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Abstract: In the context of vigorously promoting new-urbanization, effectively improving the green
use efficiency of urban land is an inevitable requirement to achieve high-quality economic and social
development. Based on the panel data from 2011 to 2018 of 297 prefecture-level and above cities
in China, this paper uses the entropy weight method and the super-efficient SBM-GML model to
estimate the spatio-temporal evolution characteristics of new-urbanization and urban green land
utilization efficiency. Then, the spatial simultaneous-equation and the generalized spatial three-stage
least square method (GS3SLS) are employed to empirically investigate the spatial interaction spillover
effects between the new-urbanization and the green land utilization efficiency. The results indicate
that: (1) The level of new-urbanization and the green land utilization efficiency in Chinese cities
have common and complex temporal and spatial dynamic evolution characteristics. (2) There are
mutual inhibition effects between new-urbanization and green land utilization efficiency, and the
level of new-urbanization is in a comparatively leading role. (3) Both the level of new-urbanization
and green land utilization efficiency have obvious spatial spillover effects. (4) The level of new-
urbanization of surrounding regions promotes the green land utilization efficiency of local regions,
and the improvement of the green land utilization efficiency of surrounding regions also promotes
the level of new-urbanization of local regions. As environmental pressure increasingly becomes
a constraint on urban development, these findings are helpful to clarify the regional relationship
between urban construction and green development and promote the harmonious development of
new-urbanization and green land utilization efficiency.

Keywords: new-urbanization; green land utilization efficiency; temporal and spatial evolution;
spatial simultaneous-equation; GS3SLS

1. Introduction
1.1. Research Motivation

For more than two hundred years after the industrial revolution, the world has
experienced a magnificent and rapid urbanization process. A considerable part of the
progress of human society benefits from urbanization, but it also causes the continuous
deterioration of the land environment. Urban land is a supporter of urbanization. Under
the background of vigorously promoting urbanization, governments of various countries
have also clarified the long-term goal of green land use. In the 21st century, urbanization
in all countries worldwide is bound to develop in-depth and maintain strong growth
potential. Nearly 70% of the world’s population will live in cities by 2050 [1]. Compared
with urbanization in population, urban land is expanding more rapidly, about twice of
population growth [2]. Studies have shown that the extension of the city will be largely
focused on developing countries in the coming decades [3].
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As the world’s largest developing economy, China has witnessed rapid growth in
urbanization over the past 40 years of reform and opening-up, making outstanding contri-
butions to economic and social development [4–6]. With the advancement of urbanization,
the expansion of urban construction land has continuously encroached on cultivated land,
and forest land [7], and some cities expand outward in the form of “spreading the pie”.
At present, China’s urban construction land increases year after year, but the efficiency of
urban land utilization is not high, and pollution problems frequently occur [8,9]. There are
irrational structures for land utilization and waste from land resources, and the inconsis-
tency between the development of regional urbanization, The protection of agricultural
land and ecological is becoming increasingly prominent. Improving the efficiency of
urban land utilization has become the internal requirement to promote sustainable re-
gional construction and the development of national environmental civilization. China
presented the concept of new-urbanization in The National New Urbanization Plan (2014–
2020) [10]. Specifically, new-urbanization is urbanization with the basic characteristics of
urban–rural overall planning, urban–rural integration, industrial interaction, economy and
intensification, ecological livability, and harmonious development. It is the urbanization of
coordinated development and mutual promotion of large, medium, and small cities, small
towns, and new rural communities. There are real differences between new-urbanization
and traditional urbanization [11]. In terms of objectives, compared with traditional ur-
banization, the goal of new-urbanization is the development of urban–rural integration
with the comprehensive transformation of economy, society, environment, and culture,
while traditional urbanization emphasizes urban and social development, ignoring the
development needs of society, culture, and other aspects to a certain extent. In terms of
content, although the two are basically the same in outline, their emphasis is very different.
New-urbanization emphasizes a people-oriented, or people-centered, view. Traditional
urbanization emphasizes the urbanization of land.

Green land utilization efficiency is the land utilization efficiency considering pollution
factors [12]. The evaluation of urban land utilization efficiency should not only pay atten-
tion to the economic benefits of urban land, but also consider the social and environmental
benefits. The land utilization efficiency calculated according to the input-output factors
such as land and manpower can well explain the utilization of land resources in a city
at the level of optimal allocation and intensive use. At present, China is in the critical
period of improving the quality and efficiency of new-urbanization construction, so it is
urgent to carry out a relevant investigation into the mechanism of new-urbanization and
green land utilization efficiency to change the current situation of extensive use of urban
land, to realize the best allocation of urban land resources and the smooth progress of
new-urbanization.

From the perspective of spatial layout, the level of new-urbanization and the efficiency
of green land use have a prominent feature of taking a city as a unit, which is mani-
fested as the aggregation of urban development resources and land ecological industries
within cities, and there are apparent differences between different cities [10,13]. From the
perspective of cities, internally, there is a complex interconnection mechanism between
new-urbanization and green land utilization efficiency; externally, with the increase in
cross-regional flow of resources and the intensification of inter-regional competition for
ecological resources, the new-urbanization and green land utilization efficiency of a spe-
cific city are unavoidably influenced by neighboring cities. Therefore, we can raise some
questions: Do new-urbanization and green land utilization efficiency have the same spatio-
temporal evolution characteristics? What kind of interaction mechanism exists between
new-urbanization and green land utilization efficiency within a city? From the perspective
of inter-city interaction, what is the interaction mechanism between new-urbanization and
green land utilization efficiency in neighboring areas? Given these problems, it is necessary
to use specific statistical methods and theories for analysis.

Currently, China is in a phase of rapid growth in terms of new-urbanization. Urban
construction and expansion are based on resource consumption and pollution. With the
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economic restructuring and economic development of China entering a new normal, it
is urgent to provide new drivers for the efficiency of green land utilization. The national
power shortage in 2021 in China also reflects the importance of this problem: What is the
relationship between urban development and environmental protection? How can we
correctly understand the internal mechanism between them? The relationship between
China’s new-urbanization and green land utilization efficiency has an important reference
value. Based on the above assumption, this paper uses data for more than 200 Chinese
cities at the prefecture-level and above for 8 years to undertake the following research.
Firstly, non-parametric kernel density estimation and Moran index are used to examine the
spatio-temporal evolution characteristics of new-urbanization and green land utilization
efficiency in China. Secondly, the spatial interaction spillover (hereinafter referred to as
“inter-spillover”) effect between new-urbanization and green land utilization efficiency is
tested by using spatial simultaneous-equations (hereinafter referred to as “SS-equations”) of
space and the GS3SLS estimation method. Relevant conclusions have practical implications
for urban construction and green development in the world.

Figure 1 shows the research framework of this study. Specifically, in the first sec-
tion, through the introduction of the empirical facts and the summary of the existing
literature, the core issues of the research are put forward, that is, the spatio-temporal
evolution characteristics of the new-urbanization and the green land utilization efficiency
and the correlation between the two; in the second section, based on the analysis of the
relationship between key variables, the research hypotheses of this paper are proposed,
and the empirical model and data source and pretreatment are introduced; the third section
empirically analyzes the spatio-temporal evolution characteristics of new-urbanization and
green land utilization efficiency in China; the fourth section empirically analyzes the spatial
inter-spillover effects between new-urbanization and green land utilization efficiency and
carries out the robustness test; and the fifth section draws some basic conclusions and
provides relevant policy implications.

