.001165 1.223659 0.221081 3145.404 −0.243600 0.807541
lnX2 0 −0.143361 0.886005 −0.000215 0.197614 0.843347
lnX3 −0.000059 −0.994290 0.320082 0 1.180926 0.237632
lnX4 −0.000031 −5.252817 0 0.000046 −1.138767 0.2548
lnX5 −0.015320 −7.157567 0 −0.000009 −1.037222 0.299633
lnX6 0 0.01399 0.988838 −0.002590 3.320827 0.000898
lnX7 0.001305 1.725711 0.084399 0.000013 1.781365 0.074853

W*dep.var. 0.998985 3945.387 0 0.002114 304.5005 0
teta - - - 0.265423 17.24327 0
R2 0.6728 0.8886

Sigma2 0.0025 0.0009
log-likelihood 2585.6269 3145.4038

LMlag 1781.3148 40,034.6297
R-LMlag 8029.8153 71,8143.7069
LMerror 71.323 4.0723

R-LMerror 6319.8235 678,113.1495

On the whole, LM test values of the fixed effect and random effect models under
specific matrix are positive, and most of them pass the 10% significance level test, indicating
that the results are obvious. Therefore, the existence of residual spatial autocorrelation has
been confirmed. Spatial autoregressive coefficient ρ (the coefficient of W*dep.var) and the
estimated value of variable X1 of urban human settlements are positive, and both have
passed the 1% significance probability test. It fully shows that there is a positive spatial
correlation between China’s human settlements in each city. The coefficient of W*dep.var
with fixed effect shows that the spillover effect is obvious. From the adjusted R2, Sigma2,
log-likelihood, the fixed effect spatial lag panel model is significantly weaker than that
of the random effect. Meanwhile, the spatial autoregressive coefficient of the fixed effect
lag model is significantly greater than the sub regression coefficient of the random effect
lag model.

The spatial lag model has good fitting in both fixed effect and random effect, and
the fitting of random effect is better than that of fixed effect. It is in line with the actual
considerations. In the data analysis of urban human settlements, it should be considered
that human settlements of Chinese cities are greatly affected by surrounding cities. So, the
impact of space on the city cannot be ignored when analyzing urban human settlements.

By analyzing the regression results of the model, it can be seen that the spatial error
models of fixed effect and random effect pass the maximum likelihood LM Lag test and LM
Error test, indicating that there is an obvious spatial correlation impact on urban human
settlements (Table 7). Moreover, the spatial error models of the two effects pass the Robust
LM Error test, indicating that there is obvious autocorrelation in the spatial error term. The
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significance of regression parameters can also provide relevant reference for the selection
of models to a certain extent. In the fixed effect spatial error model, the p-values of per
capita GDP and urbanization rate are greater than 0.05, indicating that the two regression
coefficients are not significant. In the spatial error model of random effect, the p-values
of science and technology investment, per capita GDP, urbanization rate, education level,
and advanced industrial structure are greater than 0.05, indicating that the two regression
coefficients are not significant. From the statistical data of the model test, the spatial error
model has better interpretation in the evaluation of urban human settlements.

Table 7. Estimation results of spatial error evaluation model for urban human settlements characteristics.

Variables
Fixed Effect Random Effect

Coefficient t-Stat Probability Coefficient t-Stat Probability

lnX1 −0.002480 −2.334380 0.019576 −0.001050 −1.078920 0.280624
lnX2 0 −0.375060 0.707617 0 −0.190200 0.849149
lnX3 −0.000016 −0.269210 0.787766 0.000049 1.173063 0.24077
lnX4 −0.000020 −3.519320 0.000433 −0.000003 −0.312250 0.75485
lnX5 −0.017970 −8.161420 0 −0.002380 −0.417340 0.676432
lnX6 0.000011 2.862237 0.004207 0.00029 16.3351 0
lnX7 −0.002130 −2.390450 0.016828 0.00605 2.044096 0.040944

spat.aut. 0.988972 334.0992 0 0.996368 23658.92 0
teta - - - 88.19199 13.41322 0
R2 −0.011800 0.8881

Sigma2 0.0025 0.0009
log-likelihood 2604.1892 2620.315

LMlag 3702.4477 1191.641
R-LMlag 347.4313 1250.0513
LMerror 4933.6623 0.0002

R-LMerror 1578.6458 58.4105

The LM test values under the spatial error model of fixed effect and random effect are
positive, and most of them pass the 10% significance test, indicating that the results are
significant. Autocorrelation coefficient λ is positive and the estimated value of variable X1
is negative, which all pass the 1% significance probability test. The coefficient of W*dep.var
of fixed effect shows that the spillover effect is obvious, or the spillover of this city to other
cities is obvious. From the adjusted R2, Sigma2, log-likelihood, the fixed effect spatial error
panel model is significantly better than the random effect spatial lag panel model. The
spatial autoregressive coefficient of the fixed effect lag model is significantly less than the
sub regression coefficient of the random effect lag model.

