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Abstract: Proactive artificial wetland constructions have been implemented to mitigate the loss
of wetlands and their ecosystem services. As wetlands are habitats for bats, short-term (one or
two years) studies find that constructed wetlands can immediately increase local bat activity and
diversity. However, it is not clear how constructed wetlands affect bats through time while the
wetlands are aging. We collected four years of continuous bat acoustic monitoring data at two
constructed wetlands in an urban park in Greensboro, NC, USA. We examined bat activity and
community composition patterns at these wetlands and compared them with reference sites in the
city. With four years of data, we found that the effects of constructed wetlands were both habitat-
and species-specific. The wetland in forests significantly increased bat activity, while the wetland
in the open grass altered bat community composition. Specifically, in terms of species, we found
that over time, constructed wetlands no longer attracted more big brown, silver-haired, or evening
bats than control sites while the wetlands aged, highlighting the need to study broadly how each bat
species uses natural and artificial wetlands. We emphasize the importance of long-term monitoring
and the periodical evaluation of wildlife conservation actions.

Keywords: constructed wetlands; bats; urban ecology; biodiversity; long-term monitoring; acoustics;
city parks; community dynamics; conservation evaluation

1. Introduction

Wetlands represent a continuum between both aquatic and terrestrial ecosystems [1].
Despite covering only 6–7% of the Earth’s surface, wetlands are one of the most biologically
productive ecosystems [2–4]. These species-rich ecosystems provide invaluable services
including protection from ecological disturbances such as hurricanes and floods, water
filtration, food chain support, and carbon sequestration [3,5]. Ecosystem services provided
by wetlands are also fundamental to local economies [6–8]. Natural wetlands usually
form an interconnective channel network of water and land infrastructure, providing an
important habitat for local wildlife [9,10].

Bats, the second most diverse mammal group, also provide invaluable ecosystem
services [11]. Many bat species are insectivores and consume large amounts of nocturnal
insects. Thus, bats constitute an important pest control service in forest and agricultural
systems [12,13]. Bat predation also limits vector-borne diseases that spread via insects [14].

Land 2021, 10, 1087. https://doi.org/10.3390/land10101087 https://www.mdpi.com/journal/land

https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-3627-5941
https://orcid.org/0000-0002-2651-3328
https://orcid.org/0000-0003-0964-2125
https://orcid.org/0000-0001-8327-6747
https://doi.org/10.3390/land10101087
https://doi.org/10.3390/land10101087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land10101087
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land10101087?type=check_update&version=1


Land 2021, 10, 1087 2 of 18

Due to a wide range of interactions between omnivorous bats and flora, bats serve as
pollinators and seed dispersers and increase the yield of plants in their environments [11,15].
The influence of bats on ecosystems is large in geographical scope because of their mobility
and migration behaviors [16]. Furthermore, bats are bio-indicators for habitat degradation,
pollution, and climate change [17–19].

Worldwide, wetlands are important habitats for bats and support a wide range of
species due to the high abundance of native insects to support foraging [20–23]. Wetlands
are also a source of drinking water for bats [24–26]. In addition to the foraging oppor-
tunities, high-quality riparian vegetation in wetlands offers roosting structures [27,28].
However, due to climate change, pollution, and the ever-increasing need for land conver-
sion, wetlands are predicted to continue to decline [29]. Pollution and fragmentation of
natural wetlands negatively impact wetlands’ ability to support bats, which is particu-
larly severe in urbanized areas [30–33]. Proactive artificial wetland construction has been
implemented to mitigate the increasing losses of wetlands [10,22,34].

Constructed wetlands can be beneficial to wildlife by providing essential habitats
for many taxa [10,35]. Constructed wetlands are known to create safe havens for bats,
especially in areas that are heavily modified by humans [21,22,34,36]. Menzel et al. (2005)
and Parker et al. (2018) demonstrated that the short-term benefits of constructed wetlands
to bat communities were observed immediately after the construction or restoration of
wetlands within a year or two [34,36]. Yet, there is limited knowledge about natural
wetlands and their mechanisms to support wildlife, which in turn limits our understanding
of the benefits constructed wetlands provide to wildlife [37–39]. The primary purposes of
wetland construction in many cases may not be to protect wildlife and consequently may
pose risks to specific wildlife or even form an ecological trap [39–42].

The ecological trap scenario occurs when animals prefer a low-quality habitat over
other available higher quality habitats following rapid environmental changes induced
by humans [43]. The hypothesis is that environmental changes pose as false cues of
high-quality habitats and confuse animals during habitat selection, which eventually
leads to lower fitness of individuals [44]. There is evidence that constructed wetlands
serve as ecological traps for many species, especially those with limited mobility [40,45].
For example, urban wetlands are often constructed to mitigate stormwater runoff that
contains contaminants such as heavy metals, pesticides, and other harmful materials.
Frogs living in these constructed wetlands showed lower survival and lacked responses
to predator cues [40,46]. Similarly, bats that forage for insects over polluted water are
likely to accumulate pollutants over time, even though insects may be more abundant
locally [31,47,48].

