
land

Article

Revealing Characteristics of the Spatial Structure of Megacities
at Multiple Scales with Jobs-Housing Big Data: A Case Study
of Tianjin, China

Ruixi Dong and Fengying Yan *

����������
�������

Citation: Dong, R.; Yan, F. Revealing

Characteristics of the Spatial

Structure of Megacities at Multiple

Scales with Jobs-Housing Big Data: A

Case Study of Tianjin, China. Land

2021, 10, 1144. https://doi.org/

10.3390/land10111144

Academic Editor: Simon Elias Bibri

Received: 23 September 2021

Accepted: 25 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Architecture, Tianjin University, Tianjin 300072, China; ruixi@tju.edu.cn
* Correspondence: fengying@tju.edu.cn

Abstract: Urban spatial structure reflects the organization of urban land use and is closely related
to the travel patterns of residents. The characteristics of urban spatial structure include both static
and dynamic aspects. The static characteristics of urban spatial structure reflect the morphological
features of space, and the dynamic characteristics of urban spatial structure reflect intra-city func-
tional linkages. With the continuous agglomeration of population and industries; megacities have
become the core spatial carriers leading China’s social and economic development; and their urban
spatial structure has also been reconstructed. However; there is still a certain lack of understand-
ing of the characteristics of the spatial structure of China’s megacities. This study aimed to reveal
characteristics of the spatial structure of Chinese megacities at different scales using jobs-housing
big data. To achieve this goal, spatial autocorrelation and a geographically weighted regression
(GWR) model were applied to reveal static polycentricity, and community detection was used to
reveal dynamic commuting communities. The distribution of jobs in urban space and jobs–housing
balance levels in commuting communities were further analyzed. Experiments were conducted
in Tianjin, China. We found that: (1) the static characteristics of the spatial structure of megacities
presented the coexistence of polycentricity and a high degree of dispersion at macro- and meso-scales;
(2) the dynamic characteristics of the spatial structure of megacities revealed two types of commuting
communities at macro- and meso-scales and most commuting communities had a good jobs-housing
balance. These findings can be referenced by urban managers and planners to formulate relevant
policies for spatial distribution optimization of urban functions and transportation development at
different spatial scales.

Keywords: megacity; spatial structure; polycentricity; commuting communities; Tianjin

1. Introduction

In recent decades, the agglomeration of population and industries in metropolitan
areas has become a common phenomenon of urbanization worldwide [1–3], which is
particularly obvious in China [4,5]. Since China’s reform and opening-up, the country
has achieved the fastest urbanization rate in the world. The share of Chinese people
living in urban areas has increased significantly from 17.9% in 1978 to 63.9% in 2020.
According to China’s criteria for urban scale, cities with more than five million residents
in an urban area are classified as megacities. At present, there are twenty-one megacities
in China, seven of which have more than ten million residents within their urban area.
Megacities, as well as dense urban areas with megacities as the core, have undoubtedly
become the core spatial carriers leading China’s social and economic development. With
urban expansion, the spatial structure of megacities has also been reconstructed [6], leading
to changes in the distribution of different types of urban land use, and changes in travel
patterns of residents. These changes have led to a series of problems in the sustainable
development of megacities, including jobs–housing segregation [7], excess commuting [8],
air pollution [9], and a decline in the quality of life [10]. Therefore, an investigation of the
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characteristics of the spatial structure of megacities would help to understand the current
spatial development of Chinese cities, and provide corresponding urban transport and
land use policies.

By looking at the case of Tianjin, this paper aimed to reveal the characteristics of the
spatial structure of Chinese megacities at different scales, including static urban morphol-
ogy and dynamic functional linkages. Previous studies on Chinese cities mostly rely on
demographic data to detect urban spatial structure at a single spatial scale. This cannot
take into account the impact of employment on the formation of the spatial structure and
lacks the commuting connections between home and workplaces. In addition, the results
of urban studies are also dependent on the spatial scale, but little research has examined
spatial structure at multiple scales. Therefore, we used jobs–housing big data obtained from
Baidu, which can simultaneously reflect a large-scale spatial distribution of employment
and population, as well as the commuting flows connecting them. Besides, we examined
the characteristics of urban spatial structure at both macro-scale and meso-scale. Spatial
autocorrelation and a geographically weighted regression (GWR) model were used to
identify static polycentricity, and community detection was used to identify dynamic com-
muting communities. We found that: (1) the static characteristics of the spatial structure of
megacities presented the coexistence of polycentricity and a high degree of dispersion at
macro- and meso-scales; (2) the dynamic characteristics of the spatial structure of megaci-
ties revealed two types of commuting communities at macro- and meso-scales, and most
commuting communities had a good jobs–housing balance. This study makes up for the
limitation of lack of an employment distribution perspective and dynamic functional con-
nections in previous research. The multi-scale analysis results also contribute to help urban
managers and planners formulate relevant policies for spatial distribution optimization of
urban functions and transportation development at different spatial levels.

The rest of this paper is organized as follows. Section 2 briefly reviews the literature
related to this study. Section 3 introduces the study area, data and methods. Section 4
presents the research results. Section 5 discusses our findings. Section 6 concludes and
discusses the potential policy implications.