The fixed effect of the spatial error model shows that urban human settlements tend
to affect the city’s scientific and technological investment, economic development, urban-
ization, and urban natural advantages. However, for the upgrading of industrial structure,
it has little influence. The results of random effect show that the driving mechanism has a
great influence on the city’s scientific and technological investment, economic development,
urbanization, and education. For the urban natural advantages of the city, the influence
is small.

In order to comprehensively and accurately analyze the spatial effects of urban human
settlements, the fixed effect and random effect are analyzed by using the Spatial Durbin
Model (SDM). It includes spatial weights of explanatory variables and explained variables
(Table 8). When testing its spatial effect, the spatial auto-regressive coefficient W*dep.var.
of SDM is significantly positive when the significance level is 10% (0.993996). Most of the
spatial lag coefficients of dependent variables are negative and most of them fail to pass
the significance test at the 1% level. Under the random effect, the spatial auto-regressive
coefficient W*dep.var. of SDM is significantly positive (0.967977) when the significance
level is 10%. Most of the spatial lag coefficients of the dependent variables are negative
and most of them fail to pass the significance test of the 1% level. This indicates that
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there is no obvious spatial correlation on the human settlements in various regions. That
is, the level of human settlements in a region does not depend on the level of that in
adjacent regions and its explanatory variables. For both fixed effect and random effect, only
when the significance level test with the advanced degree of industrial structure exceeds
1% and the coefficient is negative, can they have a significant inhibitory effect on urban
human settlements.

Table 8. Estimation results of Durbin evaluation model for urban human settlements characteristics.

Variables
Fixed Effect Random Effect

Coefficient t-Stat Probability Coefficient t-Stat Probability

lnX1 −0.002466 −2.361442 0.018204 −0.001563 −1.698671 0.089381
lnX2 0.000000 0.420666 0.673999 0.000000 0.016323 0.986977
lnX3 −0.000029 −0.496513 0.619532 −0.000008 −0.181877 0.855680
lnX4 −0.000024 −4.116232 0.000039 −0.000013 −1.636228 0.101792
lnX5 −0.020358 −9.184800 0.000000 −0.017493 −4.818972 0.000001
lnX6 0.000028 5.333164 0.000000 0.000017 1.615204 0.106266
lnX7 −0.001899 −2.066503 0.038781 −0.002697 −1.738743 0.082080

W*lnX1 0.013040 4.546095 0.000005 0.002786 0.983582 0.325321
W*lnX2 0.000000 2.654114 0.007952 0.000000 2.240181 0.025079
W*lnX3 −0.000462 −2.641054 0.008265 −0.000162 −1.505127 0.132291
W*lnX4 −0.000078 −2.628386 0.008579 0.000055 1.822676 0.068352
W*lnX5 −0.016386 −2.115604 0.034379 0.027305 4.767539 0.000002
W*lnX6 −0.000046 −4.802428 0.000002 −0.000016 −0.927091 0.353879
W*lnX7 0.013126 5.716435 0.000000 0.008057 2.475201 0.013316

W*dep.var. 0.993996 657.950793 0.000000 0.967977 129.876552 0.000000
teta 0.285798 17.304632 0.000000
R2 0.699600 0.888400

Sigma2 0.002300 0.000900
log-likelihood 2650.950500 3164.152300

Wald_spatial_lag 157.679600 57.688700
Wald_spatial_error 107.286800 31.766700

LR_spatial_
130.124000 888.309000lag

LR_spatial_error 83.633500 1938.500000
Hanuman 58.286900

The four factor coefficients of the fixed effect of SDM are negative, showing a negative
correlation. The impact of per capita GDP is small, and residents’ activity shows a positive
correlation with human settlements. Among the seven explanatory variables under random
effect, only the advanced industrial structure exceeds the 1% significance-level test and its
coefficient is negative. That is, this factor has a significant inhibitory effect on urban human
settlements. While the other six variables exceed the 1% significance-level test, of which
only urban elevation shows a positive correlation with human settlements.

From the decomposition of the above results (Table 9), in the fixed effect model,
the coefficients of direct effect, indirect effect, and overall effect of per capita GDP and
education level fail to pass the 1% significance test. This shows no significant spatial
spillover. In the random effect model, the per capita regional GDP, urbanization rate,
education level, and average elevation fail to pass the 1% significance test. They have little
relationship with the development of adjacent cities and do not play an obvious role in
human settlements.