1.2. Literature Review and Contribution

The existing literature shows that urbanization influences green development in com-
plex ways. There are many previous studies on the impact of urbanization on green
development that focus mainly on the following angles. Influenced by rapid urbanization,
the LUCC (land-use/land-cover change) has changed the environment and natural ecosys-
tems [14,15]; for example, this process affects mesoscale weather patterns, local climatic
states, biodiversity, water reserve, and carbon cycle [16–20]. Referring to the research meth-
ods of environmental pollution and socio-economic development, some scholars construct
the Environmental Kuznets Curve (EKC) based on environmental pollution and urban-
ization levels. D.F.Huang verified the inverted N-shaped relationship between industrial
waste-water and urbanization, the N-shaped relationship between industrial sulfur dioxide
and urbanization, and the U-shaped relationship between industrial dust and urbanization
by using the panel data of 29 Chinese regions from 1999 to 2008 [21]. Zhao et al. discussed
the impacts of population urbanization and land urbanization on air pollution [22]. With
data from a Landsat-TM (Thematic Mapper) in high-resolution, Long et al. Found that, un-
der the pressure of rapid urbanization, land use transformation has many negative impacts
on the local ecosystem and environment, and they believed that while meeting the needs of
socio-economic development for construction land, the protection of the service function of
regional ecosystems and the maintenance of the stability of the service function of regional
ecosystems are fundamental for the sustainable development of construction land [23].
In recent decades, China’s LUCC has experienced a series of complex changes, and the
ecosystem service values (ESV) decreased by 0.45% and 0.10% during periods of 1988–2000
and 2000 to 2008, respectively [24]. Sustainable land utilization planning must be combined
with landscape patterns to provide helpful guidance for space regulation in specific regions
to defend and improve ecosystem services [25]. As a very fragile environment, the LUCC
of Karst will cause significant environmental changes. In the coming decades, urbanization
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and the LUCC may lead to further environmental deterioration. Therefore, environmental
protection should be a precedence for the development of Karst areas [26]. However, there
is little literature on the reverse impact of green development on urbanization.
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Researchers generally hold that the development of urbanization has spatial charac-
teristics. Previous studies believe that spatial urbanization is the carrier of urbanization,
and the advancement of urbanization will inevitably be reflected in space, including urban
centripetal growth and spatial agglomeration [27,28]. Zhang et al. quantified impervious
surfaces (IS) to investigate the spatial evolution and regional differentiation characteristics
of urbanization in China, and they found that the overall performance of the percentage of
urban IS shows a declining trend from the northwest region, southwest region, the Yellow
River‘s middle reaches, northeast region, the Yangtze River‘s middle reaches, and the
southern and northern coastal regions of China to the eastern coastal regions of China [29].
Based on the data of time series, the study of ISA (impervious surface area) shows that the
megacities of China have expanded their ISA by five times the size of the U.S. megacities
over the past three decades. Megacities in China expand outward from the urban core in
a concentric ring structure, while megacities in the United States increase mainly within
cities in patch-filling patterns. Megacities of China are in the development progress, and
population and economic conditions significantly affect the mode and speed of urban
expansion, while megacities of America are in the developed progress, and population and
economic conditions are not imperative factors to promote the ISA expansion [30]. The
spatial pattern of urban expansion in major Gulf areas expands and fills from the periphery
to the edge; among them, the New York and the Tokyo Bay area experience the largest
filling progress, followed by the San Francisco Bay area, and in the past, these areas have
been ahead of the Guangdong–Hong Kong–Macao Greater Bay area [31].

The development of green land utilization efficiency also has spatial features. A large
number of studies are based on the geographical effect of regional green total factor pro-
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ductivity (mainly with the DEA model). The Xu et al. research found that the network of
ecological profit distribution in the region presents a characteristic core-edge construction,
and there is an obvious graded construction between parts with different orientations
and roles [32]. The regional ecological efficiency of China is in the process of long-term
fluctuation, but it is generally improved, with noticeable regional differences and widening
gaps [33]. There is spatial autocorrelation in the distribution of green land utilization
efficiency, and there is a spatial agglomeration effect between ecological efficiency and
provincial financial development [34]. Chen et al.’s research shows that industrial aggrega-
tion, pollution, and environmental efficiency have obvious effects on space spillage, and
aggregation has an obvious inverted U-shaped connection with sulfur dioxide discharge,
soot emission, and wastewater emission, and a significant U-shaped connection with
environmental efficiency [35]. Ren et al. have faith in that overall green land utilization
efficiency in China are still not at a high level, with great variance among different areas;
namely, the ecological efficiency in the eastern provinces is the highest, followed by the
central provinces, and the gap between the western and central provinces is closing bit by
bit [36].

This paper’s research contents and marginal contributions are as follows. Based on
the publicly available data of 297 China’s cities at prefecture-level and above from 2011
to 2018, we calculate the new-urbanization index and green land utilization efficiency
with the entropy weight method and the super SBM-GML (DEA) model, respectively.
After analyzing the spatio-temporal evolution characteristics of the new-urbanization
and green land utilization efficiency, we employ the simultaneous spatial equation and
the GS3SLS estimation method to analyze the spatial inter-spillover effects between the
two. The empirical results show that: (1) The level of new-urbanization and the green
land utilization efficiency in Chinese cities have common and complex temporal and
spatial dynamic evolution characteristics. (2) There are mutual inhibition effects between
new-urbanization and green land utilization efficiency, and the level of new-urbanization
is in a comparatively leading role. (3) Both the level of new-urbanization and green
land utilization efficiency have significant spatial spillover effects. (4) The level of new-
urbanization of surrounding cities promotes the green land utilization efficiency of the
local city, and the improvement of the green land utilization efficiency of surrounding cities
also promotes the level of new-urbanization of the local city.

2. Research Design and Variable Preprocessing
2.1. Theoretical Analysis and Research Hypothesis

The development of new-urbanization and green land utilization efficiency with
cities as the unit will inevitably have temporal and spatial trends. Urban green land
utilization efficiency is a comprehensive mapping of the urban production factor input
system and the urban land use output system in urban space. President Xi Jinping’s
statement that “clear waters and green mountains are mountains of gold and silver”
illustrates the dialectical connection between protection for the ecological environment
and sustainable socio-economic development, and it is an important thought to guide
ecological civilization construction of China. With the deepening of this thought, in the
process of socio-economic development, it is also urgent to cease the traditional high
pollution and extensive way to adapt to the new-era requirements of the efficient, green,
moderate, and intensive practice in terms of the input and utilization of urban land
resources. The 2018 National Conference on Ecological and Environmental Protection
pointed out that green development is an inevitable obligation for the construction of
a high-quality modern socioeconomic system, and green has become the contemporary
urban economic development theme. The concept of new-urbanization has emerged in
the wave of green development. It is characterized by urban–rural harmonization, urban–
rural integration, industrial contact, conservation, intensification, ecological expedient,
and harmonious development. It is also characterized by synchronized development
and reciprocal promotion of cities of different sizes, small towns, and new-type rural
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communities. It can be seen that new-urbanization and green land utilization efficiency
should also have common temporal and spatial trends. Based on the theoretical analysis
above, we can propose the following hypothesis:

Hypothesis 1 (H1). New-urbanization and green land utilization efficiency in Chinese cities have
common and complex temporal and spatial dynamic evolution characteristics.

Since the reform and opening-up, China has experienced sustained high-speed growth.
Rapid industrialization and urbanization will inevitably bring pollution problems. The
environmental Kuznets curve is applicable in China. At present, all regions in China are
still in the left-hand stage of the curve; that is, pollution emissions further increase with
the rise of per capita GDP. According to the theory of sustainable development, the goal of
government public policy is not only to increase GDP, but to improve social welfare. On the
one hand, environmental pollution has a significant adverse impact on residents’ subjective
well-being; on the other hand, the high GDP at the cost of pollution plays a certain role in
promoting the welfare of Chinese residents. How does the Chinese government balance
economic development and environmental governance? In terms of the past governance
models, local governments were keen on economic construction and did not hesitate to
develop the economy extensively, with little motivation to pay attention to environmental
quality. The long-term accumulated environmental pollution problem is gradually emerg-
ing, which not only causes huge economic losses but also brings health losses to the people.
In recent years, the central government has paid more and more attention to environmental
protection and formulated a series of laws and regulations. However, China’s pollution
situation is complex and has regional differences. A unified environmental regulation may
not be in line with the local conditions of various regions. In addition, private enterprises
generally believe that the existing environmental protection inspection and the fine system
has brought a certain degree of burden to enterprise operation. Even pillar enterprises,
such as a large number of coal and steel enterprises in many cities, have to be shut down
due to environmental protection-related policies. Based on the theoretical analysis above,
we can put forward the following hypothesis:

Hypothesis 2 (H2). There are mutual inhibition effects between new-urbanization and green land
utilization efficiency.

With the increase in cross-regional flow of resources and the intensification of inter-
regional competition for innovative resources, the new-urbanization and green land uti-
lization efficiency are unavoidably influenced by adjacent regions. From the perspective
of new-urbanization, firstly, the level of new-urbanization is closely related to regional
development strategies such as urban agglomerations and Bay areas. Many policy orienta-
tions of China in recent years promote the level of urbanization to have strong features of
agglomeration and correlation in geographical space, showing a trend of gradual growth;
secondly, the improvement of the new-urbanization level in a specific region helps to
benefit the surrounding regions through knowledge and talent mobility, demonstration
and innovation effects, forming a space development impetus from the centre to the pe-
riphery, and promoting the new-urbanization development in the neighboring regions;
thirdly, as the impact of development policies formulated by local governments often
covers an economic zone, city cluster, or province, and new-urbanization, as the main
goals of national development in recent years, also reflects the differences among different
regions in terms of policy supports, the levels of new-urbanization in different regions are
thus also spatially correlated. From the perspective of green land utilization efficiency, on
the one hand, the improvement of green land utilization efficiency in adjoining regions can
improve the green land utilization efficiency of local regions through the demonstration
and dissemination effect and the innovation effect of knowledge; on the other hand, the
green land utilization efficiency is highly related to the region geographical environment,
and as the geographical environment of adjacent regions is significantly similar to that of
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local regions, and other objective environments also have a significant degree of geographi-
cal correlation, the trend of development of the green land utilization efficiency in adjacent
cities has a certain extent of the similarity. Based on the theoretical analysis above, we can
propose the following hypothesis:

Hypothesis 3 (H3). Both the new-urbanization level and the green land utilization efficiency have
significant spatial spillover effects.

