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Abstract: The loss and fragmentation of natural space has placed tremendous pressure on green
infrastructure (GI), especially in urban agglomeration areas. It is of great importance to identify key
sites of GI, which are used to economically and efficiently restore urban ecological network. However,
in the existing research, few scholars have explored the identification and application of GI key sites.
Taking the Southern Jiangsu Urban Agglomeration as an example, based on the ecosystem service
assessment and landscape connectivity analysis, we identified the multi-class key sites of GI in the
study area by MSPA, InVEST model, MCR model, and Linkage mapper. The results showed that:
(1) a total of 60 GI sources and 130 GI corridors were extracted. The ecological resources of the study
area were densely distributed in the north and south and sparsely in the middle. (2) Three-hundred
eighty GI key sites were identified, including 53 water ecological points, 251 ecological fracture
points, and 76 ecological pinch points. The GI key sites we identified were large in number and
widely distributed, yet were hardly included in the existing ecological protection policies. These key
sites should be prioritized in GI planning and differentiated for management strategies, ensuring that
limited land resources and public funds can be directed to where restoration is really needed. The
present study provides land managers and urban planners with additional tools to better understand
how to effectively restore and develop the ecosystems of urban agglomerations in the context of
scarce land resources.

Keywords: green infrastructure; key sites identification; ecological restoration; urban agglomeration;
linkage mapper

1. Introduction

Green infrastructure (GI) can be interpreted as a strategically planned network of
natural and near-natural areas with other environmental features designed and it can
contribute to ecosystem resilience and human benefits through ecosystem services [1–3].
However, starting from the 1980s, the neoliberal-oriented urban renewal policies have
changed the process of urban development in Western countries [4]. The privatization of
public space has gradually transformed GI that was once open to the public into controlled
spaces to attract businesses and investors [5,6]. At the same time, China has also begun to
use urban natural space to capture land appreciation gains [7].

The loss of ecological space in recent years not only places tremendous pressure on
urban GI, but also leads to series of environmental risks [8–10]. Especially in rapidly
urbanizing areas, urban GI is facing habitat fragmentation, water pollution, and biodiver-
sity loss [11]. The pandemic outbreak of 2020 highlights the necessity to deal with the
dark side of the global city and the necessity to guarantee open and healthy GI [12–14].
Therefore, how to construct and optimize regional GI economically and effectively is cru-
cial for the sustainable development of urban ecosystems under the background of land
scarcity [15–17].
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Due to its holistic approach, GI planning has become one of the important national
strategies for coordinating ecosystem protection and economic development, and it is
widely implemented in urban agglomerations around the world [18–20]. In practice, how-
ever, natural space and land resources are extremely limited in mega-cities [21]. Since
degraded ecosystems are numerous, it is unrealistic to optimize and re-plan GI by in-
creasing sources and constructing corridors [22]. Therefore, as an effective method to
reduce land costs [23], the identification of GI key sites should be applied to urban ecolog-
ical network planning as soon as possible to achieve an orderly and efficient ecological
improvement process [24,25].

Key sites are generally defined as the small natural vegetation areas in GI that can make
a contribution to habitat connectivity and availability by acting as a key part of a corridor
or as a stepping stone between other, eventually larger, habitat patches [26,27]. Referring to
the existing research and relevant literature of GI, however, experts have usually focused
on source determination and corridor construction [28–30]. The mainstream framework of
“source extraction—resistance surface setting—corridor construction” was formed to try to
realize smooth flow of the ecological process [31,32]. In contrast, research on identification
and mapping of GI key sites is lacking. In many cases, key sites were still regarded as
attached components of GI [33]. Actually, the determination of GI key sites plays an
important role in the realistic projects of urban planning, as they reveal important areas
that influence the success and benefits of restoration actions [34].

