
Supplemental 1: Methods Supplemental for Knight et. al, 2021 

1. Selection, creation, and preparation of the Geographic Base Layers of the Habitat

Condition Index

National Land Cover Data (NLCD) for the year 2011 was used as the foundation for 

this analysis. We first extracted natural lands (those not classified by the NLCD as “De-

veloped” or “Cultivated Crops”) from the conterminous United States. Range (excluding 

hay and pasture) and silvicultural lands were included as natural lands.  

Within these lands, multiple anthropogenic stressors, fragmentation, proximity to 

aquatic habitat, and departure from pre-European conditions were quantified. Each of 

these categories were then used as inputs to spatially map fragmentation, anthropogenic 

stressors, proximity to aquatic habitat, and an estimate of the cultivated landscape with 

structural similarities to paired natural habitats. 

1.1 Anthropogenic stressors 

Human land uses interact with ecological processes, resulting in habitat degradation 

[1]. It is generally assumed that ecosystems devoid of human modification of habitat have 

higher integrity and thus are likely to have higher biodiversity [2,3]. Many published 

methods for assessing the effects of the relative ecological condition of landscapes within 

proximity to anthropogenic sources and disturbances have been proposed. The most com-

monly measured impacts are from roads and utility corridors. Roads cause habitat de-

struction, land degradation through edge effects, population isolation, and increased mor-

tality [4–9]. Infrastructure creation and use also increases the risk of collisions with various 

species and stresses breeding due to increased noise and visual stimuli [10–14]. Other 

types of infrastructure, including railways, power lines, pipelines, hydroelectric projects, 

oil wells, seismic lines, and wind parks, have been shown to negatively impact biodiver-

sity [15–20]. 

Building on this multi-decadal foundation of research, this analysis adopts the meth-

ods proposed by Hak and Comer [21] to map layers of anthropogenic influence. By com-

bining an impact score with a distance decay, single continuous surfaces are mapped rep-

resenting the following anthropogenic stressors relating to transportation and urban de-

velopment listed in Table S1. Hak and Comer [21] provide a repeatable design that is em-

pirically validated from biodiversity data. Transportation input layers will be derived 

from TIGER roads data (ww.census.gov/geo/maps-data/data/tiger.html) and the urban 

development layers will use NLCD development classifications. For each input layer 

where the land use feature occurs, a site impact score is assigned. The Euclidean distance 

for each input layer is calculated for the model extent with a distance extending away 

from each feature assigned a site impact score representing the distance decay function. 

Features assigned a high decay score result in a surface where the impact value decreases 

within a relative short distance, whereas those locations where a low decay score create 

surfaces where the per pixel value dissipates much more slowly. The combination of the 

site impact score and the distance decay value are combined into the formula: 

𝑓(𝑑) =∏(
1

1 + 𝐸𝑋𝑃 (−2 ∗ (𝑑 −
(𝑑𝑠 ∗ 0.5)
𝑑𝑠 ∗ 0.25

))

)(−0.25∗𝐿𝑁(𝑆𝑖)−8∗10−16)
𝑛

1

 

where, d is the distance from the feature, ds is the distance intensity threshold, Si is 

the site intensity threshold, and constants as a ration (0.5, 0.25) are added to mark the 

midpoint and inflection points of the curves at ¼ . 1/3, and ¾  points of the curve [21].  

Mapped values for each indicator (4 transportation and 3 development) are then 

summed for each pixel location to provide an estimate anthropogenic influence. While no 

clear consensus on the distances when anthropogenic sources no longer influence 
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biodiversity, we chose to adopt the methods developed by Hak and Comer [21] given the 

rigorous empirical calibration and validation across the conterminous US. 

Table S1. Functions and Decay Curves for HCI Components. For the components of the HCI, we determined intensity of 

impacts and distance decay curves. These parameters, determined through assessing the best available peer-reviewed 

research on the topic, were then used to create CONUS-wide surfaces depicting each of these components. 

1.2. Fragmentation 

Landscape modification, primarily from development expanding into natural habi-

tats, has caused increasing fragmentation and been extensively studied [22]. Habitat frag-

mentation is widely viewed as a negative impact on virtually all taxonomic groups, in-

cluding birds and mammals [23,24], reptiles and amphibians [25], invertebrates [26] and 

plants [27]. Focus on quantifying fragmentation has centered largely on forest vegetation 

and their connectivity. Traditional metrics used as proxies for quantifying fragmentation 

include forest patch size, percent interior forest, mean forest patch density, number of 

forest patches, inter-patch distance, forest patchiness, and contiguity [28–33].  