2. Literature Review
2.1. Sustainable Urban Development and Spatial Structure

The focus on sustainable development issues originated in the Brundtland Commis-
sion report in 1987. This concept is defined as development that can meet the needs of
the present without compromising the ability to meet those of the future generations [11].
The connotation of sustainable development is multidimensional, and its three pillars are
environmental, social and economic sustainability [12]. From the perspective of sustainable
development, cities, as consumers of energy and producers of waste, are regarded as prac-
tical places that cause unsustainable problems [13]. Therefore, in the face of swelling urban
populations, promoting the sustainable development of large urban areas is the key to
achieving the global sustainable development goals [14]. In fact, the World Commission on
Environment and Development (WCED) emphasized the challenges of sustainable urban
development when the concept was first proposed [11]. In recent years, the topic of sus-
tainable urban development has changed from whether the city can realize sustainability
to how the city can achieve sustainable development [15,16]. For the design of sustainable
cities, scholars have proposed a variety of sustainable urbanism models, including compact
cities [17], eco-cities [18], low-carbon cities [19], resilient cities [20], and new urbanism [21].
While these models describe the vision of sustainable urban development, they also empha-
size the connection between urban form, that is, urban spatial structure and sustainability.
The term urban spatial structure refers to discernible patterns in the distribution of human
activity in cities [22]. It reflects the organization of urban land use and is closely related to
the travel patterns of residents. A sustainable urban spatial structure contributes to control
the size of the city and population, reduce the traffic distance and the use of vehicles, and
achieve the efficient use of land resources, thus promoting urban sustainability [17,23].
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2.2. Identification and Characteristics of Urban Spatial Structure

Researchers believe that the characteristics of urban spatial structure include both
static and dynamic aspects [24,25]. The static characteristics reflect the morphological
features of space [26]. Workplaces and residences are the two most important functions
affecting urban development and residential living conditions. Therefore, using the spatial
distribution of employment and population to describe the morphological features of urban
spatial structure is a common method in existing research [27–30]. Besides, studies on
US metro areas have dominated related works [31]. Burgess abstracted the monocentric
city model based on the relationship between land uses and social classes in Chicago [32].
This model indicates that, in the early development of megacities, all or most jobs were
concentrated in the urban core, while residences were arranged in concentric circles around
the core area [33–35]. With changes to the economic development mode and the evolution
of transportation technology, a suburbanization process had taken place in big cities, in
developed countries, by the 1960s [36]. The city center maintained its dominance for
tertiary industry, while office space, research and development institutions, university
campuses, logistics parks, and residential areas gradually spread to the urban fringe [37].
The concept of edge city [38] and employment subcenter [39] have proved the emergence of
polycentric morphology in the process of suburbanization in the United States. Since then,
empirical studies on large cities in other countries have also confirmed the existence of
polycentricity [40–42], and polycentric development has also been considered as an effective
planning tool to combat unorganized urban sprawl [43,44]. However, another perspective
emphasizes that the suburbanization process will not necessarily form a polycentric urban
spatial structure, but will further promote the decentralization of jobs and people [45].
This makes megacities form a pattern of generalized dispersion, and some recent studies
in the United States and other developed countries present evidence consistent with this
view [46–49].

The dynamic characteristics of urban spatial structure reflect intra-city functional
linkages, which are manifested as dense functional urban regions [50]. Existing studies
have used a variety of flows to measure the functional connections, among which the traffic
flow generated by human daily activities is the most frequent [51–54]. The traditional
approach to obtaining travel data is that of a household travel survey, which is costly,
error-prone, and not easily updated. Moreover, the sample size limitation makes it difficult
to provide comprehensive evidence of human mobility [55]. Thus, although Berry tried to
reveal the spatial structure via complex flow systems in the 1960s [56], related studies have
still concentrated on the nodal regions, such as those organized by various interactions
between urban core nodes and their hinterlands [57]. The updating of research data and
methods in recent years has triggered a renaissance of dynamic urban structure studies. The
development of information and communication technologies (ICT) and location-aware
technology has provided new data sources for detecting the dynamics of urban structure,
including Global Positioning System (GPS) log data, smart card data, mobile phone data,
and other trajectory data [58]. These new data sources have provided opportunities to track
human movements and obtain socio-demographic information [59,60]. On the other hand,
researchers have discovered that the statistical characteristics of travel behavior follow a
power law and have a truncated heavy-tailed distribution, meaning that people are more
likely to travel repeatedly in familiar areas and/or close to their place of residence [61–63].
These findings have resulted in the introduction of complex network theory and methods
into the field of urban studies, and researchers have started to explore dynamic functional
areas from large-scale trajectory data [50,55,64–67].