The spatial interaction mechanism between new-urbanization and green land utiliza-
tion efficiency is complicated. First of all, as the main driving factor of urban development
and construction, the development of new-urbanization in the surrounding regions also
brings opportunities for the local development, which is mainly manifested in bringing
large amounts of capital and technology diffusion dividends to the local region, thereby
realizing innovation-driven economies of scale, knowledge spillover, and environmental
effects to optimize the driving force of urban green development and promote green land
utilization efficiency [37]. Meanwhile, China’s urban construction often lacks indepen-
dence, and with environmental protection indicators, such as pollution emissions, being
delegated to each region and overall planning being carried out within the region, “compe-
tition” among cities for development indicators are inevitable, resulting in the urbanization
of surrounding cities and the lack of local urbanization resources for green development.
Secondly, due to the promulgation or deepening of environmental laws and regulations, the
improvement of green land utilization efficiency of surrounding cities may be accompanied
by the outward relocation of industrial enterprises, and the urbanization of local cities
will be further developed in the process of undertaking these industries. Improving the
efficiency of green land utilization in adjacent regions also helps to benefit the local region
through human capital and knowledge flow, demonstration, and innovation effects. In
contrast, the local city is not affected by the reduction in production capacity brought by
forced green transformation. Therefore, the local new-urbanization can draw nutrients
from the green development of surrounding cities. Based on the theoretical analysis above,
we can propose the following hypothesis:

Hypothesis 4 (H4). The new-urbanization of surrounding cities promotes the local green land
utilization efficiency, and the improvement of the green land utilization efficiency of surrounding
cities also promotes the local new-urbanization.

Figure 2 comprehensively shows the hypotheses H2, H3 and H4 in this paper.
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It should be noted that, in model settings and measurement methods, this paper elimi-
nates the impact of conduction between core variables in terms of the spatial interaction
effect, thus only the direct relationship between the two factors is considered. For example,
the new-urbanization of surrounding cities promotes the level of local new-urbanization,
which is transmitted to inhibit the local green land utilization efficiency. The impact of the
above transmission chain is not considered in this paper.

2.2. Model Setting and Measurement Method

At first, this paper analyzes the spatio-temporal evolution characteristics of new-
urbanization and green land utilization efficiency by non-parametric kernel density estima-
tion and Moran’s I index.

Kernel density estimation is used to estimate the unknown density function in proba-
bility theory. It belongs to one of the non-parametric methods. Kernel density estimation is
a common non-parametric method used by scholars to solve uneven distribution. Kernel
density estimation solves the shortcomings of rough histograms and low estimation accu-
racy as the earliest non-parametric kernel density estimation method. It uses a smoothing
method to replace the histogram with a continuous density curve, and then it can better
describe the distribution form of random variables.

If the density function of the random variable regional systemic financial risk in-
dex x is assumed to be f (x), the probability density at point x can be estimated by the
following formula:

f (x) =
1

Nh

N

∑
i=1

K
(

Xi − x
h

)
(1)

In the above formula, N is the number of observed values of urban regional systemic
financial risk index, h is the bandwidth, and K is the kernel function, which is a weighting
function or smooth conversion function. The kernel function has many types, such as
Gaussian kernel, triangular kernel, etc., where Xi is the observed value of the total cost
index of economic transformation of independent and identically distributed random
variables, and x is the mean value of samples.

The bandwidth h in the probability density estimation formula will determine the
smoothness of the density curve. If the bandwidth h is larger, the curve will be smoother.
Therefore, the selection of bandwidth h will determine the shape of the density curve
to a certain extent. In practical research, if there are more samples, the requirements for
bandwidth h should be more minor, but not too small. That is, bandwidth h is a function of
sample N, and the following conditions should be met:

lim
N→∞

h(N) = 0 lim
N→∞

Nh(N) = N → ∞ (2)

Spatial autocorrelation describes the cluster status of regional economic activity dis-
tribution from the whole regional space. The measurement indicators of global spatial
autocorrelation are:

Moran′ I =
∑n

i=1 ∑n
j=1 wij

(
Yi −Y

)(
Yj −Y

)
∑n

i=1
(
Yi −Y

)2/n
∗ 1

∑n
i=1 ∑n

j=1 wij
(3)

In Equation (3), Y = ∑n
i=1 Yi

n ,Yi is the attribute value of unit i of the space, and
Wij (i, j = 1, 2, . . . , n) is the element of spatial weight matrix W. Moran’s I coefficient
reflects the correlation degree of attribute values of regional units in the hole. Similar to
the correlation coefficient, the value range of the Moran’s I coefficient is [−1, 1]. The sign
represents the directionality of similarity, and the absolute value means the strength of
correlation. It is generally believed that the closer the distance between two spatial units,
the stronger the correlation between them, which is manifested as the positive or negative
correlation of attribute values.
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Then, the relationship between new-urbanization and green land utilization efficiency
is considered. According to the hypotheses proposed above, there is an interaction between
new-urbanization and the green land utilization efficiency. Therefore, a fixed effects panel
regression model based on simultaneous-equations can be established [38], with the form
as follows:

N_urbit = α0 + α1 L_e f fit + α Xit + πi + εit (4)

L_e f fit = β0 + β1 N_urbit + β Zit + µi + σit (5)

In Equations (4) and (5), i represents an individual city, and t represents a year;
N_urbit and L_e f fit are, respectively, the level of new-urbanization and the green land
utilization efficiency of a sample city; Xit and Zit are the covariates that may affect the
new-urbanization and the green land utilization efficiency, respectively, including openness
degree (ope), transportation development level (tra), capitalization degree (com), capital
allocation efficiency (cap), innovation level (inv), import and export volume (m&x), and
centrality of scientific research personnel (rd); πi and µi represent the controlled individual
city; and εit and σit are the error terms.

The traditional fixed effects panel model has two disadvantages. The first disad-
vantage is that the influence of surrounding cities on variables in spatial dimension is
ignored; that is, the impact of the new-urbanization level and the green land utilization
efficiency in surrounding cities on the local city’s new-urbanization level and green land
utilization efficiency is ignored. To solve this problem, previous studies mainly employed
traditional econometric spatial models such as the spatial lag model (SLM), the spatial
error model (SEM), and the spatial Durbin model (SDM). Still, they ignored the spatial
interaction among parameters. Therefore, this paper establishes SS-equations to analyze the
relationship between core variables comprehensively. The second disadvantage is that the
possible correlation between the endogenous variables and the random perturbation terms
of each equation is not considered. For the second problem, the estimation error of the
two-stage least square method is used to construct the statistics of the random perturbation
covariance matrix of the model to carry out the generalized least square estimation of the
whole model, namely the generalized spatial three-stage least square method (GS3SLS),
which is a complete information estimation method of the simultaneous-equation model.
The method was proposed by Theil and Zellner in 1962 [39], and the main steps of applying
this method are as follows: (1) the model system required to be identifiable, and all defining
equations (i.e., identities) are removed; (2) least-squares estimation is made on the sim-
plified formula of the model; (3) the above estimators are taken as instrumental variables
to perform the least squares estimation (i.e., two-stage least squares estimation) on the
model structural formula, and the estimation error is calculated; and (4) the two-stage
estimation error is used to construct the statistics of the variance of the perturbation term to
carry out the generalized least squares estimation. Under certain conditions, the estimation
results of the GS3SLS method have better asymptotic validity than the two-stage least
squares estimation.