We used the Graphical User Interface for the Description of Objects and their Shapes 

Toolbox (GUIDOS Toolbox), specifically the morphological spatial pattern analysis 

(MSPA), to segment the natural and cultivated lands for identifying mutually exclusive 

morphometric feature classes describing the shape, connectivity, and spatial arrangement. 

The MSPA divided natural and cultivated lands by separating core and non-core areas 

based on an assumed edge width (90 meters). All of the non-core areas are considered 

some type of edge, with the MSPA labeling each pixel according to the structural role it 
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plays with respect to one or more core areas. The results of MSPA allowed for multiple 

fragmentation categories to be identified, including perforation, bridge, loop, and branch 

categories (Figure S1). The edge category encompasses a core area (exterior edge) or en-

compasses a hole in a core area (perforation). A loop is defined as an edge that connects 

to the same core area twice; a bridge is an edge that connects two or more disjunct core 

areas; branch is an edge that does not connect to anything. 

Figure S1. Partitioning by the MSPA for forest classes within a NLCD map (left) into the different fragmentation classes 

(right). 

Following the methods outlined in Hurd et al., [34], we adapt a modified index 

weighting scheme to incorporate the additional fragmentation categories provided by 

Guidos Toolbox. Following classification of each pixel into a fragmentation class, the in-

dicator index is assigned to each pixel following the weights in Figure S2. For this work, 

we used a binary classification of natural and unnatural vegetation. This means that a 

grassland residing adjacent to a forest pixel were assigned the same binary classification 

value. 
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Figure S2. Fragmentation categories and the index weighting values assigned for each category of pixels classified natural 

vegetation. 

1.3. Vegetation departure 

To determine vegetation conditions of pre-European settlement, we used the vegeta-

tion departure index included within the LANDFIRE models. The vegetation departure 

index models the relative change in vegetated conditions from historical pre-European 

settlement conditions for each vegetated 30-meter pixel within the conterminous US. Ref-

erence conditions represent simulated historical vegetation composition and structure re-

sulting from historical disturbance occurrence and severity [35]. LANDFIRE uses two 

models to develop historical reference conditions: 1) a Vegetation Dynamics Development 

Tool (VDDT) and 2) LANDSUM. VDDT is a quantitative state and transition model that 

combines information about the rates and pathways of vegetation development over time 

and the probabilities and effects of ecological disturbances. [36]. LANDSUM is a state and 

transition patch-level succession model combined with a spatially explicit disturbance 

model that simulates wildfire on a cell by cell basis [35]. The model uses outputs from the 

VDDT to quantify disturbance-succession patterns during the simulation period. This 

vegetation modeling framework is combined with estimates of climate and disturbance 

variability and used to simulate historical reference conditions for fire frequency and se-

verity, and vegetation composition and structure [35]. 

To characterize current conditions, LANDFIRE generates Successional Class maps 

representing the current successional state of vegetation as determined by comparing 

LANDFIRE existing vegetation data products (current vegetation type, cover and height) 

with the defined successional composition and structure rules outlined by the VDDT [37]. 

Current conditions can then be compared to reference conditions for each pixel to deter-

mine a measure of departure. Only vegetative conditions are used in LANDFIRE, there-

fore areas of urban development and intensive agriculture are excluded from the model. 

1.4. Proximity to aquatic resources 

The importance of landscape linkages that enable energy transfer across terrestrial 

and aquatic ecosystems is well documented [38,39]. Terrestrial habitat condition is likely 

to be of higher quality in areas where proximity to freshwater resources exists. Aquatic 

insects, salmon [40], otters [41], birds [42], bats [43] and other organisms have been docu-

mented to transfer energy from aquatic to terrestrial land covers. Jackson and Fisher [44] 

first demonstrated the substantial impact of these exchanges, showing that emergent in-

sect flux from a stream transferred more than 20 g/m2 of aquatic secondary production 

annually to terrestrial desert food webs. A growing body of literature now supports the 

hypothesis that streams subsidize food webs and energy transfer of terrestrial ecosystems, 

and that the magnitude of these subsidies can have large impacts [39,45]. 
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While widely recognized as important, few studies have quantified the distance from 

aquatic systems into terrestrial land cover classes over which these “subsidies” operate, 

and most work has focused on streams rather than other systems [39,43,46–48]. We ap-

plied methods developed by Muehlbauer [39], who through meta-analysis demonstrated 

that a negative power function best matches observational data across a wide range of 

ecosystem types. Using a normalized aquatic subsidy curve adapted from [39] (Figure S3), 

we applied a weighted addition to the index of any pixel within one kilometer of a either 

a river, lake, or wetland.   