As the most populous country in the world, China’s urban development has had
a significant impact on the global urbanization process and environmental issues [4].
However, due to the limitations of data, previous studies have certain deficiencies in the
understanding of the spatial structure of Chinese megacities. First, from the perspective
of the static characteristics of urban spatial structure, previous datasets used in these
studies mostly rely on statistical sources, which are usually renewed once every five or
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ten years [68]. For example, some recent studies still rely on the population census for
2010 and economic census for 2008 [6,69,70]. Besides, due to the difficulty of obtaining
the spatial distribution of job statistics from public sources, Chinese scholars have had to
measure urban patterns based on resident population data for a long time [70]. However,
usually employment, not population, is considered to be the key to shaping the urban form
and determining economic development [28]. Therefore, there needs to be more empirical
research to explore the morphological features of Chinese megacities from the perspective
of employment distribution. Second, from the perspective of the dynamic characteristics
of urban spatial structure, scholars have revealed the functional urban regions formed
by population flows and spatial interactions in the inner city based on different sources
of trajectory data in recent years. However, it should be noted that most studies used
trajectory data generated by specific types of vehicles, such as taxi trajectory data [50,67],
rather than commuting flows. In fact, the commuting flows that connect workplaces and
residences is the specific representation of dynamic spatial structure [49]. In addition,
compared with statistical data used in urban form research, the new trajectory data differs
greatly in methods, scope and time in which statistics are gathered. Therefore, few studies
can analyze the static and dynamic characteristics of the urban structure at the same
time, because different sources of data reflect the spatial development in different periods.
Third, urban studies are scale-dependent. This means that the characteristics of the urban
spatial structure may be different at different research scales, and that policy making at
different spatial levels will also be affected [71]. Urban planning of Chinese megacities
usually involves two spatial scales, the metropolitan area as the macro-scale, and the central
area as the meso-scale. Correspondingly, planners will study the spatial structure and
make policies for land use and transportation development at these two spatial scales.
However, most previous studies have focused on exploring the characteristics of urban
spatial structure at a single spatial scale, and there is limited research examining spatial
structure at multiple scales [70].

3. Materials and Methods
3.1. Study Area

Tianjin (116◦43′–118◦04′ E, 38◦34′–40◦15′) is located in the Bohai Rim Region of China.
It is one of the central cities in the Beijing-Tianjin-Hebei Urban Agglomeration and one
of the four municipalities directly under the Central Government of China. By the end of
2019, the residential population of Tianjin was 15.6 million, and the urbanization level had
reached 83.5%. We investigated the characteristics of urban spatial structure at two spatial
scales: the metropolitan area as the macro-scale and the central area as the meso-scale
(Figure 1). The Tianjin metropolitan area is a dense built-up area within the administrative
region, with an area of 4351 km2. The administrative divisions are divided into three circles:
Heping, Nankai, Hexi, Hedong, Hebei, and Hongqiao in the center circle; Dongli, Xiqing,
Beichen, and Jinnan in the suburban circle; and Binhai New District in the peripheral circle.
Tianjin central area is the political, economic, and cultural center of the city, as well as its
most densely populated area. It is within the outer ring expressway, covering an area of
475 km2.
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Figure 1. (a) Tianjin’s location in China; (b) The study area in Tianjin; (c) The macro-scale: Tianjin metropolitan area; (d) The
meso-scale: Tianjin central area.

3.2. Data

This study relies on two sets of data. The first is the jobs-housing big data obtained
from Baidu. Baidu gathers geographical information data from users from smartphones
and other apps using its Location-Based Service (LBS). Records are generated whenever
users stay, call, send or receive messages, use related apps, and connect to positioning
systems (such as GPS, Wi-Fi, or cellular base stations). Baidu identifies the home and
workplace of a single user based on his/her daily stay locations. Then, Baidu calculates the
number of residents and jobs in given areas (such as grids, land parcels, traffic analysis
zones, subdistricts, cities, etc.), and produces commuting flows connecting them. The
final statistical result of a given area is a monthly average, considering that there would
be differences in the number of residents and jobs identified every day. We obtained
Tianjin metropolitan area data from Baidu in June 2019 and Tianjin central area data in
November 2019, respectively. At that time there were approximately 11.3 million residents
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and 5.3 million jobs in Tianjin metropolitan area, and 5.5 million residents and 2.3 million
jobs in Tianjin central area. The second set of data is the vector file of administrative
boundaries of subdistricts in Tianjin metropolitan area and the vector file of land parcel
boundaries in Tianjin central area provided by Tianjin Planning and Design Institute. We
created research units for metropolitan area and central area based on subdistricts and land
parcels, respectively. It should be pointed out that due to the insufficient precision of the
data we obtained, we merged some land parcels during the analysis. Figures 2–4 show
the population density, job density, and commuting flows in Tianjin metropolitan area and
Tianjin central area.
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3.3. Methods
3.3.1. Identification of Static Characteristics

Understanding the static characteristics of urban spatial structure requires the identifi-
cation of spatial polycentricity, including the main center and subcenters. It is generally
believed that monocentric morphology is the starting point of urban form studies [72].
Thus, the definition and identification of subcenters would result in differences in the un-
derstanding of urban spatial polycentricity. A widely accepted definition is that a subcenter
is an area where significantly higher employment agglomeration has remarkable effects
on the overall spatial distribution of urban functions [73]. However, recent studies have
reported that the share of jobs in centers is relatively low and most jobs are dispersed
outside the main center and subcenters [49]. This means that the reality is that the cen-
ters, especially the subcenters, might only have local effects on the spatial distribution of
employment and population.

A two-step workflow was applied to identify the main center and subcenters in
this study. Spatial autocorrelation was used to locate the main center, and GWR was
used to locate subcenters. Spatial autocorrelation is based on objective spatial statistical
techniques, which can identify the center by discovering the inherent structure of spatial
data [74]. Therefore, there is no need for subjective threshold selections and local planning
knowledge in the identification process [68,72]. The modeling tool of GWR only uses
nearby observations when analyzing spatial data [75], thus the area with local high value of
employment density would be represented as positive residuals. To determine the location
and scale of subcenters through the selection of positive residuals might be more in line
with the actual employment distribution.