Pollutant accumulation in constructed wetlands has been well studied. Existing
literature shows that pollutants accumulate fastest in the first one or two years after the
wetland’s construction and that older wetlands contain comparable high levels of pollutants
regardless of how artificial wetlands are constructed [49–51]. However, the monitoring
and evaluation of biodiversity at constructed wetlands through time is lacking [37,39]. The
existing literature tends to present conflicting findings depending on wetland type. For
example, in constructed wetlands for wastewater treatment, scientists found decreasing
plant diversity over time due to competition [52]. In contrast, mitigation bank wetlands
and small restored wetlands on farms showed increasing native plant diversity as wetlands
aged [53,54]. A study of amphibian communities in constructed ridge-top wetlands showed
that the age of the wetland did not affect the community as a whole or any individual
species [55]. However, in a series of constructed urban floodway wetlands, scientists found
a higher diversity of macroinvertebrates in older wetlands [56]. To our knowledge, there
has not been any multiple-year study on how constructed wetlands affect bats through
time.

The objective of our study was to examine bat activity and community composition
patterns at two constructed wetlands, through time, as the wetlands aged. We used four
years of continuous acoustic monitoring data to investigate whether short-term benefits of
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constructed wetlands to bats would persist or whether the bat response would attenuate
over time. Previous research compared these constructed wetlands with nearby control sites
and documented an immediate increase in overall bat activity after wetland construction
within a year [34]. Several species including big brown bats (Eptesicus fuscus), silver-haired
bats (Lasionycteris noctivagans), evening bats (Nycticeius humeralis), and Mexican free-tailed
bats (Tadarida brasiliensis) were attracted to the constructed wetlands and consequently
increased overall bat diversity at the wetlands. We hypothesized that overall bat activity
and certain species’ activity would continue to be higher at wetland sites than at the
nearby control sites over time. Regarding the community, we hypothesized that bat
diversity at the wetlands would be higher than the control sites and that bat community
composition at the wetland would be different from the control sites through time. We
also hypothesized that bat community composition would be similar across years but
vary among seasons at each site. Furthermore, we compared the wetland bat community
composition with long-term monitoring sites in a large city park in our study area to explore
how the constructed wetlands could alter bat community composition. Previous studies
have shown that larger urban parks would have higher bat diversity and more evenly
distributed communities [57–59]. Our wetlands were constructed in a small urban park.
The previous study at our wetlands already demonstrated increased bat diversity within a
year of the construction [34]. Therefore, we hypothesized that constructed wetlands altered
bat community composition and made bat communities in a small urban park similar
to bat communities in a large urban park immediately after the construction. We also
hypothesized that the community similarity would persist over time as the wetlands aged.

2. Materials and Methods
2.1. Study Sites

In March 2017, the University of North Carolina at Greensboro (UNCG) constructed
two small wetlands (less than 1000 m2 each) on its campus in the Peabody Park (a small
downtown park, 0.14 km2) near tributaries to North Buffalo Creek, part of the Cape Fear
River water basin, in Greensboro (36◦4′48′′ N 79◦49′10′′), NC, USA. The wetlands were
constructed at two locations representing two different habitats in the park: one in a
wooded forest (named the UNCG woody wetland) and one in an open grass field (named
the UNCG open wetland). The goals of constructed wetlands include improving runoff
water quality, promoting local biodiversity, enhancing campus aesthetics, and providing
educational opportunities. Parker et al. (2018) described the design and construction
details of the wetlands [34].

To understand how constructed wetlands affect local biodiversity, a paired monitoring
design was implemented. Near each constructed wetland, we identified a matching control
site. The control sites have similar vegetation structures comparable to the corresponding
wetland with one in the forest (named the UNCG woody control) and one in the grass field
(named the UNCG open control). At all four sites, a series of non-invasive biodiversity
monitoring equipment was installed prior to the wetland construction and continues
through to the present. Bat acoustic monitoring was part of the long-term urban wildlife
monitoring effort at these sites.

In addition to the wetland vs. control site pairs, we also included three sites from the
Greensboro Science Center (GSC), which is located in a 2.2 km2 forested park complex
approximately 7.5 km northwest of UNCG, representing a large urban greenspace. The
three sites at GSC were selected at different heights to specifically monitor bat acoustic
activities below, within, and above the park forest canopy for a complete acoustic profile of
bats in the large urban park [60]. Monitoring at those sites started between April and July
2017 and continues through to the present.

2.2. Bat Monitoring and Acoustic Analysis

In total, we assayed seven sites in this study using bat acoustic monitoring. We
used Song Meter SM4BAT-FS ultrasonic detectors with the SMM-U2 omnidirectional
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microphone (Wildlife Acoustics Inc., Maynard, MA, USA) at all sites. All detectors were
set to record continuously from sunset to sunrise nightly throughout the year and powered
by D cell batteries. The specific detector and microphone settings have been previously
described [34,61]. All detectors were checked and maintained every two to four weeks
throughout the year.