In the existing studies, the identification methods of GI key sites mainly include the
following four aspects: (1) identifying the stepping stones of GI [35]; (2) calculating and
choosing patches with better intermediation based on Betweenness Centrality (measure to
what extent a node contributes to paths between all other nodes) [36,37]; (3) determining
the intersection of corridors with key habitat patches, other corridors, and infrastructure
networks [38]; (4) recognizing ecological pinch points based on the circuit theory [39,40].
Nevertheless, almost all studies have determined key sites by a single method and have
neglected composite identification of multiple types of key sites, especially in urban agglom-
eration with fragmented ecological patterns [41]. Many studies have targeted ecologically
degraded areas in forests, oceans, riparian buffers, and wetlands, while few have selected
built-up areas [42,43]. In addition, little research has explored the impact of spatial extent
changes on the identification of key sites [44,45]. In practice, based on the identification
results, corresponding restoration and protection strategies of key sites have rarely been
proposed in conjunction with current spatial planning [46,47].

Here, this study focused on the identification of GI key sites with the framework of
constructing the regional GI to provide a cost-effective restoration and development method
for an ecological network in urban agglomeration. The overall goals are: (1) to extract GI
sources using ecosystem service evaluation, landscape connectivity analysis, and MSPA;
(2) to construct GI corridors based on the MCR model; and (3) to identify multiple types of
GI key sites to support ecological conservation and restoration in urban agglomeration.

2. Materials and Methods
2.1. Study Area

Five cities (coordinates: 118.905469◦ E, 32.096836◦ N–118.912763◦ E, 32.100553◦ N) in
southern Jiangsu Province were studied including Nanjing, Suzhou, Wuxi, Changzhou,
and Zhenjiang, with a total spatial area of 27,872 km2, accounting for 26.2% of the total
land of Jiangsu Province (Figure 1). As a rapidly urbanizing region close to Shanghai, the
metropolis of China, these five cities are closely linked in terms of population, economic ac-
tivities, ecological integrity, and transportation infrastructure, forming a huge co-urbanized
region, the Southern Jiangsu Urban Agglomeration.
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Figure 1. Location and land utilization status of the study area.

Since the 20th century, with the influx of population and increasing urbanization, the
urban productivity and quality of life in the Southern Jiangsu Urban Agglomeration has
been on the rise. However, the situation of important ecological space across municipalities,
such as Taihu Lake and the Tianmu Mountains, continues to decline, seriously threatening
the ecosystem of the Southern Jiangsu Urban Agglomeration. The seemingly vast land is
actually facing the plight that per capita resources (freshwater, forests, etc.) are extremely
in shortage [48].

As an important part of the Yangtze River Delta metropolitan area, the Southern
Jiangsu Urban Agglomeration, like other mega-cities around the world, is facing the eco-
logical risks brought by rapid urbanization [49]. It is important to explore the utilization of
natural resources and the layout of GI key sites within this urban agglomeration, so as to
alleviate the contradictions existing between the urban development and ecological conser-
vation, and to seek the solution of environmental resource management and environmental
problems in the co-urbanized regions of developing countries.

2.2. Data Sources and Processing

The data collected for this study contained images and text materials including geo-
graphic information, ecological and environmental data, and socio-economic data (Table 1).
The data relating to land utilization, based on the purpose of the study, were reclassified by
GIS into nine types including paddy field, dry land, forest land, grassland, river and canal,
lake and pond, wetland, buildable land, and unused land (Figure 1). The areas of lake and
pond in the study area were larger than those of river and canal, so they were analyzed
separately as two types considering the difference between their ecosystems and ecological
space. All the raw image data were processed with the ArcGIS 10.2 platform for projection
correction and boundary cropping.
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Table 1. Images and text data sources.

Data Accuracy Time (Period) Data Sources Application

China county administrative
boundary data - 2018

Resource and Environment
Science and Data Center of

Chinese Academy of Sciences
(https://www.resdc.cn/, accessed

date: 10 March 2021)

-

Land utilization status 30 m × 30 m 2018
Ecosystem service assessment,
MSPA, landscape connectivity

assessment, InVEST model

DEM elevation data of
Jiangsu Province 30 m × 30 m 2018 Water conservation assessment,

soil conservation assessment

Night light data 1 km × 1 km 2018 Resistance surface correction

NDVI spatial distribution data 1 km × 1 km 2018 Soil conservation assessment

Annual net primary
productivity (NPP) 1 km × 1 km 2000–2010 Water conservation assessment

Annual average precipitation 500 m × 500 m 2000–2010 Biodiversity
conservation assessment