Figure S3. Normalized aquatic subsidies curve to be used to provide additional index weight to 

land cover classes within 1 kilometer of water. Curve adapted from [39]. 

2. Model Selection, Calibration, and Validation

We identified a dataset of ecological quality at 35,974 point locations throughout the 

CONUS. This dataset was created by collecting qualitative assessments based upon site 

visits FOR THE PURPOSE OF (NatureServe xxxx). Here each point location is graded 

from A (the best quality) to D (the worst) using an ordinal scale. The work that generated 

these points was conducted to assess the relative quality at sites already believed to have 

considerable natural habitat value. As such, the dataset appears biased, with a larger pro-

portion of the points describing higher quality habitats (number of sites classified as A, B, 

C, and D are 10,675, 12,929, 8,588, and 3,782 respectively, see Figure S4 below). To address 

this bias in response data, we generated an additional 5,724 points that would likely be 

rated as the lowest quality (D) by selecting point locations outside, but within 100 meters 

of, high-density urban built up areas. Because ordinal response-based land cover datasets 

frequently prove problematic as a validation tool CITE), we elected to convert the four-

category dataset into a binary response with zeros representing the poorer quality points 

(C & D) and ones representing higher quality (A & B). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

A
q

u
a

ti
c 

S
u

b
si

d
y

 (
n

o
rm

a
li

ze
d

)

Distance to water (meters)



Land 2021, 10, 1145 6 of 10 

Figure S4. Number and proportion of validation points in each geographic region. Here, the width 

of each bar represents the relative number of points in each geographic region (1 through 5). The 

height of each shaded area within each region’s bar describes the proportion of points rated at that 

quality level within each ecoregion. Ecoregions 1-5 are, respectively: Western Forest, Desert, Central 

Plains, Southeastern Forests, and Eastern/Northeastern Forests. 

To prepare the HCI component layers, we z-transformed the four predictor layers 

(VDEP, ANTHRO, FRAG, and WATER) using the “scale” function in R [49]. Z-transfor-

mation normalizes datasets by subtracting the mean and dividing by the standard devia-

tion, creating a scaled dataset where values are expressed as the number of standard de-

viations above or below the mean. This allows analysis where no data layer in a multivar-

iate analysis has outsized predictive power simply due to differences in absolute values 

that might span orders of magnitude. Using validation points, we extracted values of each 

of the component HCI layers at these sites and added these to the validation dataset. We 

then converted this categorical validation dataset into a binary value (i.e., “0” for poor 

quality and “1” for high quality). The resulting dataset contained a binary response col-

umn, four HCI component predictor columns, and one column for the ecoregion (num-

bered from 1 to 5 (see Fig S.4)). We utilized 90% of these point locations, distributed ran-

domly throughout the CONUS as calibration data. The remaining 10% of the data were 

withheld for model validation. 

We then performed a comprehensive model selection to determine both the combi-

nations of predictors and the relative weights for each of these predictors that best fit the 

response data. From the list of four possible predictors, we created a comprehensive 

model set, testing all combinations of predictors (and a null/intercept-only model) against 

the dataset of point location indicators of ecological integrity (N = 16 models). This step is 

necessary to identify any significant overfitting or between-layer correlation among the 

predictor variables.  

Given potential autocorrelation between the component HCI layers (e.g., distance to 

anthropogenic structures and fragmentation are likely highly correlated), we hypothe-

sized that some degree of overfitting may be unavoidable. However, we opted to test all 

possible combinations of predictor layers (n = 16) in the model selection process. To do 

this, we used a Bayesian framework within a loop, testing each of the 16 models separately 

using the BRMS package in R [50]. Here, the most likely parameter values for each layer 

in a given model are determined. The general goodness of fit of the models were then 

compared using Watanabe-Akaike Information Criteria (WAIC) and Leave-One-Out 

Cross-Validation (LOO) [51]. Model rank and posterior model probability (PMP, the prob-

ability that a given model is the best, most parsimonious model given the data) were then 
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determined using Bayesian bootstrap stabilized pseudo Bayesian model averaging (BB-

pseudo-BMA, [52]).  