Step 1: identification of the main center.
A main center can be defined as an area with high job density in the study area, and

which also has the characteristics of a spatial cluster [68]. Therefore, spatial autocorrelation
methods were applied to locate the main center, including the Global Moran’s I (GMI)
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and Anselin Local Moran’s I (LMIi) [76]. The GMI and LMIi were calculated using the
following Equations (1) and (2), respectively:

GMI =
∑n

i=1 ∑n
j 6=i Wijzizj

σ2 ∑n
i=1 ∑n

j 6=i Wij
(1)

LMIi= zi ∑n
j 6=i W ′ijzj (2)

where:
zi =

xi − x
σ

(3)

x =
1
n∑n

i=1 xi (4)

σ2 =
1
n∑n

i=1 (xi − x)2 (5)

where Wij is the spatial weight matrix based on distance function; i and j represent two
research units, respectively; n is the total number of research units; xi is the job density of
unit i; zi and zj are the standardized transformations of xi and xj, respectively; and x is the
mean job density of the whole area.

First, the GMI was used to assess the pattern of job density and determine whether
it was dispersed, clustered, or random. Meanwhile, the z-score and the p-value were
introduced to examine statistical significance. The range of the GMI lies between −1 and
+1. A positive value for GMI indicates that the job density observed is clustered spatially,
and a negative value for GMI indicates that the job density observed is dispersed spatially.
If the GMI is equal to zero, it suggests that the job density presents a random distribution
pattern in the city. When the calculation results of the GMI showed that the job density
presented a spatial agglomeration pattern, the LMIi was used to locate the main center.
A high positive z-score (larger than 1.96) for a research unit indicates that it is a statistically
significant (0.05 level) spatial outlier. Research units with high positive z-score values
surrounded by others with high values (HH) were defined as a main center.

Step 2: identification of the subcenter.
A subcenter was defined as an area with a local high job density within the study area.

The GWR was applied to locate the subcenter. First, we defined the weighted centroid of
the main center as the main center point of the city, and calculated the Euclidean distance
between the centroid of each research unit and the main center point of the city. Then, we
selected the square root of job density as the dependent variable and the Euclidean distance
as the explanatory variable, and used GWR to model the relationship between them for
each unit. The GWR was calculated using the following formula:

yi= β0(ui, vi) + ∑
k

βk(ui, vi)dik+εi (6)

where yi is the square root of the job density for unit i; dik is the independent variable
of unit i; (ui, vi) is the coordinates of unit i; β0(ui, vi) is the intercept; βk(ui, vi) is the kth
regression coefficient for unit i; and εi is the residual error.

Planning districts containing research units with standard residuals >1.96 were defined
as subcenters. Thus, the job density values of these subcenters were significantly higher
than average at the local scale [68], and the continuity of planning works can be guaranteed.

3.3.2. Identification of Dynamic Characteristics

Understanding the dynamic characteristics of urban spatial structure requires the
spatial identification of functional regions. Commuting flows of residents within a city
connect discrete home and work locations into a complex system. By treating residences
and workplaces as nodes, and commuting flows as edges, we were able to construct
a commuting complex network. The spatial mapping of the sub-network structure of
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the commuting complex network indicated the location and scale of dynamic functional
regions. We defined these dynamic functional regions as commuting communities. Thus,
a commuting community was a sub-network structure of the commuting complex network,
which contained locations with a higher number of internal commuting links compared to
the outward commuting links toward it. Therefore, community detection was applied to
locate the commuting communities.

To build a commuting network from the commuting flows of the city, we need to
determine the nodes, edges, and weights of the edges. The weighted centroid of each
research unit i was denoted as the node Di. Commuting trips originating from unit i and
ending in unit j indicated the existence of an edge Tij. The weight of edge Tij was calculated
using the following formula:

Weightij =
h
Si

(7)

where h is the number of the trips originating from Di and ending in Dj; and Si is the
area of unit i, considering the changes in the number of commuters caused by the size of
each unit.

Then, a smart local moving (SLM) algorithm was applied to partition the commuting
network into sub-networks. Compared with some previous classical algorithms, SLM
algorithm has been proved to be able to find local optimal solutions with respect to both
communities merging and individual node movements, and to identify better community
structures with fewer iterations, especially for medium, large and very large networks [77].
Based on the idea of modularity optimization [78], the SLM algorithm uses the local moving
heuristic [79] to obtain the community structure of network. It is composed of three steps
(for the pseudo-code and more details, please refer to Waltman and van Eck [77]):

(1) By treating every node as a single community, the SLM algorithm uses the local
moving heuristic to repeatedly move individual nodes from one community to another.
Then, it calculates the modularity change caused by node movements, and moves the node
to the community with the maximum modularity increase. Repeat this process until stable
community partition result is obtained. The modularity is calculated using the following
formula:

Q =
1

2m ∑
i,j

(
Aij −

kik j

2m

)
δ
(
ci, cj

)
(8)

where Q is the network modularity, m is the total edge weight, ci is a community of Di,
δ
(
ci, cj

)
indicates whether two nodes belong to the same community, Aij denotes whether

there is an edge between node Di and Dj, and ki is the degree of node Di.
(2) The SLM algorithm iterates all the communities partitioned in step (1) to construct

a subnetwork for each community. Then, it runs the local moving heuristic again in each
subnetwork. In this way, a subnetwork may be merged into one community or split into
multiple communities.