Soil data 1 km × 1 km 2015

National Tibet Plateau Data
Center 1: 1,000,000 China Soil

Data Set (http://data.tpdc.ac.cn/,
accessed date: 16 March 2021)

Water conservation assessment

Road data - 2018
Geospatial Data Cloud

(http://www.gscloud.cn/,
accessed date: 18 March 2021)

InVEST model

2.3. Methods
2.3.1. GI Sources Extraction

GI sources can provide diverse and high-quality ecosystem services to cities and
residents. In this study, with reference to the existing source extraction methods [50,51],
the recognition of the source was carried out from the perspectives of ecosystem service
and landscape connectivity [52,53].

Faced with the ecological issues of the study area, three typical ecosystem services
were selected for the evaluation, including water conservation, soil conservation, and
biodiversity conservation. The mapping of the spatial distribution of the ecosystem service
evaluation was formed by the weighted overlay method and was divided into five levels
from very important to unimportant by the natural breakpoint method. After that, a binary
raster graphic was created with the very important patches of ecosystem service as the
foreground and the rest of the space as a background. The spatial distribution of seven
landscape types, including core, bridge, loop, branch, edge, perforation, and islet, was
acquired through MSPA (Morphological spatial pattern analysis, which can be used to
measure, identify, and disaggregate the spatial pattern of raster images) [54], from which
the core areas were selected. Then, three indexes, namely the landscape coincidence proba-
bility (LCP), integral index of connectivity (IIC), and probability connectivity (PC), were
introduced to calculate the importance value of each core area in the overall landscape [55].
Next, considering previous research, setting 1000 m for the migration threshold, 0.5 for
PC, and the core areas with dPC > 0.0016 were determined as the GI sources [56]. The
landscape connectivity indices are calculated as follows:

LCP =
NC

∑
i=1

(
ci
AL

)2
(1)

I IC =
∑n

i=1 ∑n
j=1

ai ·aj
1+nlij

A2
L

(2)

PC =
∑n

i=1 ∑n
j=1 P∗

ij ·ai·aj

A2
L

(3)

dI =
I − Iremove

I
× 100% (4)

https://www.resdc.cn/
http://data.tpdc.ac.cn/
http://www.gscloud.cn/


Land 2021, 10, 1196 5 of 13

where NC is the number of components; ci is the total area of each component; AL is the
total landscape area; n is the total number of patches in the landscape; ai and aj are the
areas of patch i and patch j; nlij is the number of links in the shortest path (topological
distance) between patch i and patch j; P∗

ij is the maximum potential for the species to spread
directly in patch i and patch j; I is index value when all the initially existing patches are
present in the landscape; and Iremove is index value after the removal of that single patch
from the landscape.

2.3.2. GI Corridors Construction

Based on the habitat quality assessment results of the InVEST model [57], we compre-
hensively considered the influencing factors of elevation, slope and vegetation cover, and
constructed ecological resistance surface [58]. The sensitivity of land use type to habitat
threat factors is shown in Table 2, and the formula of the InVEST habitat quality model is
as follows:

Dxj =
R

∑
r=1

γr

∑
y=1

Wr

∑R
r=1 Wr

× ry × irxy × βx × Sjr (5)

Qxj = Hj

(
1 −

Dz
xj

Dz
xj + kz

)
(6)

where Dxj is the total threat level; R is the number of stress factors; γr is the total number
of grid units of stress factors; Wr is the weight of threat factor r; ry is the effect of the threat
that originates in grid unit y; irxy is the maximum impact distance of threat factor r; βx is
the legal accessibility of grid unit x; Sjr is the sensitivity of landscape j to threat factor r, 0–1;
Qxj is the habitat quality index of grid x in landscape type j; Hj is the habitat suitability
score of the landscape j; z is the scale constant, which is generally taken as 2.5; k is the
semi-saturation constant equal to half of the maximum of Dxj.

Table 2. The sensitivity of land use type to habitat threat factors.