Land 2021, 10, 1207 17 of 22

Table 9. The evaluation results of the effects of Durbin model.

Effect Evaluation Variables
Fixed Effect Random Effect

Coefficient t-Stat t-Prob Coefficient t-Stat t-Prob

Direct effects

lnX1 0.000388 0.306805 0.759217 −0.001340 −1.173813 0.241453
lnX2 0.000000 2.085903 0.037880 0.000000 1.194471 0.233290
lnX3 −0.000163 −2.135358 0.033587 −0.000040 −0.796255 0.426549
lnX4 −0.000051 −4.325309 0.000021 −0.000005 −0.481062 0.630843
lnX5 −0.030116 −9.598687 0.000000 −0.015463 −4.234122 0.000031
lnX6 0.000023 4.938440 0.000001 0.000017 1.842039 0.066512
lnX7 0.001129 1.074293 0.283603 −0.001550 −1.000729 0.317810

Indirect effects

lnX1 0.800067 3.862730 0.000139 0.041324 0.450830 0.652456
lnX2 0.000007 2.622878 0.009190 0.000001 1.924636 0.055274
lnX3 −0.037285 −2.762278 0.006114 −0.005359 −1.290572 0.197902
lnX4 −0.007724 −3.092455 0.002183 0.001243 1.326532 0.185729
lnX5 −2.779643 −4.522011 0.000009 0.311432 2.093364 0.037204
lnX6 −0.001384 −3.365275 0.000870 −0.000007 −0.024911 0.980143
lnX7 0.861756 5.040209 0.000001 0.170666 1.906720 0.057566

Total effects

lnX1 0.800455 3.851552 0.000145 0.039984 0.433206 0.665194
lnX2 0.000007 2.622373 0.009203 0.000001 1.922912 0.055491
lnX3 −0.037448 −2.764135 0.006081 −0.005399 −1.290961 0.197767
lnX4 −0.007774 −3.099903 0.002130 0.001237 1.310436 0.191107
lnX5 −2.809759 −4.554184 0.000008 0.295968 1.977671 0.048932
lnX6 −0.001361 −3.325550 0.000998 0.000009 0.030815 0.975439
lnX7 0.862885 5.032566 0.000001 0.169116 1.882057 0.060851

4. Discussion
4.1. Analysis of Spatial-Temporal Variation and Influence Factors

There are various research indicators of human settlements at home and abroad, and
the evaluation is based on a certain system for practical problems [56,57]. With practical
problems and people-oriented theory, this paper selects air as evaluation perspective and
reorganizes the research index system of human settlements. However, in recent years,
most studies are carried out at urban agglomeration, provinces, and cities [58]. The large-
scale human settlement units are related to the built-up area environment, with few studies
focusing on index evaluation [59,60]. Therefore, combined with the air perspective based
on circulation and strong linkage, this paper makes an innovative and targeted study on
human settlements of prefecture-level cities in China.

(1) Horizontal comparison of time shows that there is little difference in the average
comprehensive score of human settlements in 6 years. The gap between the minimum
and maximum scores in 2013 is the smallest. By 2018, the overall human settlements of
all cities had declined. Looking at them in prefecture-level cities in China, the human
settlements in North China, Henan, Hubei, and Shandong provinces have always been
below the medium level. Human settlements in most parts of Southwest, East and South
China and Northeast Heilongjiang have always been maintained at a high level. The spatial
differentiation state studied in this paper presents a spatial pattern of low in the middle
and high around. The change difference of urban level in the North–South is greater than
that in the East–West, which is roughly equivalent to the overall conclusion of Li’s research
on human settlements [61].

Low level cities are concentrated in Shaanxi, Gansu and Ningxia and the Central
Plains, and less in the Northwest; although there is sand and dust weather and less green
coverage in Northwest China, the human factors, such as building dust and traffic emission
caused by low urban development and low population density, have little impact on the
comprehensive score of human settlements. It is different from the basic pattern conclusion
of Zhang’s comprehensive index evaluation of cities, which increases step by step from
west to east [62]. High-level cities are classified intensively, and most of them are provinces
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and regions south of the Yangtze River. Although they account for a small proportion of
all prefecture-level cities, the state of spatial pattern is gradually improved from north to
south. It is basically consistent with the research conclusion of Li [63].

(2) Compared with the conclusion of spatial state model and relevant air quality
studies, the spatial regional distribution of high concentration values of different pollutants
studied by sun is different [64] but similar to Tang’s conclusion on China’s spatial-temporal
differentiation [27]. They all have strong North–South differences.