(3) The SLM algorithm constructs a reduced network by taking the communities
obtained in step (2) as a new node. Then, local moving heuristic is used to assign nodes to
communities in the reduced network. Repeat the above steps until the network cannot be
reduced further.

4. Results
4.1. Static Polycentricity
4.1.1. Polycentricity in the Metropolitan Area

In Tianjin metropolitan area, the GMI value obtained by job density was 0.56, when
the obtained p-value was less than 0.05 (p < 0.05), and the obtained z-score was greater
than 2.58 (z-score > 2.58). These indexes suggested that the spatial distribution of jobs
formed a clustered pattern. Then, the LMIi was used to explore the main center, and
high value subdistricts that were geographically contiguous and surrounded by other
subdistricts with high values (HH) were selected as the main center of Tianjin metropolitan
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area (Figure 5). The main center contained 32 subdistricts located in the central circle of
Tianjin metropolitan area. After defining the main center, the GWR was used to explore the
subcenters. Areas with standard residuals > 1.96 were regarded as subcenters of Tianjin
metropolitan area. As shown in Figure 5, there was only one subcenter containing one
subdistrict located in the peripheral circle of Tianjin metropolitan area. The number of jobs
and job density of the main center and subcenter are displayed in Table 1.
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Table 1. The number of jobs and job density of centers in Tianjin metropolitan area.

Centers Number of Jobs Job Density

Main center 1,222,316 17,167/km2

Subcenter 267,183 5951/km2

4.1.2. Polycentricity in the Central Area

In Tianjin central area, the GMI value obtained by job density was 0.33, when the
obtained p-value was less than 0.05 (p < 0.05), and the obtained z-score was greater than
2.58 (z-score > 2.58). These indexes suggested that the spatial distribution of jobs also
formed a clustered pattern. Then, the LMIi was used to explore the main center, and the
final main center of Tianjin central area and its location are shown in Figure 6. The main
center, located in the downtown, covered the CBD, Haihe River International Business
Center, and the Tianjin Railway Station and surrounding areas. After defining the main
center, the GWR was applied to explore the subcenters. Planning districts containing land
parcels with standard residuals > 1.96 were considered to be the subcenters of Tianjin
central area. We identified five subcenters at the Tianjin central scale (Figure 6). According
to their locations, these five subcenters were named Beicang (BC) subcenter, Dahutong (DH)
subcenter, Huayuan (HY) subcenter, Tianta (TT) subcenter, and Wenhua (WH) subcenter.
The number of jobs and job density of the main center and five subcenters are displayed in
Table 2.
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Table 2. The number of jobs and job density of centers in Tianjin central area.

Centers Number of Jobs Job Density

Main center 384,461 27,659/km2

BC subcenter 31,985 6462/km2

DH subcenter 18,012 24,674/km2

HY subcenter 46,000 21,596/km2

TT subcenter 29,211 16,319/km2

WH subcenter 49,613 12,497/km2

4.2. Dynamic Commuting Communities
4.2.1. Commuting Communities in the Metropolitan Area

In Tianjin metropolitan area, five spatially continuous commuting communities were
identified based on commuting linkages. From the perspective of the commuters, these
five commuting communities could be divided into two types: core and periphery. The
core type contained four commuting communities which were named MC1, MC2, MC3,
and MC4. The periphery type contained one commuting community named MP1. The
final commuting communities and their locations are displayed in Figure 7. The number of
residents and jobs of commuting communities are displayed in Table 3.

Table 3. The number of residents and jobs of commuting communities in Tianjin metropolitan area.

Commuting Communities Number of Residents Number of Jobs

MC1 2,099,700 825,203
MC2 2,467,886 1,185,182
MC3 1,694,100 941,802
MC4 1,971,600 830,969
MP1 3,113,505 1,513,038



Land 2021, 10, 1144 12 of 20
Land 2021, 10, x FOR PEER REVIEW 12 of 20 
 

 

Figure 7. The commuting communities in Tianjin metropolitan area. 

Table 3. The number of residents and jobs of commuting communities in Tianjin metropolitan 

area. 

Commuting Communities Number of Residents Number of Jobs 

MC1 2,099,700 825,203 

MC2 2,467,886 1,185,182 

MC3 1,694,100 941,802 

MC4 1,971,600 830,969 

MP1 3,113,505 1,513,038 

 

For the core type, these four commuting communities contained all the subdistricts 

located in the central circle and most of the subdistricts located in the suburban circle. 