Land Use and
Land Cover

Habitat
Suitability

Sensitivity to Threat Factor

Urban Industrial Land Cropland Rural Settlements Railroad Motorway Road

Paddy field 0.3 0.5 0.6 0.01 0.3 0.2 0.3 0.2
Dry land 0.2 0.5 0.6 0.01 0.3 0.2 0.3 0.2

Grassland 0.4 0.6 0.7 0.5 0.5 0.2 0.3 0.2
Forest land 1 0.9 1 0.5 0.7 0.5 0.8 0.5

River and canal 0.9 0.8 0.85 0.45 0.6 0.3 0.4 0.3
Lake and pond 0.9 0.85 0.9 0.5 0.65 0.5 0.6 0.5

Wetland 1 0.95 1 0.6 0.8 0.7 0.85 0.7
Buildable land 0 - - - - - - -
Unused land 0 - - - - - - -

Then, in support of the corrected DMSP/OLS night light data [59], the ecological
resistance surface was modified into the integrated resistance surface. The formula is:

Ri =
NLi
NLa

× R (7)

where Ri is the ecological resistance coefficient of grid i based on night light; NLi is the
night light of grid i; NLa is the average night light of the land use type a corresponding to
grid i; R is the basic ecological resistance coefficient of land use type corresponding to grid i.

Next, the Linkage Mapper was used to calculate the minimum cumulative consump-
tion path for the spatial location of GI corridors [60].

2.3.3. GI Key Sites Identification

According to the natural resources and urban development characteristics of the
Southern Jiangsu Urban Agglomeration, the key sites of GI in the study area were identified
relying on the following three methods: (1) using the intersection of GI corridors and
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strategic rivers to obtain water ecological points; (2) using the intersection of GI corridors
and intercity backbone roads to identify ecological fracture points; and (3) based on electric
circuit theory [61], with the help of the software Circuitscape 4.0 and the plug-in Linkage
Mapper 2.0 to determine simulated current intensity distribution and ecological pinch
points. The first two methods extracted special spatial points with reference to the urban
agglomeration status, while the latter determined irreplaceable spatial locations in the
corridor based on the analysis of ecological flow.

3. Results
3.1. GI Sources

Based on the composite index system, the evaluation of the importance of ecosystem
service in the Southern Jiangsu Urban Agglomeration was determined (Figure S1 in the
Supplementary Materials). The most important patches for ecosystem services were
mainly concentrated in the south part of the study area, the southern Nanjing, and the
Yangtze River band area within Nanjing and Zhenjiang, accounting for 22.31% of the
total area. The core areas were obtained by extracting ecological patches using MSPA
(Figure S2 in the Supplementary Materials). The layout of the core areas was found to be
seriously fragmented, only accounting for 48.26% of the whole ecological patches, while
15.91% of these patches were considered islets. These isolated islets caused a decrease in
overall ecosystem service of the study area due to the smaller potential for its internal
physical-energy exchange with the surrounding landscape matrix. A total of 60 GI sources
were extracted from the core areas, covering 3629.33 km2. Most of the GI sources were
scattered close to important water bodies (Yangtze River, Taihu Lake) and mountains
(Ningzhen mountain), ranging from 2 to 10 km2 (Figure 2).

3.2. GI Corridors

In this study, an integrated resistance surface was constructed by taking compre-
hensive habitat index evaluation and night light data into account. In terms of spatial
distribution, a distinct aggregation of high resistance values was formed mainly in the
central study area, the middle part of Nanjing, and the north of Taihu Lake (Figure S3 in
the Supplementary Materials). Furthermore, in the city-wide perspective, the resistance
value spread from high to low along with the construction land to natural space.

One-hundred thirty GI corridors of the Southern Jiangsu Urban Agglomeration were
obtained, with a total length of about 2584.69 km, among which the longest corridor was
74.68 km, while the shortest one was 0.47 km, and the average corridor reached about
19.88 km (Figure 2). Corridors linking various sources formed a network-like structure
basically covering the entire study area. Among them, several corridors crossed the urban
area where human activities are frequent, such as the corridor between Taihu Lake and
Yangcheng Lake, and certain corridors located at the edge of main urban area, such as
the corridor linking the Yangtze River and Gehu Lake on the east and west sides of the
Changzhou urban area.

3.3. GI Key Sites

A total of 380 key sites were identified in the present study, including water ecological
points, ecological fracture points, and ecological pinch points.