Based on the analysis above, this paper adopts the SS-equations based on the general-
ized three-stage least square estimation method to investigate the spatial inter-spillover
effect between new-urbanization and the green land utilization efficiency [40]. The forms
of equations are as follows:

N_urbit = α0 + α1

n

∑
j 6=i

W N_urbit + α2

n

∑
j 6=i

W L_e f fit + α3 L_e f fit + α Xit + εit (6)

L_e f fit = β0 + β1

n

∑
j 6=i

W L_e f fit + β2

n

∑
j 6=i

W N_urbit + β3 N_urbit + β Zit + σit (7)

In Equations (6) and (7), W is the spatial weight matrix. In view of the intricacy of
spatial inter-spillover, this paper builds a geographical-distance matrix. The linear distance
between two samples are calculated according to their central latitude and longitude
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coordinates, and its reciprocal is taken as the weight based on the dimensionless processing.
If the distance between the two samples’ centres exceeds 30, the weight is assigned to 0; that
is, the two samples are identified as non-adjacent. According to the spatial–econometric
theory, in Equations (6) and (7), α1 represent the spatial spillover strength and orientation
of the new-urbanization level in surrounding samples; β1 represents the spatial spillover
strength and orientation of the green land utilization efficiency in surrounding samples; α2
and β2 are used to test the spatial interaction between the new-urbanization level and the
green land utilization efficiency, where α2 describes the impact strength and orientation of
the green land utilization efficiency in surrounding samples on the local new-urbanization
level, and β2 describes the impact strength and orientation of the new-urbanization level in
surrounding samples on the local green land utilization efficiency; and α3 and β3 describe
the endogenous relationship between the new-urbanization level and the green land
utilization efficiency.

2.3. Variable Description and Data Source
2.3.1. Variable Description and Processing

The core variables of this paper include the new-urbanization level (N_urb) and the
green land utilization efficiency (L_e f f ). The time and space dimensions are 297 sample
cities from 2011 to 2018. The new-urbanization level in this paper is calculated by the
entropy weight method [41], and it contains 24 specific variables, which can be classified
into four dimensions: population urbanization, economy urbanization, land urbanization,
and society urbanization. The weights of 24 sub-variables are objectively weighted by the
entropy weight method, and the specific steps are as follows. The first step is to normalize
index values. There are 2376 (297 × 8) objects to be evaluated and 24 evaluation indicators
in this paper, and the forward processing matrix is as follows:

X =


x1,1 x1,2 · · · x1,24
x2,1 x2,2 · · · x2,24

...
...

. . .
...

x2376,1 x2376,2 · · · x2376,24

 (8)

The matrix X is normalized with the following equation (where the negative indicators
are processed with the negative normalization method):

zi,j =
xi,j −min

{
x1,j, x2,j, · · · , x2376,j

}
max

{
x1,j, x2,j, · · · , x2376,j

}
−min

{
x1,j, x2,j, · · · , x2376,j

} (9)

The second step is to calculate the proportion of the i-th sample of the j-th indicator
and regard it as the probability used in the relative entropy calculation. Based on the
previous step, the probability matrix P is calculated, and each element in P is as follows:

Pi,j =
zi,j

∑2376
i=1 zi,j

(10)

The third step is to calculate the information entropy of each indicator as well as the
information utility value, obtaining the entropy weight of each indicator by normalization.
For the j-th indicator, its information entropy can be calculated by:

ej = −
1

ln2376

2376

∑
i=1

pi,jln
(

pi,j
)

(11)

At this point, the larger the value of ej, the larger the information entropy of the j-th
indicator is, and the smaller the corresponding information amount is. The information
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utility value is defined as dj = 1− ej. The entropy weight of each indicator is obtained by
normalizing the information utility value:

Wj =
dj

∑2376
j=1 dj

(12)

According to the above steps, the weights of 24 evaluation indicators can be obtained
in this paper, as shown in Table 1. Finally, the new-urbanization level of each sample city in
each period is obtained by adding all corresponding indicators according to their weights.

Table 1. New-urbanization indicator system.

Primary Indicator Secondary Indicator Weight

Population
urbanization

(0.20991)

The proportion of urban population 0.04797

The proportion of urban population (negative indicator) 0.05940

Urban population density 0.04633

The proportion of employees in the tertiary industry 0.05619

Economy
urbanization

(0.27383)

GDP per capita 0.04925

The proportion of the total output value of the secondary
industry in GDP 0.05700

The proportion of total output value of secondary and
tertiary industries in GDP 0.04871

Public revenue 0.01882

Per capita disposable income of urban residents 0.05367

Total retail sales of consumer goods per capita 0.04634

Land urbanization
(0.13700)

The proportion of built-up area 0.01977

Urban road area per capita 0.05150

Green area per capita 0.02731

Per capita real estate and residential investment 0.03840

Society
urbanization

(0.37926)

The proportion of education expenditure in
financial expenditure 0.04337

The proportion of expenditure on science and technology
in government expenditure 0.05816

Public transport vehicles per 10,000 people 0.02817

Per capita public library collection 0.03191

Number of doctors per 1000 people 0.05412

Number of secondary schools and primary schools 0.04731

Number of full-time teachers in secondary and
primary schools 0.05015

Per capita water supply 0.02670

Per capita electricity consumption 0.02720

Per capita gas supply 0.01213

This paper adopts the DEA (Data Envelopment Analysis) model based on super
SBM-GML to study the green land utilization efficiency. The DEA was put forward
in 1978 to assess the relative efficiency of a multi-input and output decision-making
unit group [42–46]. Tonerespectively proposed the new DEA model called “SBM” in
2001 and the upgraded model called “super-efficiency SBM” in 2002, which can not only
consider the slack variable but also classify the decision-making units with efficiency value
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over 1 [47,48]. The Malmquist index of DEA was first proposed by Malmquist and named
after it [49], and Caves further optimized the index model [50], which is used to measure
variations in total factor productivity between two periods and to introduce the directional
function of distance containing some undesired productions into the Malmquist index
to assist in the analysis of undesirable productions. In order to facilitate cross period
comparison and overcome the problem of no feasible solution, Oh combines previous
studies and finally puts forward the GML index (global Malmquist–Luenberger) [51].

Based on the model specification above and the research objectives of this paper, the in-
put indicators are selected as follows: social fixed-asset investment, total employees, urban
built-up land area, and total energy consumption. The output indicators are determined:
GDP is taken as the desired output, representing total urban output value; wastewater,
exhaust gas, and soot discharge are regarded as undesirable productions, representing
pollution discharge. Table 2 shows the input and output indicators, respectively.

Table 2. Input and output indicators for calculating green land utilization efficiency.

Primary Indicator Secondary Indicator Tertiary Indicator

Input indicator Capital Fixed-assets investment

Labor Total employees

Land Built-up area

Energy Total energy consumption

Output indicator Desired output GDP

Undesired output Wastewater discharge

Exhaust gas emission

Soot emission

For covariates, this paper selects seven covariates that may influence the core variables
and have a weak overlap with the core variables [52,53]. The variable of openness degree
(ope) is measured by the relative proportion of FDI (foreign direct investment) in the GDP
of the city in that year. The variable of transport development level (tra) is the logarithm
of the total passenger volume of the city divided by the total population. The variable
of capitalization degree (com) is measured by the standardized market value of listed
companies in the city. For the measurement of the capital allocation efficiency (cap), this
paper first uses the perpetual inventory method to ascertain the capital stock [54], which
is used as the input and GDP as the output to obtain the efficiency value with the DEA
method, and the efficiency value is divided by the weighted average inter-bank lending
rate of the year to obtain the final capital allocation efficiency after normalization. The
variable innovation level (inv) is measured by the logarithm of the number of inventions of
the city in that year plus one. The import and export trade volume (m&x) is measured by
the relative proportion of total import and export trade in the GDP of the whole city. The
centrality of scientific research personnel (rd) is calculated by the node degree centrality of
employees in the scientific research comprehensive technical service industry of a specific
city with the social network analysis method.

2.3.2. Data Sources and Descriptive Statistics

Table 3 reports the sources of all variables in this paper. All data are from publicly
acquired platforms. The interpolation method is used to complete some missing values
according to the variation trend of variables. Softwares such as GeoDa and Stata16 help
complete data processing in this paper. The former is a free software package analyzing
spatial data and modelling. In this paper, the GeoDa software is used to establish the
spatial distance weight matrix based on latitude and longitude distance [55] and the
Moran’s I test, which is a spatial autocorrelation measure developed by Patrick Alfred
Pierce Moran [56,57].
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Table 3. Variable data sources.

Variable Abbr. Source

New-urbanization N-urb Entropy weight method
Green land utilization efficiency L-eff DEA Analysis

Openness degree ope China City Statistical Yearbook
Transport development level tra China City Statistical Yearbook

Capitalization degree com Wind
Capital allocation efficiency cap DEA Analysis

Innovation level inv CNRDS
Import and export trade volume m&x Statistical Yearbook of each city

centrality of scientific research personnel rd Social Network Analysis

Table 4 shows the descriptive statistics of variables. To reflect the differences among
cities, descriptive statistics of eastern regions, central regions, and western regions of China
are presented, respectively. It can be seen that cities in eastern China obviously have a
higher level of new-urbanization, and the green land utilization efficiency in central China
is slightly better compared with cities in other regions. In order to reflect the differences
between cities in different periods, the descriptive statistics of sample cities from 2011 to
2014 and from 2015 to 2018 are displayed, respectively. It can be seen that both the new-
urbanization level and the green land utilization efficiency have been greatly improved in
the long run.