We also hypothesized that the importance of predictor layers, and thus their coeffi-

cients, may vary from ecoregion to ecoregion based on known variation in the interaction 

of human and natural systems at this scale (e.g., proximity to aquatic habitat may consti-

tute a larger ecological effect in more xeric areas or the significantly higher road density 

in the northeastern US compared to the western US). We therefore created an additional 

ecoregion variable dissecting the CONUS into five regions and created an additional 16 

models with the same combinations of the HCI predictors as above, yet allowing for re-

gionally varying coefficient values for each predictor. 

We calculated the CONUS-scale HCI and regionally-varying HCI maps based upon 

the parameters of the best model in the CONUS and regional analyses respectively. To do 

this, we multiplied the parameter values for each of the HCI components from the respec-

tive best-fit models to each pixel of these component maps using the Raster Calculator 

function in ArcMap. Finally, we rescaled these datasets to a one to one-hundred scale to 

create an easy to interpret map of quality.  

3. Results of the model selection / validation

Incorporation of by-ecoregion variation of coefficients for all for predictor variables 

(VDEP, ANTHRO, FRAG, and WATER) yielded the model with the highest posterior 

model probability (PMP = 0.9999, see supplemental Excel file, S2.PMP.xlsx for a compari-

son of all models. The parameters for the model are listed in the supplemental Excel file 

S3.bestfitmodel.xlsx. In Bayesian model averaging, as applied here, the total PMP 

summed over all test models must equal one, so the likelihood of any other model being 

the best predictor of the response data, or of contributing value to understanding of model 

fit is vanishingly small (probability < 0.001). Although the PMPs for all models excepting 

the best fit are exceedingly small, the ranking of models from best to worst fit still provides 

some information on relative value of each predictor variable. Of the 32 models tested, the 

15 best fitting the response data all incorporated regional variation in the coefficient for 

each predictor, indicating the regional variation in each predictor’s fit to the response. The 

only regionally varying model to rank lower than a CONUS-scale model was the regional 

null/intercept-only model.  

Table S2. Posterior model probabilities for each of the tested models. Results show the probability that a given model is 

the best, most parsimonious model given the data (PMP). These results were generated after each model was run based 

on the model variables listed in the center column of this table in the Bayesian framework that allowed for binary (region) 

and continuous predictor variables (all others). 

Model Number Model Variables PMP 

m41.reg Response ~ ( VDEP + ANTHRO + FRAG + WATER | REGION ) 0.999 

m34.reg Response ~ ( ANTHRO + FRAG + WATER | REGION ) 0.001 

m31.reg Response ~ ( VDEP + ANTHRO + FRAG | REGION ) 0.000 

m33.reg Response ~ ( VDEP + FRAG + WATER | REGION ) 0.000 

m26.reg Response ~ ( FRAG + WATER | REGION ) 0.000 

m24.reg Response ~ ( ANTHRO + FRAG | REGION ) 0.000 

m22.reg Response ~ ( VDEP + FRAG | REGION ) 0.000 

m13.reg Response ~ ( FRAG | REGION ) 0.000 

m32.reg Response ~ ( VDEP + ANTHRO + WATER | REGION ) 0.000 

m21.reg Response ~ ( VDEP + ANTHRO | REGION ) 0.000 
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m23.reg Response ~ ( VDEP + WATER | REGION ) 0.000 

m25.reg Response ~ ( ANTHRO + WATER | REGION ) 0.000 

m12.reg Response ~ ( ANTHRO | REGION ) 0.000 

m11.reg Response ~ ( VDEP | REGION ) 0.000 

m14.reg Response ~ ( WATER | REGION ) 0.000 

m33 Response ~ VDEP + FRAG + WATER 0.000 

m41 Response ~ VDEP + ANTHRO + FRAG + WATER 0.000 

regional.intercept Response ~ (1 | REGION) 0.000 

m31 Response ~ VDEP + ANTHRO + FRAG 0.000 

m22 Response ~ VDEP + FRAG 0.000 

m34 Response ~ ANTHRO + FRAG + WATER 0.000 

m26 Response ~ FRAG + WATER 0.000 

m13 Response ~ FRAG 0.000 

m24 Response ~ ANTHRO + FRAG 0.000 

m12 Response ~ ANTHRO 0.000 

m14 Response ~ WATER 0.000 

m21 Response ~ VDEP + ANTHRO 0.000 

intercept 1 0.000 

m25 Response ~ ANTHRO + WATER 0.000 

m32 Response ~ VDEP + ANTHRO + WATER 0.000 

m23 Response ~ VDEP + WATER 0.000 

m11 Response ~ VDEP 0.000 
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