During the expansion of the megacities, the outward movement of the population and 

industries from downtown formed new residential and industrial areas at the fringes of 

the city. Thus, compared with the subdistricts in the peripheral circle, the subdistricts in 

the central circle and suburban circle are more connected by commuting trips. The radial 

rail traffic lines also enable these connections. Therefore, the core type of commuting com-

munities formed a sectorial spatial pattern spreading from the center outwards, with com-

munity delineations that were spatially coupled with rail traffic lines. For the MP1 of the 

periphery type, it contained all the subdistricts located in the peripheral circle and a small 

number of subdistricts located in the suburban circle. These subdistricts are located far 

from the downtown area, and thus their development is more dependent on the local 

population and industries rather than the decentralization of the population and indus-

tries from downtown. In addition, there is a lack of public transport facilities in MP1, with 

only one rail line and seven stations, which also reduces the possibility of long-distance 

commuting for local residents. Its internal commuting connections are mainly between 

adjacent subdistricts. Therefore, MP1 presented a large, ribbon shaped structure that ex-

tended along the coast. 

4.2.2. Commuting Communities in the Central Area 

As shown in Figure 8, seven commuting communities were identified based on com-

muting linkages in the inner Tianjin central area. However, different from the results in 

Tianjin metropolitan area and some existing studies [80], there were a very small number 

of enclaves in Tianjin central scale. This implied that when choosing land parcels as much 

Figure 7. The commuting communities in Tianjin metropolitan area.

For the core type, these four commuting communities contained all the subdistricts
located in the central circle and most of the subdistricts located in the suburban circle.
During the expansion of the megacities, the outward movement of the population and
industries from downtown formed new residential and industrial areas at the fringes of
the city. Thus, compared with the subdistricts in the peripheral circle, the subdistricts
in the central circle and suburban circle are more connected by commuting trips. The
radial rail traffic lines also enable these connections. Therefore, the core type of commuting
communities formed a sectorial spatial pattern spreading from the center outwards, with
community delineations that were spatially coupled with rail traffic lines. For the MP1 of
the periphery type, it contained all the subdistricts located in the peripheral circle and a
small number of subdistricts located in the suburban circle. These subdistricts are located
far from the downtown area, and thus their development is more dependent on the local
population and industries rather than the decentralization of the population and industries
from downtown. In addition, there is a lack of public transport facilities in MP1, with
only one rail line and seven stations, which also reduces the possibility of long-distance
commuting for local residents. Its internal commuting connections are mainly between
adjacent subdistricts. Therefore, MP1 presented a large, ribbon shaped structure that
extended along the coast.

4.2.2. Commuting Communities in the Central Area

As shown in Figure 8, seven commuting communities were identified based on
commuting linkages in the inner Tianjin central area. However, different from the results in
Tianjin metropolitan area and some existing studies [80], there were a very small number
of enclaves in Tianjin central scale. This implied that when choosing land parcels as much
finer and independent research units, some land parcels would not have close commuting
connections with surrounding units due to specific commuting flows, such as rail transit
or company shuttles. However, these enclaves accounted for a small proportion in terms
of numbers, commuters and jobs, and had little impact on the division of commuting
communities. Therefore, these seven commuting communities could also be divided
into two types, core and periphery, from the perspective of the commuters. The core
type contained two commuting communities named CC1 and CC2. The periphery type
contained five commuting communities which are named CP1, CP2, CP3, CP4 and CP5.
The number of residents and jobs of commuting communities are displayed in Table 4.
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Table 4. The number of residents and jobs of commuting communities in Tianjin central area.

Commuting Communities Number of Residents Number of Jobs

CC1 158,370 90,899
CC2 266,677 229,683
CP1 1,288,781 445,169
CP2 894,811 394,929
CP3 608,605 232,616
CP4 1,147,716 551,986
CP5 1,155,372 381,729

Some empirical studies of commuting have indicated that commuters tend to maintain
or reduce their commuting distance and time by periodically changing their residence and
workplace, and choosing reasonable travel modes. This has resulted in urban expansion
not significantly increasing commuting distance and time, which is referred to as the
co-location hypothesis [81]. This hypothesis implies that short-distance commuting trips
account for a large proportion of the trips made within cities. The above two types of
community reflect differences in commuting behavior of residents in different regions.
For the core type, the two communities have access to a higher proportion of commercial
and business facilities, and better traffic accessibility due to their location within the city.
Therefore, they are more likely to attract a large number of commuters from other areas,
with a relatively high proportion of long-distance commuting trips. For example, residents
on the fringe of the city take the subway to work in the downtown. Compared with the
core type of commuting communities, the periphery type has access to a more balanced
proportion of land uses and most residents mainly undertake short-distance commuting
trips. The spatial division of commuting communities also supports the argument in
a previous study [67], which assumes that short trips would dominate the local spatial
interactions.
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In addition, several other interesting findings were apparent. First, as a natural barrier,
rivers play a role in the formation of commuting communities. Commuting communities
on both sides of the Haihe River had clear boundaries that extended along the river. Only
in the downtown area were there strong commuting connections across the river. Second,
there was a large amount of industrial land distributed on both sides of the expressway in
the north of the city. This resulted in CP1 covering a large region across the expressway.
Third, metro lines also played an important role in forming the commuting structure at
the meso-scale. The boundaries of the periphery type of communities extended outward
alongside the radiating subway lines.