Table 4. Descriptive statistics of variables.

Unit Items Summary Eastern Central Western 2011–2014 2015–2018

N - - 2376 904 896 576 1188 1188

N-urb - Mean
Std

0.235
0.049

0.254
0.060

0.223
0.034

0.222
0.037

0.227
0.044

0.242
0.052

L-eff - Mean
Std

1.660
0.528

1.652
0.470

1.702
0.541

1.608
0.584

1.445
0.364

1.876
0.576

ope ratio Mean
Std

0.019
0.027

0.019
0.019

0.026
0.036

0.005
0.011

0.017
0.017

0.020
0.034

tra ratio Mean
Std

2.740
0.784

2.715
0.867

2.660
0.713

2.904
0.728

2.954
0.769

2.527
0.740

com - Mean
Std

0
1

0.320
0.789

−0.064
0.967

−0.402
1.168

−0.062
1.000

0.062
0.996

cap ratio Mean
Std

0
1

0.100
1.024

0.050
0.916

−0.235
1.048

−0.528
0.821

0.528
0.875

inv Ln(n + 1) Mean
Std

4.722
1.864

5.663
1.743

4.423
1.524

3.712
1.848

4.297
1.791

5.148
1.839

m&x ratio Mean
Std

0.229
0.648

0.482
0.990

0.081
0.115

0.062
0.123

0.256
0.746

0.201
0.532

rd - Mean
Std

0.043
0.146

0.043
0.152

0.038
0.112

0.050
0.178

0.044
0.164

0.042
0.124

3. Temporal and Spatial Evolution Characteristics of New-Urbanization and Green
Land Utilization Efficiency
3.1. Characteristics of the Temporal Dynamic Evolution

Based on the non-parametric kernel density estimation formula, this paper uses Stata
16.0 to draw the kernel density curves of new-urbanization levels and green land utilization
efficiency of Chinese cities in 2011, 2013, 2016, and 2018 (see Figures 3 and 4) at the global
scale and the regional scale, respectively (global scale: 297 cities; regional scale: 113 cities in
eastern China, 112 cities in central China, and 72 cities in western China) to characterize the
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temporal dynamic evolution characteristics of new-urbanization and green land utilization
efficiency in China.
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Based on the non-parametric kernel density estimation formula, this paper uses Stata 
16.0 to draw the kernel density curves of new-urbanization levels and green land 
utilization efficiency of Chinese cities in 2011, 2013, 2016, and 2018 (see Figures 3 and 4) at 
the global scale and the regional scale, respectively (global scale: 297 cities; regional scale: 
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3.1.1. Global Temporal Dynamic Evolution Characteristics

The global scale can describe the temporal evolution characteristics of new-urbanization
and green land utilization efficiency in China from a global perspective. (1) From the gravity
position of the annual kernel density curve, the centres of gravity in periods of 2011 to 2013,
2013 to 2016, and 2016 to 2018 all move to the right, indicating that during the study periods,
the level of new-urbanization and the value of green land utilization efficiency in Chinese
cities show an upward evolution characteristic as a whole. (2) From the height of the main
peak of the curve, in terms of the level of new-urbanization, the peak shows a trend of
first rising and then falling, indicating that the difference in the level of new-urbanization
between cities shows a trend of first expanding and then narrowing; in terms of green land
utilization efficiency, the peak shows a downward trend, indicating that the difference of
green land utilization efficiency between cities continues to narrow. (3) From the number
of curve peaks, there is no multi-peak coexistence in the new-urbanization level and green
land utilization efficiency, indicating that there is no multi-polar differentiation pattern.
(4) From the left and the right tailing of the curve, the new-urbanization level and green
land utilization efficiency show that the tailing of the right side is greater than the left side,
and the tailing on the right side has a trend of lengthening and thickening, indicating that
during this period, the new-urbanization level and green land utilization efficiency of cities
in high-level regions have increased, and the proportion of cities in high-level regions has
increased. It can be seen that, on a global scale, the new-urbanization level and green land
utilization efficiency of Chinese cities have different dynamic evolution characteristics of
development level, efficiency difference, and polarization degree in different times, and
the dynamic evolution features of the two are consistent.

3.1.2. Regional Temporal Dynamic Evolution Characteristics

At the regional scale, the temporal evolution characteristics of green land utilization
efficiency in different regions of China can be described from the perspective of three
regions. (1) Judging from the gravity centre position of the annual curve of kernel density,
the new-urbanization level and green land utilization efficiency of the three regions moved
significantly to the right from 2011 to 2018, indicating that the core variables of the three
regions all show an upward evolution feature during this period. (2) From the perspective
of the height of the main peak of the curve, in terms of the level of new-urbanization, the
peak of the eastern region curve continues to decline from 2011 to 2018, indicating that
the gap in the level of new-urbanization among eastern cities has a narrowing evolution
trend, and the curve peaks of the central regions and western regions rose first and then
fell during the research period. It shows that the new-urbanization level gap between the
central and western cities shows an evolution characteristic of first expanding and then
narrowing. In terms of green land utilization efficiency, the curve peaks of the three regions
maintain a downward trend, and the gap of green land utilization efficiency among the
three regions shows a narrowing trend during this period. (3) From the number of curve
peaks, in terms of the level of new-urbanization, there is a coexistence of one main peak
and one secondary peak in the central and the western regions, indicating that cities in
the two regions have the characteristics of two-level differentiation. In terms of green
land utilization efficiency, only the central region had an insignificant secondary peak in
2011, and there is no multi-polarization pattern. (4) From the left and right tailing of the
curve, the new-urbanization level and green land utilization efficiency of the cities in the
three regions show that the tailing of the right side is greater than the left side, and the
tailing on the right side has a trend of lengthening and thickening, indicating that during
this period, the new-urbanization level and land green land utilization efficiency of cities
in high-value areas have increased, and the proportion of cities in high-value areas has
increased. It can be seen that under the regional scale, the temporal dynamic evolution
process of China’s new-urbanization level and green land utilization efficiency in different
regions and different periods is the result of the superposition and symbiosis of regional
characteristics and period characteristics.
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3.2. Spatial Evolution Characteristics
3.2.1. Global Spatial Evolution Characteristics

The global Moran’s I and the Z-value of the new-urbanization level and the green
land utilization efficiency of Chinese cities from 2011 to 2018 are calculated by using the
global Moran index formula and the GeoDa software (see Figure 5). In terms of the level
of new-urbanization, the results show that the global Moran’s I values are all positive,
between 0.067–0.391, and the Z-values are between 2.616–9.701, both of which pass the
5% significance test. Therefore, the spatial distribution of the new-urbanization levels in
Chinese cities has a significant positive global spatial auto-correlation during the study
period, and the new-urbanization of the local city will be affected by that of its neighboring
cities. Overall, except for the decline of the global Moran’s I in 2013, the global spatial
correlation of China’s urban new-urbanization level has evolved from a weak correlation
to a strong correlation. Regarding the green land utilization efficiency, the results show that
the global Moran’s I values are all positive, ranging from 0.028–0.259, and the Z-values are
between 1.083–6.567. Except for 2012 (p = 0.120), all of them pass the 5% significance test.
In conclusion, the spatial distribution of urban green land utilization efficiency in China
has a significant positive global spatial auto-correlation during the sample period, and the
green land utilization efficiency of a local city will be affected by that of its neighboring
cities. Overall, the global spatial correlation of urban green land utilization efficiency in
China presents the evolution characteristics of alternating strong and weak correlations. At
the global scale, there is an obvious spatial auto-correlation between the new-urbanization
level and the green land utilization efficiency in Chinese cities.
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Figure 5. Global Moran’s I and Z-value evolution characteristics of new-urbanization level and green
land utilization efficiency in China.