Firstly, this is not only because of air pollutants but also because the central and eastern
regions have a large population base, rapid economic and social development, more and
more energy consumption, higher pollutant values, and residents’ intuitive feelings about
traffic, building dust, and industrial pollution emissions. They all make the overall human
settlements of cities in the central region the lowest. Secondly, the population is large in
most cities of the eastern region and the per capita park green space area is smaller than
that of northern cities. The treatment rate of industrial smoke (powder) dust is low, which
is mostly the same as Wang’s contribution to the air [65].

(3) The human settlements explored from the perspective of air also show the same
positive autocorrelation as PM2.5, and the local spatial clustering is significant [52]. With a
scatter chart, the global Moran’s I index under this study shows a spatial positive correlation
in the past six years, and the degree of correlation is relatively strong. At the comprehensive
development level, it has the spatial convergence of high-value and low-value clusters.
The number of Low-Low agglomeration area and High-High area are increasing, but the
proportion in the first quadrant (H-H) is the largest. It indicates that the convergence effect
of urban development in geographical space is obvious.

(4) In terms of pollutant distribution, economic and social development, and natural
conditions, human settlements between different cities in China gradually show an obvious
polarization. However, most cities show insignificant correlation with adjacent regions.
Local spatial autocorrelation shows that Southern China is the “hot spot” of human set-
tlements, and the North China Plain is the “cold spot” area. They are consistent with the
significant high-value agglomeration results of Yang’s multi-perspective comprehensive
study [66] and the hot spot agglomeration areas of high air pollution studied by Xiao [67].
However, the middle and lower reaches of the Yellow River, the Yangtze River Delta, Pearl
River Delta, and other places involved in scholars’ studies do not show significant agglom-
eration in this paper. In addition, the intermittent small-scale high-level agglomeration
areas in Heilongjiang are rarely seen in previous studies.

(5) Air pollution assessment and socio-economic development mostly select air mea-
surement models to analyze the influencing factors [68]. This paper draws on relevant
research of scholars and selects the influencing factors of human settlements. According to
the relevant data of the model test, there is a significant spatial positive correlation between
science and technology investment in SDM with fixed effect and random effect. The per
capita regional GDP has little impact on human settlements. The urbanization rate, the
degree of advanced industrial structure, and the urban average elevation have a certain
spatial spillover and show a negative correlation. Among the seven explanatory variables,
science and technology investment and the degree of advanced industrial structure have
the greatest impact. It can be seen that urban upgrading is very important for human
settlements.

(6) The construction time of human settlements in many cities at home and abroad
shows that social and economic development play a basic role in promoting the construction
and development of urban human settlements. If human settlements are strong, the
economic strength is also good. However, the human settlements score based on air quality
does not completely depend on the economic conditions. Therefore, in order to effectively
improve urban human settlements, it is necessary to improve the government-led “top-
down” and public-led “bottom-up” regulation system. We should formulate laws and
policies suitable for social and economic development to fully tap into the potential of each
city in order to enhance the strength of the city.
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4.2. Limitations

Due to less available data, time series research is short. In addition, this paper is an
innovative attempt to select and integrate indicators of human settlements and influencing
factors. Therefore, there are still some deficiencies in index system and scale, and there is a
lack of empirical research.

In addition, when there are more systematic indicators, the research methods, such as
spatial autocorrelation and spatial measurement, indicator variables, and measurement
models used at different scales are different. Subjective evaluation and practical application
should be considered and more comprehensive methods should be used for evaluation
and test in combination with multi-source data, such as big data.

5. Conclusions

The level of China’s human settlements determined by air-orientation presents a
spatial pattern of low in the middle and high around, and has strong spatial correlation.
Under the condition of balanced development of various systems, we should focus on the
human settlements in the middle and lower reaches of the Yellow River. We should also
try to build a hierarchical and focused evaluation model, as well as a characteristic urban
planning and linkage development pattern. We should improve the urban development
model under the concept of creating a clean air city, increase investment in science and
technology, optimize the industrial structure, and improve social environmental equity
and residents’ well-being.

However, residents with different subjective attributes have different subjective un-
derstandings of the environment and corresponding behavior. For a certain population,
there is a certain regularity statistically. Therefore, in the process of future evaluation, we
should pay attention to public participation and reflect the public’s psychological feelings
on environmental quality. We should quantify the qualitative indicators through residents’
scores, improve human settlement evaluation systems, and their impact mechanism at
various time and space scales. With empirical experiments in different regions with a
long time series, we can provide a theoretical basis for regional human settlements under
different development conditions.
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