3.3.1. Water Ecological Points

Water ecological points were determined based on the intersection between strategic
rivers and ecological corridors. In the study, 53 water ecological points were identified
(Figure 2), accounting for 14% of the ecological points in the study area, mainly concentrated
in the middle section of the study area and the northern and southern areas of Suzhou.
Several points were also located in the central and northern areas of Nanjing and the
northern part of Wuxi. Compared with the other two cities, Suzhou showed a more
ideal point distribution pattern, with better uniformity and coverage. In contrast, water
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ecological points were not identified in the south of Zhenjiang and the north of Changzhou
due to the lack of GI corridors and strategic rivers. Moreover, parts of the water ecological
points were located in the suburbs of the built-up area and even within the city, such as
the southern suburbs of Nanjing and the main urban area of Suzhou. These areas owned a
stable water supply but were also exposed to ecological risks such as water pollution.

Figure 2. GI key sites identification process: (a) GI sources extraction; (b) GI corridors construction; (c) water ecological
points identification; (d) ecological fracture points identification; (e) ecological pinch points identification.

3.3.2. Ecological Fracture Points

By identifying the fracture points formed after the potential corridors were intersected
by the road network, 251 ecological fracture points were acquired, accounting for 66% of
the ecological points in the study area (Figure 2). In general, within the study area, the
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ecological fracture points showed a dense distribution in the west and were sparse in the
east. As for cities, ecological fracture points were mainly concentrated in the central urban
area of Nanjing, Zhenjiang, and Suzhou, and their distribution density decreased gradually
from built-up area to natural space. A few ecological fracture points were also gathered in
the junction of adjacent cities and formed clusters, such as the junction of Zhenjiang and
Nanjing, and the junction of Zhenjiang and Changzhou. In addition, in terms of land types,
many ecological fracture points were located in areas such as forest land, arable land, lakes,
and rivers, which indicated that the construction of transportation infrastructure directly
influenced the ecological exchange in multiple types of land patches.

3.3.3. Ecological Pinch Points

Overall, 76 ecological pinch points were identified, accounting for 20% of the ecological
points in the study area, which were more densely distributed in the central and western
part of the urban agglomeration, and a wide range of Nanjing, Zhenjiang, and Changzhou
(Figure 2). Certain pinch points were scattered in Suzhou near Taihu Lake and Wuxi
near Gehu Lake, which were mostly located near or between ecological sources with
good habitat quality. However, the distribution in northern Wuxi and northern Suzhou
was relatively sparse. In addition, most of the ecological pinch points were located on
non-construction land after superimposing the land type map onto the distribution map.

4. Discussion
4.1. Application of Key Sites in Spatial Planning

In order to alleviate the contradiction between natural space and construction land in
the urban agglomeration, a strict ecological protection planning was formulated in Jiangsu
Province [62], in which a total of 8474.27 square kilometers of land was included in the
national environmental protection areas. Surprisingly, the vast majority of the conservation
zones presented an excellent match in spatial distribution with GI sources and corridors,
yet hardly included the GI key sites we identified. Referring to our evaluation map of
ecosystem service and landscape connectivity, the current ecological space distribution
was very unfriendly to the structural stability and ecological connectivity of the regional
ecological network [63,64]. The results of the study can contribute to ameliorating the
situation through informing the local planners where new development would harm areas
that are important for the ecological network of the urban agglomeration [65]. In future
ecological planning, the practical application of the GI key sites identification results should
be strengthened and used as important pilot objects for planning [66]. In addition, we
believe that ecological network planning is spatially nested and prioritized [67,68]. The
identification process was carried out in a sequence by constructing a regional GI and
then acquiring GI key sites [69]. However, in terms of practical application, GI corridor
connectivity is usually achieved by restoring key sites, and complete corridors enable
communication between sources [70]. Therefore, we believe that it is necessary to bring GI
key sites into ecological restoration policies as a priority [71,72]. Through this approach,
the current disorderly construction pattern of urban ecological space will be improved,
and the social and ecological benefits of ecological restoration actions will be further
enhanced [73,74].