3.2.2. Regional Spatial Evolution Characteristics

The global Moran’s I can prove that there is global spatial auto-correlation between
the new-urbanization level and the green land utilization efficiency in Chinese cities from
a macro perspective. However, it cannot visualize the characteristics of the regional spatial
pattern. Therefore, it is necessary to identify the regional spatial pattern characteristics
of urban core variables in China with the help of regional spatial auto-correlation (see
Figures 6 and 7). The specific regional spatial pattern and distribution quantity can be
classified into four categories. (1) The high–high aggregation type (H–H) indicates that
the core variables’ values of the local city are high, and those of its surrounding regions
are also high, showing a high level of spatial equilibrium correlation aggregation state
of “high in the centre, high in the surrounding”. (2) The low–low aggregation type (L–L)
indicates that the values of the core variables of the local city are low, and those of the
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surrounding regions are also low, showing a low-level spatial equilibrium correlation
aggregation state of “low in the centre and low in the surrounding”. (3) The low–high
aggregation type (L–H) indicates that the values of the core variables of the local city
are low, but those of the surrounding regions are high, which is displayed as the spatial
disequilibrium correlation aggregation state of “low in the centre, high in the surrounding”.
(4) The high-low aggregation type (H–L) indicates that the core variables’ values of the
local city are high, but those of the surrounding regions are low, which is displayed as
the spatial disequilibrium correlation aggregation state of “high in the centre, low in
the surrounding”.
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By observing Figure 6, we can find that the level of new-urbanization in Chinese cities
has a complex local spatial pattern. From an evolutionary perspective, as time goes by, the
number of low–low aggregation type (L–L) cities in the central regions and western regions
gradually decreases, indicating that the urban development in the central regions and
western regions is effective; the diffusion trend of the L–L cities in northeast China shows
that the urbanization process in northeast China needs to be improved. The evolution of
other areas is not apparent. From the perspective of regional distribution, the midwest and
northeast China are dominated by the L–L and H–L types of cities, indicating that there
are still phenomena such as slow urbanization and core cities siphoning the development
capacity of surrounding cities in China’s midwest and northeast, and the development
momentum and equity still need to be strengthened in those regions. Developed regions
such as the Pearl River Delta, the Yangtze River Delta, and the Beijing–Tianjin–Hebei region
are obviously dominated by the H–H and the L–H types of cities for a long time. Firstly,
there is a geographical spatial proximity spillover effect among China’s developed cities,
as they have high economic, social, and cultural similarity, close spatial distance, and low
transportation cost, and with frequent connections and mutual circulation of urbanization
resources, a spatial pattern of “strong cooperation” has emerged. Secondly, through observ-
ing the distribution of the L–H type cities, it can be found that the development resources of
relatively backward cities in developed areas are “plundered” by developed cities, which
is particularly obvious in the Pearl River Delta. The ideal of “being rich first drives wealth
later” has been replaced by “strong alliances” or “strong–strong mutual protection”.

By observing Figure 7, it can be found that the intensity of the local spatial pattern
of green land utilization efficiency in China is relatively weak. From the evolutionary
perspective, with the passing of time, central and western China and northeast China
showed the high–high aggregation (H–H) and low–high aggregation (L–H) types of cities
during the research period. Then, they were not obvious, indicating that there has been a
short-term aggregation development and resource concentration of green land utilization
efficiency in the central regions and western regions and northeast regions. The evolution
of cities in other regions is not apparent. From the perspective of regional distribution,
the western region has long been dominated by low-level aggregation (L–L) type cities,
indicating that cities in the western region have insufficient land green development
capabilities and are also vulnerable to the homogeneity of the surrounding cities with low
levels of green development.

In general, from the spatial evolution characteristics, it can be found that there is
spatial proximity peer effect in the new-urbanization and green land utilization efficiency
of Chinese cities. When the core variables of the adjacent cities around the local city are
at a high (low) level, the local city is also more likely to become a high (low) level city, or
it is more difficult for the local city to “highlight” and transfer to a low (high) level city.
Therefore, the new-urbanization and the green land utilization efficiency of Chinese cities
have formed the spatial pattern of “the low is always low and the high is always high”.

To sum up, there are common and complex temporal and spatial dynamic evolution
characteristics of the new-urbanization and the green land utilization efficiency in Chinese
cities. This paper verifies Hypothesis 1.

4. Spatial Inter-Spillover Effects of the New-Urbanization and the Green Land
Utilization Efficiency of Chinese Cities
4.1. Parameter Estimation Results

In this paper, the relationship between the level of new-urbanization and the green
land utilization efficiency is initially analyzed by using the simultaneous-equation based
on fixed effects panel regression models (4) and (5). Table 5 shows parameter estimation
results according to the model specification.
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Table 5. Benchmark regression results.

Items
Explained Variable: N-urb Explained Variable: L-eff

(1) (2) (3) (4) (5) (6)

N-urb - - - 1.799 *** (8.30) 3.031 *** (8.99) 8.904 *** (12.58)
L-eff 0.016 *** (8.30) 0.011 *** (8.99) 0.008 *** (12.58) - - -
ope - −0.084 *** (−3.57) −0.016 (−1.49) - 1.989 *** (5.06) 0.821 ** (2.29)
tra - 0.003 *** (3.63) −0.002 *** (−3.93) - −0.074 *** (−5.16) −0.121 *** (−6.76)

com - 0.003 *** (4.36) 0.003 ** (2.20) - −0.031 ** (−2.36) 0.115 *** (2.85)
cap - −0.003 *** (−4.18) 0.003 *** (6.42) - 0.089 *** (7.75) 0.027 ** (2.01)
inv - 0.013 *** (26.74) 0.006 *** (11.19) - −0.004 (−0.44) 0.143 *** (7.39)

m&x - 0.030 *** (27.50) −0.010 *** (−7.06) - −0.108 *** (−5.25) 0.187 *** (3.91)
rd - 0.008 ** (1.99) 0.003 ** (2.05) - −0.097 (−1.38) −0.075 (−1.38)

Cons 0.209 0.141 0.200 1.238 1.163 −0.832
N 2376 2376 2376 2376 2376 2376
FE No No Yes No No Yes
R2 0.0282 0.6307 0.4119 0.0282 0.1053 0.3097
F 68.83 *** 505.27 *** 181.33 *** 68.83 *** 34.81 *** 116.12 ***

Notes: ***, ** stand for significant levels of 1%, 5%, respectively, and the values in brackets are T-values.

As shown in Table 5, there is a significant interaction between the level of new-
urbanization and the green land utilization efficiency. Columns (1) and (4) represent
the case in which individuals are not controlled, and the covariates are not considered;
Columns (2) and (5) represent the situation in which individuals are not controlled, but
the covariates are taken into account, and Columns (3) and (6) represent the cases where
individuals are controlled, and the covariates are considered at the same time. It can be
seen from Columns (1)–(3) that the green land utilization efficiency promotes the level of
new-urbanization. It can be seen from Columns (4)–(6) that the new-urbanization level
plays a reverse role in promoting green land utilization efficiency.

As mentioned earlier, the fixed effects regression model based on simultaneous-
equations not only ignores the impact of the new-urbanization level and green land uti-
lization efficiency in the surrounding regions on those of the local city but also does not
consider the possible correlation between the endogenous variables and random distur-
bances in each equation. Therefore, according to Models (6) and (7), this paper uses the
SS-equations and the GS3SLS to estimate the parameters of the spatial inter-spillover effect
between the new-urbanization level and the green land utilization efficiency in Chinese
cities. According to the setting of geospatial matrix W, the parameters of the models are
estimated. Table 6 shows the results.

Table 6. Parameter estimation results of SS-equations and the GS3SLS.

Items
Explained Variable: N-urb Explained Variable: L-eff

(1) (2)

W × N-urb 0.940 *** (4.00) 2.173 * (1.65)
W × L-eff 0.106 *** (4.27) 1.037 *** (21.53)

N-urb - −5.298 *** (−7.80)
L-eff −0.109 *** (−4.94) -
ope 0.031 (0.89) 0.382 (1.25)
tra 0.008 *** (4.96) 0.047 *** (3.87)

com 0.002 * (1.82) 0.011 (0.89)
cap −0.004 *** (−4.19) −0.021 ** (−2.49)
inv 0.014 *** (18.43) 0.081 *** (7.76)

m&x 0.024 *** (13.08) 0.128 *** (4.97)
rd 0.001 (0.17) −0.006 (−0.10)

Cons −0.082 0.117
N 2376 2376
R2 0.9295 0.9309
F 4974.16 *** 3482.31 ***

Notes: ***, **, and * stand for significant levels of 1%, 5%, and 10%, respectively, and the values in brackets are
T-values.
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As shown in Table 6, there is an obvious spatial inter-spillover effect between the
new-urbanization level and the green land utilization efficiency in Chinese cities. The
results in Column (1) reflect that the new-urbanization level of surrounding regions pos-
itively influences the local new-urbanization level; the green land utilization efficiency
of surrounding regions promotes the local new-urbanization level; the local green land
utilization efficiency has a negative impact on the level of new-urbanization. The parameter
estimation results of Column (2) reflect that the new-urbanization level of surrounding
regions has a promoting effect on the local green land utilization efficiency; the efficiency of
green land utilization of surrounding regions promotes the green land utilization efficiency
of the local city; the level of local new-urbanization has a negative impact on the local green
land utilization efficiency. In addition, the coefficients can be compared as the significance
has passed the test and the economic meanings are the same. The promotion effect of the
green land utilization efficiency in surrounding regions on the local new-urbanization level
is slightly less than the negative impact of local green land utilization efficiency on the local
new-urbanization level. The promotion effect of the new-urbanization level in surrounding
regions on the local green land utilization efficiency is significantly less than the negative
effect of the new-urbanization level on the local green land utilization efficiency.