5. Discussion
5.1. Does Polycentricity Explain the Distribution of Jobs in Cities?

This study used the spatial distribution of jobs to describe the static characteristics
of urban spatial structure. Through an empirical study of Tianjin, we found that the
megacity presented polycentricity at both the metropolitan and central scales. However,
the polycentric model did not provide an accurate explanation of the spatial distribution of
jobs in the city. This was apparent from the proportion of jobs located in the main center
and subcenters. In the Tianjin metropolitan area, the proportion of jobs located in the main
center was 23.1%, while the figure was 5.0% in the subcenter. In the Tianjin central area,
the proportion of jobs located in the main center was 16.5%, while the figure was 7.5% in
the five subcenters. These statistics indicated that 71.9% of all jobs were dispersed outside
the main center and subcenter at the macro-scale, and 76.0% of all jobs were dispersed
outside the main center and subcenters at the meso-scale. Therefore, it can be argued that
the polycentric city model does not describe the spatial distribution of jobs in a modern
megacity because it assumes that all or most of the jobs in the city are concentrated in
the main center and subcenters. The reality is that the main center and subcenters do not
attract more than 30% of all jobs at different urban scales. Within the urban spatial structure
there is a coexistence of polycentricity and a high degree of dispersion.

Our empirical results are to some extent similar to those of other studies focusing on
metropolises in the United States. Angel and Blei reported that, on average, only 10.8± 3.1%
of all jobs were located in the main urban center and an average of 13.8 ± 2.0% of all jobs
were located in subcenters [49]. The majority of jobs are dispersed outside the main center
and subcenters in a modern megacity and, therefore, the urban spatial structure has moved
beyond polycentricity [45]. However, the main centers of Chinese megacities still maintain a
relatively high proportion of jobs, while some main centers in U.S. metropolitan areas have
a lower proportion of jobs than the subcenters. This difference could be attributed to the
expansion process of urban spaces in Chinese and American cities. American metropolitan
areas have generally formed by a group of cities of varying size gradually expanding
toward each other [49], while Chinese megacities have generally formed through the
sprawl process of traditional monocentric old cities. Therefore, unlike American cities,
Chinese megacities often have a central area with a high concentration of population and
functions. Our empirical results even differ to some extent from some related studies
focusing on Chinese cities. Li has indicated that Chinese megacities have become more
polycentric and less dispersed (e.g., Beijing, Shanghai, and Tianjin) [72]. However, these
differences might be attributed to the data used in studies. Due to the difficulty of obtaining
job statistics, most existing studies of Chinese cities have measured urban spatial structure
based on resident population data. However, as megacities in China have expanded,
the decentralization of employment and population have generally occurred separately.
Before the 1980s, the development of Chinese cities was concentrated in the urban centers.
Danwei, a Chinese socialist workplace with its specific range of practices [82], can provide
workplaces, housing and various public facilities for its employees. Therefore, the urban
space formed a highly mixed land use pattern, with the danwei as the basic unit [83].
After China’s reform and opening-up, the market-oriented reform of the land and housing
systems have promoted suburbanization in Chinese cities [84]. During this process, the
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decentralization of the residential population caused by the regeneration of the old city and
suburban housing construction was the main feature of China’s suburbanization, whereas
employment decentralization has been a gradual process [85].

5.2. Jobs–Housing Balance Levels in Commuting Communities

The commuting network is a complex network of residences and workplaces, together
with the commuting flows between them. In a complex network, the connections between
nodes are not random, but present a clustered pattern. Therefore, a complex network can be
divided into sub-networks, with dense internal connections. The commuting communities
were identified in this study by the spatial mapping of the sub-networks of the commuting
network. That is to say, a commuting community containing areas that are more densely
commuting linked to each other than to the rest of the city. From the perspective of
commuters, short-distance commuting trips account for the largest proportion of trips in
cities and, therefore, most areas in cities only maintain strong commuting links with the
surrounding local areas, with weak commuting links to distant areas.

The commuting community might be a potential jobs–housing balance region. To mea-
sure the jobs–housing balance level, we calculated the jobs–housing ratio and the intra-
travel ratio. The jobs–housing ratio is defined as the ratio of jobs and employed residents,
which is determined by the size of the workforce and the number of commuters within a
given region. It is generally considered that a region is balanced when this ratio lies within
the range of 0.75 to 1.25 [86]. The intra-travel ratio is defined as the ratio of locally em-
ployed residents and overall employed residents, which reflects the percentage of internal
commuting trips within a given region. Thus, the larger the value of the intra-travel ratio,
the better the jobs–housing spatial match is in the community.

The calculated jobs–housing and intra-travel ratios of the commuting communities
at the Tianjin metropolitan and central scales are shown in Tables 5 and 6, respectively.
The jobs–housing ratio of each commuting community ranged from 0.86 to 1.25 at the
Tianjin metropolitan scale, and it was therefore considered that these communities had
reached a balanced state from the perspective of the number of jobs and commuters. They
also maintained a relatively high intra-travel ratio, which indicates that most residents
(more than 60%) commuted within the local community. Among them, MP1 had the most
independent jobs–housing relationship, with more than 90% of residents commuting inside
the community. This indicates that, for megacities, the central urban area and the new city
in the peripheral circle generally formed two isolated jobs–housing regions, with a small
number of people commuting between them. At the Tianjin central scale, we identified
the spatial delineations of commuting communities by taking land parcels as research
units. Compared to the metropolitan area, these communities were smaller. It is generally
believed that the smaller a given area is, the more difficult it is to achieve a jobs-housing
balance. As shown in Table 6, there were three communities in which the jobs–housing
ratio was outside the range of 0.75 to 1.25. Among them, CC2 was located in the CBD, and
had a high proportion of commercial and business facilities, resulting in the jobs–housing
ratio being larger than 1.25. In contrast, CP1 and CP5 were located in the north and east of
Tianjin central area. In these two regions, there were large areas of industrial land, with a
low employment density, resulting in a small number of jobs and a jobs–housing ratio of
less than 0.75. The jobs–housing ratio in the other communities was within the balanced
range. In terms of the intra-travel ratio, with the exception of CC1 and CC2, which were
located in the downtown area, the ratio was over 50%, indicating that more than half of
the residents commuted within the local community. This indicated that most commuting
communities had a good jobs–housing balance, even at a relatively small spatial scale.
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Table 5. The jobs–housing ratio and the intra-travel ratio of commuting communities in Tianjin
metropolitan area.