4.2. Differentiated Identification and Governance of Key Sites

Compared with previous studies that categorized all identified ecological points as key
sites [75,76], the present study used the Linkage mapper to obtain a more comprehensive
distribution pattern of GI key sites based on the modified resistance surface and classified
them in detail. It also determined that we need to take into account the connotations and
characteristics of different types of key sites in the governance approach [77]. Referring to
our experimental results, the water ecological points contain a large number of important
watershed spaces, and most of them are facing issues such as rain flooding, water pollution,
and decreasing water storage capacity. In view of this, they should be set up as water eco-
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logical conservation areas in regional and municipal land use planning policy [78]. Water
mobility within these areas should be improved by optimizing the pattern of riparian green
space patches and building multi-layered, less interventional symbiotic buffer zones [79,80].
Ecological fracture points are concentrated along cross-city railroads and highways, and the
original wildlife migration corridors in these areas have been gradually disrupted by noise
pollution and soil hardening [81]. In the course of urban expansion, these areas should be
set up as important ecological restoration areas, and human interference should be reduced
by building scenic paths [82], green overpasses, and underground passages to enhance
the connectivity of ecological processes [83]. In addition, as important ecological stepping
stones for the GI corridors, the ecological pinch points show a rich frequency of biological
aggregation and migration on the distribution map of biological flows [84]. Based on the
characteristics, we suggest setting them as critical nature conservation areas and enhancing
the diversity of landscape patches and biological species through the establishment of
suburban greenbelts and forest parks [85,86]. In developing countries like China, where
urbanization is rapid but of poor quality and environmental problems are complex and
diverse, GI key sites should be identified more accurately than sources and corridors [87].
Our research results can provide certain logical reference and framework basis for current
governance strategies.

4.3. Limitations and Uncertainties

Although this study has provided new insights into the identification and conservation
of GI key sites and has proposed targeted application and governance strategies, it also
comes with limitations and uncertainties. It is difficult to form a universal model due to
the differences in the determination of indicators and thresholds in the research process
of GI [88]. Therefore, in the model of the present study, considerable indicators and
parameters will exert some influence on the benefits of the final GI. The indicators mainly
include the data types in the ecosystem services importance assessment, the relevant
landscape granularity and edge effect width in the MSPA, the scope of the sources buffer
zone, and the corridor width [89–91]. These circumstances may lead to discrepancies
between the theoretical framework of GI and reality, creating uncertainty in the subsequent
identification process for the types and spatial locations of GI key sites. This would be a
good spot to call for ground truthing and on-site analyses as the key means of substantiating
and updating regional GIS data sets.

5. Conclusions

The demand and importance of establishing public, healthy, and stable GI in urban
agglomeration areas have increased rapidly after the epidemic outbreak of 2020. The
identification and application of GI key sites can effectively improve the disorderly con-
struction pattern of GI network in the urban renewal process and influence the smart
development of regional public space. Here, we used ecosystem service evaluation and
landscape connectivity analysis to avoid ignoring or amplifying the ecological functions
of certain natural spaces. Constructing the GI network using the MSPA and MCR model
has systematized the complex landscape patterns. Based on the GI sources and corri-
dors, the circuit theory and Linkage Mapper were applied to identify multiple types of
GI key sites, providing a new perspective and framework for ecological restoration of the
urban agglomeration. The results showed that the ecological resources of the Southern
Jiangsu Urban Agglomeration were densely distributed in the north and south and were
sparsely distributed in the middle. Overall, 380 GI key sites were identified, including
53 water ecological points, 251 ecological fracture points, and 76 ecological pinch points.
Our findings reveal the spatial distribution patterns of the key sites that are important
for the stability and connectivity of ecological networks. Prioritizing the conservation
and differentiated management of GI key sites should be brought into the regional land
use policies, ensuring that limited land resources and public funds can be directed where
restoration is really needed. The study provides land managers and urban planners with
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additional tools to better understand how to effectively restore and develop the ecosystems
of urban agglomerations around the world in the context of scarce land resources.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/land10111196/s1, Figure S1: The spatial distribution of the ecosystem service in the study area,
Figure S2: Landscape types in the study area by MSPA, Figure S3: The integrated resistance surface
of the study area.
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