4.2. Empirical Results Analysis
4.2.1. General Interaction Effect between New-Urbanization and Green Land
Utilization Efficiency

Through spatial-econometric estimation, we find mutual inhibition effects between
new-urbanization level and green land utilization efficiency. The new-urbanization level
will be significantly reduced by 0.109 (p = 0.000) for every unit increase in green land
utilization efficiency. For each unit of increase in the new-urbanization level, the green
land utilization efficiency will decrease significantly by 5.298 (p = 0.000). In general, there
is an interactive effect between the level of new-urbanization and green land utilization
efficiency, and the marginal effect of the new-urbanization level on the green land utilization
efficiency is more obvious, that is, the new-urbanization level takes a comparatively leading
role in the reciprocal promotion relationship. China’s urbanization development is still
in the left-hand stage of the environmental Kuznets curve; pollution emissions increase
further with the rise of per capita GDP, and industrialization features are obvious. With
the population shifting from primary industry to secondary industry, heavy industrial and
chemical companies develop speedily, and the discharge of industrial wastes increases. The
demand for green development has also adversely affected the process of urbanization.

4.2.2. Spatial Spillover Effects between New-Urbanization and Green Land
Utilization Efficiency

Through spatial-econometric estimation, this paper finds that both new-urbanization
and efficiency of green land utilization have significant spatial spillover effects. The local
new-urbanization level will increase significantly by 0.940 (p = 0.000) for each unit of
increase in the new-urbanization level of surrounding regions. The new-urbanization
level of adjacent cities can promote the development of local new-urbanization through
industrial external expansion radiation and common market effect. The local green land
utilization efficiency is significantly increased by 1.037 (p = 0.000) when surrounding
regions’ green land utilization efficiency increases by 1. The improvement of the green
land utilization efficiency of surrounding regions can promote the efficiency of green land
utilization of local regions through the demonstration and innovation effect and the effect
of knowledge spillover.

4.2.3. Spatial Interaction between New-Urbanization and Green Land Utilization Efficiency

Through spatial-econometric estimation, we can find that the new-urbanization level
of surrounding regions has a promotion effect on the green land utilization efficiency of
local regions, and the development of the green land utilization efficiency of surroundings
also promotes the level of local new-urbanization. The green land utilization efficiency of
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local regions increases by 2.173 (p = 0.093) when the new-urbanization level of surrounding
regions increases by one unit. As one of the pivotal factors of urban development and
construction, the diffusion of new-urbanization to surrounding regions brings green inno-
vation resources and knowledge spillover. The underdeveloped cities should consolidate
their own development resources and actively accept the exogenous support of surround-
ing regions for local green development. When the green land utilization efficiency of
surrounding regions increases by 1, the new-urbanization level of local regions increases
by 0.106 (p = 0.000) significantly. Improving the green land utilization efficiency of sur-
rounding regions leads to the optimisation of the environment of economic development
and the development of the innovation ecosystem, which can have a radiation effect on
the local new-urbanization. Low new-urbanization level cities need to promote its indus-
trial structure, take the initiative to carry out mild green transformation by utilizing the
diffusion mechanism of surrounding regions and relieve the environmental pressure in the
process of urbanization.

4.3. Robustness Test

Based on the research of spatial inter-spillover effects between new-urbanization and
green land utilization efficiency, this part examines the impact of adjusting the width
of distance band and adjusting the type of spatial weight matrix on the robustness of
analysis conclusions.

4.3.1. Distance-Band Robustness Test

In the process of constructing spatial effect models, the establishment of spatial
weighted matrix is the first step, where the setting of the distance band is the most im-
portant part. The “number of neighbors” considered in the test of a single sample will
increase with the increase in the distance band and vice versa. In order to verify the effects
of adjustment of the spatial matrix range, we reduce the range from the initial setting
(W : 0 to 30) to more minor (W : 0 to 20) and increase to bigger (W : 0 to 40), as shown
in Table 7. At this time, fewer or more neighboring cities in the sample city will enter the
spatial matrix, and the other settings are consistent with those in Equations (6) and (7).

Table 7. Robustness test results of distance band adjustment.

Items

W: 0 to 20 W: 0 to 40

Explained Variable:
N-urb

Explained Variable:
L-eff

Explained Variable:
N-urb

Explained Variable:
L-eff

(1) (2) (3) (4)

W × N-urb 0.525 ** (2.37) 2.325 * (1.66) 1.071 *** (5.26) 1.111 (0.69)
W × L-eff 0.119 *** (4.24) 1.019 *** (23.53) 0.063 *** (2.65) 1.060 *** (20.35)

N-urb - −5.472 *** (−12.93) - −4.538 *** (−4.26)
L-eff −0.141 *** (−6.63) - −0.070 *** (−3.20) -
ope 0.071 *** (1.54) 0.491 (1.60) 0.008 (0.26) 0.622 * (1.82)
tra 0.010 *** (5.21) 0.056 *** (4.47) 0.008 *** (5.64) 0.050 *** (3.68)

com 0.003 * (1.70) 0.013 (1.08) 0.002 *** (2.65) 0.008 (0.69)
cap −0.004 *** (−3.17) −0.020 *** (−2.58) −0.005 *** (−5.61) −0.019 * (−1.78)
inv 0.014 *** (14.39) 0.078 *** (9.23) 0.014 *** (21.81) 0.071 *** (4.85)

m&x 0.024 *** (10.79) 0.129 *** (6.29) 0.024 *** (16.31) 0.108 *** (3.17)
rd 0.001 (0.13) 0.002 (0.03) 0.003 (0.50) −0.022 (−0.34)

Cons 0.049 0.138 −0.104 0.192
N 2376 2376 2376 2376
R2 0.1519 0.9523 0.9786 0.9338
F 356.09 *** 5124.91 *** 15989.13 *** 3518.62 ***

Notes: ***, **, and * stand for significant levels of 1%, 5%, and 10%, respectively, and the values in brackets are T-values.
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According to Table 7, we can find that the estimation result is still robust, and ad-
justment of the distance band does not bring a different result from the initial setting
(W : 0 to 30) estimation result. Firstly, there is a mutual inhibition effect between the
new-urbanization and the green land utilization efficiency, and the new-urbanization is
in a relatively advantageous position (W : 0 to 20, α3 = −0.141, β3 = −5.472; W :
0 to 40, α3 = −0.070, β3 = −4.538). Secondly, both the level of new-urbanization
and the green land utilization efficiency have significant spatial spillover (W : 0 to 20,
α1 = 0.525, β1 = 1.019; W : 0 to 40,α1 = 1.071, β1 = 1.060). Finally, the new-
urbanization level of surrounding regions has a promoting effect on the efficiency of green
land utilization of local regions, and the promotion of the green land utilization efficiency
of surrounding regions also has a promoting effect on the indigenous new-urbanization
level (W : 0 to 20,α2 = 0.119, β2 = 2.325; W : 0 to 40,α2 = 0.063, β2 = 1.111).

4.3.2. Robustness Test of Adjusting the Spatial Weighted Matrix Type

The specification of the spatial weight matrix may influence the test result of the spatial
estimation. The spatial weight matrix usually includes two forms: one is a quantitative
matrix with the reciprocal of the distance between samples as the weight; the other is
a qualitative weight matrix which divides the distance between samples into two parts
according to the “neighbor relationship” and “non-neighbor relationship”. In the estimation
above, the distance weighted matrix of numerical-type is initially used to characterize
the proximity of the connection among samples. In this part, the distance weight matrix
of adjacent is used, which means the distance among adjacent sample cities is 1, and the
distance among other sample cities is 0. The spatial effects between the new-urbanization
level and the green land utilization efficiency are investigated using the adjusted spatial
weighted matrix in combination with different distance band settings. Table 8 shows the
analysis results.

Table 8. Robustness test of adjusting the spatial weighted matrix type.