Commuting Communities Jobs-Housing Ratio Intra-Travel Ratio

MC1 0.86 67.6%
MC2 1.02 72.7%
MC3 1.25 68.5%
MC4 0.90 66.6%
MP1 1.01 91.1%

Table 6. The jobs–housing ratio and the intra-travel ratio of commuting communities in Tianjin
central area.

Commuting Communities Jobs-Housing Ratio Intra-Travel Ratio

CC1 1.25 32.8%
CC2 2.66 45.1%
CP1 0.73 67.7%
CP2 0.93 65.6%
CP3 0.81 52.7%
CP4 1.05 71.4%
CP5 0.67 60.8%

6. Conclusions

This study used jobs–housing big data obtained from Baidu to explore the spatial
structure characteristics of China’s megacities at macro- and meso-scales. The analysis
was conducted in Tianjin, China. Spatial autocorrelation and GWR were applied to iden-
tify static polycentricity, and community detection was introduced to identify dynamic
commuting communities. We further analyzed the distribution of jobs in city and jobs-
housing balance levels in commuting communities. The results revealed that, for the spatial
structure of megacities at macro- and meso-scales, the static characteristics presented a co-
existence of polycentricity and a high degree of dispersion, and the dynamic characteristic
revealed two types of commuting community, most of which had a good jobs–housing
balance.

There are several policy implications to be drawn from these results. First, at the
metropolitan area scale, urban planning and management policies mainly focus on large-
scale population and employment distribution, as well as long-distance transport modes.
In recent years, Tianjin municipal government has proposed the concept of “Twin Cities”,
including “Jin City” and “Bin City”. Jin City contains districts in its central and suburban
circles, while Bin City contains Binhai New District in its peripheral circle. Our empirical
research indicates that from the perspective of employment distribution, the existence
of the main center and subcenter within the metropolitan area means that the urban
form of “Twin Cities” has emerged. However, the industrial parks and development
zones in the suburbs, especially in the inner suburbs, have not formed sufficient-scale
subcenters. In fact, compared with the previous polycentric strategy, Beijing has focused
more on a single subcenter in the recent urban master plan, and intends to promote the
reorganization of residential and industrial distribution at the metropolitan area scale
through the construction of the Tongzhou subcenter. Therefore, the recent development
of Tianjin metropolitan area should also be further focused on the “Twin Cities” instead
of the polycentric development pattern. Tianjin should improve the attractiveness of the
subcenter to population and industries in order to expand the development scale of Bin City,
making it a growth pole within the metropolitan area. In addition, the master plan intends
to strengthen the connection between center circle and suburban circle. However, the
commuting communities identified in this study indicate that there are weak connections
in some suburban areas, from the perspective of a bottom-up jobs-housing relationship.
By comparing the boundaries of commuting communities with those of administrative
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districts, it can be found that this mismatch mainly occurred in Jinnan District. Therefore,
urban managers and planners need to focus on the future industrial development and
public transport facilities in Jinnan District to promote the connection between center circle
and suburban circle. Second, at the central area scale, urban planning and management
policies mainly focus on the relationship between transport and land uses, as well as the
allocation of public services facilities. Our empirical study indicates that current urban
space has shown a polycentric urban form, but the differences in the size and location of
subcenters reflect the inequality of development within the city. For example, there is only
one small-scale subcenter in the north and no subcenter in the east. These two areas are
also places where residents commute relatively long distances and times. Therefore, urban
managers and planners should re-evaluate the implementation of the current master plan
in different areas and analyze the reasons for the failure of employment agglomeration in
the northern and eastern regions. Then, they can rearrange the functions, locations and
scales of the subcenters in these areas. In addition, commuting communities in Tianjin
central area reflect that most residents mainly undertake short-distance commuting trips.
Therefore, we should support policies that give priority to short-distance local traffic, such
as adjusting the structure of the secondary roads network and promoting mixed land
uses. Considering that most commuting communities have a relatively good jobs-housing
balance, we can arrange the quantities and spatial distribution of public service facilities
with the commuting communities according to their locations and scales, so as to allow
most residents to commute and carry out daily activities within their local commuting
community. This could provide a feasible planning idea and method to solve the problem
of traffic congestion and public facilities allocation in the megalopolis.

The main limitation of this study is that only big data for given months can be accessed
from Baidu, with the value representing a monthly average. As cities develop, the mobility
of the population and jobs will increase. In further studies, the results for different months
or years can be compared and analyzed, enabling the operation of urban spatial structure
to be more effectively monitored.
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