Items

W: 0 to 20
(Qualitative Weight Matrix)

W: 0 to 30
(Qualitative Weight Matrix)

W: 0 to 40
(Qualitative Weight Matrix)

Explained
Variable: N-urb

Explained
Variable: L-eff

Explained
Variable: N-urb

Explained
Variable: L-eff

Explained
Variable: N-urb

Explained
Variable: L-eff

(1) (2) (3) (4) (5) (6)

W × N-urb 0.240 (0.91) 1.586 (0.52) 0.276 (0.78) 4.815 * (1.58) 1.550 *** (6.23) 11.301 *** (3.15)
W × L-eff 0.097 *** (−0.91) 1.141 *** (13.69) 0.107 *** (8.07) 1.081 *** (12.94) 0.039 *** (3.07) 0.894 *** (10.00)

N-urb - −7.977 ***
(−13.31) - −8.816 ***

(−16.90) - −8.040 ***
(−7.57)

L-eff −0.069*** (−6.81) - −0.090 ***
(−11.31) - −0.057 ***

(−5.67) -
ope 0.001 (0.03) 0.464 (1.36) 0.036 (1.06) 0.437 (1.29) −0.021 (−0.74) 0.444 (1.27)
tra 0.007 *** (6.64) 0.076 *** (5.63) 0.008 *** (6.11) 0.073 *** (5.48) 0.007 *** (6.48) 0.069 *** (4.95)

com 0.003 *** (3.09) 0.022 * (1.83) 0.003 *** (6.11) 0.026 ** (2.16) 0.003 *** (3.92) 0.024 * (1.91)
cap −0.002 ** (−1.98) −0.028 **

(−2.23)
−0.005 ***

(−4.29)
−0.042 ***

(−3.51)
−0.007 ***

(−7.67)
−0.054 ***

(−3.87)
inv −0.002 *** (22.34) 0.108 *** (10.42) 0.014 *** (20.09) 0.124 *** (12.40) 0.014 *** (24.63) 0.115 *** (7.33)

m&x 0.028 *** (21.36) 0.213 *** (8.78) 0.027 *** (18.24) 0.238 *** (10.54) 0.028 *** (23.29) 0.216 *** (6.07)
rd 0.005 (0.92) 0.014 (0.22) 0.003 (0.53) 0.016 (0.25) 0.005 (0.99) 0.006 (0.09)

Cons 0.156 0.480 0.048 −0.047 −0.188 −1.381
N 2376 2376 2376 2376 2376 2376
R2 0.9838 0.9698 0.9589 0.9729 0.9900 0.9768
F 21611.99 *** 9652.20 *** 8485.45 *** 11001.47 *** 33120.49 *** 12386.61 ***

Notes: ***, **, and * stand for significant levels of 1%, 5%, and 10%, respectively, and the values in brackets are T-values.

According to Table 8, we can find that the estimation result is still full of robustness,
and the specification of adjusting the spatial weighted matrix does not bring a different
result from the initial setting (W: 0 to 30, quantitative weight matrix) estimation result.
Firstly, there is a mutual inhibition effect between the level of new-urbanization and the
green land utilization efficiency, and the level of new-urbanization is in a relatively ad-
vantageous position (W: 0–20 contiguity,α3 = −0.069, β3 = −7.977; W: 0–30 contiguity,
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α3 = −0.090, β3 = −8.816; W: 0–40 contiguity,α3 = −0.057, β3 = −8.040). Second,
both the new-urbanization level and the green land utilization efficiency have significant
spatial spillover effects (W: 0–20 contiguity,α1 = 0.240, β1 = 1.141; W: 0–30 contiguity,
α1 = 0.276, β1 = 1.081; W: 0–40 contiguity,α1 = 1.550, β1 = 0.894). Finally, the new-
urbanization level of surrounding regions has a promoting effect on the green land utiliza-
tion efficiency of local regions, and the increase in the green land utilization efficiency of
surrounding regions also has a promoting influence on the local new-urbanization level
(W: 0–20 contiguity,α2 = 0.097, β2 = 1.586; W: 0–30 contiguity,α2 = 0.107, β2 = 4.815;
W: 0–40 contiguity,α2 = 0.039, β2 = 11.301).

In a word, the conclusions reached through the SS-equations and the GS3SLS are
effective and robust. We can accept hypotheses H2–H4.

5. Conclusions and Implications

There is a complicated interaction and spillover mechanism between the new-urbanization
level and the green land utilization efficiency, and the spatial inter-spillover effects of
the two deserve further investment due to the significant spatial distribution features.
This paper uses the entropy weight method and super-efficiency SBM-GML(DEA) model
to calculate the new-urbanization level and the green land utilization efficiency of 297
cities in China from 2011 to 2018, respectively. Based on the analysis method of spatio-
temporal evolution characteristics, SS-equations and the GS3SLS, this paper draws the
following conclusions.

First, the new-urbanization level and the green land utilization efficiency in Chinese
cities have common and complex spatio-temporal evolution characteristics. (1) From the
perspective of global temporal dynamic evolution, the new-urbanization level and the
green land utilization efficiency in Chinese cities show an upward trend as a whole, and
the differences show a trend of continuous narrowing. The new-urbanization level and
the green land utilization efficiency of cities in high-value regions have increased, and the
proportion of cities in high-value regions has also increased. (2) From the perspective of
regional and temporal dynamic evolution, the new-urbanization level and the green land
utilization efficiency of the three regions all have prominent upward evolution characteris-
tics, and the level gap shows a narrowing evolution trend. The new-urbanization level of
central and western cities shows a two-level differentiation feature. The new-urbanization
level and the green land utilization efficiency of high-value cities in the three regions
have increased, and the proportion of high-value cities has also increased. (3) From the
perspective of the global spatial pattern evolution, there is a significant positive global
spatial auto-correlation in the spatial distribution of the new-urbanization level and the
green land utilization efficiency in Chinese cities. The global spatial correlation of the
new-urbanization level has evolved from a weak correlation to a strong correlation, and
the global spatial correlation of the green land utilization efficiency presents the evolution
characteristics of alternating between strong and weak correlation. (4) From the perspective
of regional spatial pattern evolution, there is spatial proximity peer effect in Chinese cities’
new-urbanization level and green land utilization efficiency. When the core variables in
the adjacent cities around the local city are at a higher (lower) level, the local city is also
more likely to become a higher (lower) level city, or it is more difficult for the local city to
“highlight the encirclement” to transfer to a low (high) level city. Therefore, Chinese cities’
new-urbanization and green land utilization efficiency have formed the spatial pattern of
“the low is always low and the high is always high”.

Secondly, there are spatial inter-spillover effects between the new-urbanization level
and the green land utilization efficiency in Chinese cities. (1) There are mutual inhibition
effects between the new-urbanization level and the green land utilization efficiency, and the
former is in a comparatively leading role. (2) Both the new-urbanization level and the green
land utilization efficiency have obvious spatial spillover effects. (3) The new-urbanization
of surrounding regions has a promotion effect on the green land utilization efficiency of
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the local, and the increase in the green land utilization efficiency of surrounding regions
also has a promotion effect on the new-urbanization of local cities.

The conclusions of this paper can provide a reference for strategies of developing new-
urbanization and green land utilization efficiency in various countries and regions. First,
it is essential to balance the new-urbanization level and green land utilization efficiency
development between regions, breaking the spatial pattern of “the low is always low,
and the high is always high”. Developing cities in backward areas should learn from
the experience and practice of green utilization and management of land resources of
neighboring cities, eliminating backward industries or carrying out green renewal. Cities
in advanced regions should use their own advantages to help neighboring cities carry
out industrial renewal and pollution control in land development and improve the green
efficiency of new-urbanization and land use, playing a leading effect in promoting the
progress of urbanization.

Second, the government should actively optimize the layout of new-urbanization
and enhance the positive traction of the new-urbanization construction on urban land
utilization efficiency. At the present stage, the development of new-urbanization did not
play a positive role in green land use within a city. The urban construction land area
is not necessarily better for being bigger. Factors such as the suitability of land spatial
development and resource and environmental carrying capacity should be fully considered.
The government should continue to push forward regional national spatial planning, pro-
moting “multiple planning compliance”. In addition, the government should encourage
the scientific connection and hybrid nesting of various functional areas within a city, opti-
mizing the allocation of urban land resources, clearing and disposing of approved but idle
land, revitalizing the inefficient stock of construction land so as to fundamentally guarantee
to ensure the intensive, circular, and efficient improvement of urban land utilization in the
process of new-urbanization.

Third, the government should optimize the industrial structure between and within
cities. New technologies, such as information technology and digitalization, should be
adopted to transform traditional industries, form an industrial structure dominated by
high-end manufacturing and producer services, and foster a modern industrial system with
high added value. Land use targets should favor tertiary industry with lower pollution,
lower energy consumption, and higher efficiency. The local governments should step up
efforts to attract investment, encourage enterprises to concentrate on layout and scale
operations, give full play to the advantages of scale economies, and increase the efficiency
of each unit of land.

Fourth, the allocation effect and the baton role of green land utilization efficiency
should be brought into play. From the competitive perspective of regional green develop-
ment, it is an alternative to promote local new-urbanization by promoting the urban green
land utilization efficiency to absorb industrial and innovative factors. In general, countries
and regions need to implement domestic and foreign strategies such as land-use policy,
urban development, green technology, environmental protection, and the supply side
according to their own actual national conditions from the above perspective, improving
the pertinence of countermeasures and gradually improving the level of urbanization and
green development capacity.
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