At all UNCG sites and the below canopy site at GSC (named the GSC ground level),
the bat detector was strapped to a tree. The microphone and the connecting cable were
run through PVC pipes that were strapped to the tree as well. The microphone was
cantilevered away from the tree with a 1 m PVC pipe facing the open space. At these
five sites, microphones were approximately 8 m above the ground. At the within canopy
site at GSC (named the GSC canopy level), a similar microphone setup was used on a
recreational tower with the detector and PVC pipes strapped to the tower pillar, resulting
in the microphone facing the open space in the forest canopy approximately 11 m above
the ground. The final site at GSC was on the rooftop of a building (named the GSC rooftop
level). The microphone was projected above the forest canopy by a 15 m tall weighted
station. The specific setup and photos of this site were presented by Li et al. (2020) [62].

We analyzed bat acoustic recordings from April 2017 to December 2020 at all sites
except for the GSC rooftop level, which started monitoring in July 2017. For this site, we
analyzed bat acoustic recordings from July 2017 to December 2020. We used Kaleidoscope
(version 4.5, Wildlife Acoustics Inc., Maynard, MA, USA) to process acoustic recording
files and assign species identification. Each recording file had to contain at least three
complete bat echolocation calls within 0.5 s to be classified as a bat pass. Others were
classified as noise. To assign species identification to a bat pass, we selected big brown
bats (EPFU), eastern red bats (Lasiurus borealis, LABO), hoary bats (Lasiurus cinereus, LACI),
silver-haired bats (LANO), evening bats (NYHU), tricolored bats (Perimyotis subflavus,
PESU), and Mexican free-tailed bats (TABR) in the Kaleidoscope reference library as the
only candidate species with the neutral auto-identification setting. This is because previous
studies in the area only found these species [63,64]. After the automatic processing, we
used the match ratio generated by Kaleidoscope for each bat pass to determine whether we
accepted a species identification. We only considered a bat pass identified to species if the
match ratio was greater than 0.60, which was a value necessary to be accurate in our study
area after comparing Kaleidoscope automatic identification and manual identification by a
bat acoustics expert [18,64]. The remaining bat passes were identified as “no ID”. Acoustic
analysis yielded the total bat passes (including bat passes identified to a species and no ID)
and species-specific bat passes for each recording night at each site. We also counted how
many species were recorded each night at each site as nightly species richness.

2.3. Statistical Analysis

We used R (version 4.1.0, [65]) for all statistical analyses and data visualization. Since
we recorded bats nightly throughout the year and night length varies through the year in
Greensboro, we standardized bat passes by night length. We used R package “suncalc” [66]
to extract night length in hours and divided bat passes by night length. For each recording
night at a site, we had total bat passes per hour and species-specific bat passes per hour.
We also assigned seasons to each recording night using meteorological seasons, as follows:
spring (March–May), summer (June–August), fall (September–November), and winter
(December–February of the following year). We presented our results in a chronological
way with seasons as the blocking factor for statistical analyses because life-history events
in different seasons could significantly alter bat acoustic activities and communities [67].

To test whether bat activity levels at the constructed wetlands were higher than at
the control sites, we compared the dependent variables, total bat passes, and species-
specific bat passes at each site pair. We compared the open pair separately from the
woody pair because the physical environmental differences (due to vegetation and other
obstacles) could significantly affect the probability to detect and record bats and thus the
amount of bat passes recorded [62,68,69]. With the pair design, both the wetland and the
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control site had similar physical conditions for sound transmission and the same weather
condition. We could assume the probability to detect and record a bat was similar for
paired sites for a species. We did not make any cross-species comparisons for bat activity
as the detection probability could be species-specific. We first checked the normality of
dependent variables using the Kolmogorov–Smirnov test for large sample sizes [70] and
found that all dependent variables were not normally distributed. Therefore, we used the
nonparametric Wilcoxon rank-sum test to compare the medians between the wetlands
and their matching control site. We conducted Wilcoxon tests by season. For the spring
of 2017, we only included April and May data (wetlands constructed in late March). For
the winter of 2020, we only included December data due to logistic reasons. To visualize
whether the wetland or the control site had higher bat activities during each season, we
extracted the Wilcoxon test results for each season and plotted a tile graph for each wetland
vs. its control pair using R package “ggplot2” [71]. Each tile in the graph represented a
specific season and showed which site had significantly higher bat activities indicated by
the Wilcoxon test.

To understand how constructed wetlands affected the bat community, we first exam-
ined bat species richness at all seven sites. Previous research in our area suggested that
weather conditions including temperature, wind, and precipitation could affect bat acoustic
activities [62,64,72]. Thus, we extracted daily weather data (temperature in ◦C, wind in
km/h, and precipitation in cm/h) from the source as described in Li et al. (2020) [62]. To
incorporate weather data into analyses, we constructed generalized linear models with
nightly species richness as the dependent variable and site as the independent variable.
For the dependent variable, we used the Poisson distribution link for generalized linear
models as this variable is a count of species recorded on each night [70]. We constructed
generalized linear models for each season separately and used the UNCG open control
site as the reference level. We used a backward approach for the covariates and included
all three weather variables as regression covariates in an initial model and eliminated
nonsignificant covariates. All weather covariate results are reported in Supplementary
Material Table S1. For each final model, we plotted residuals to visually examine the model
fit. We compared site pairs using Tukey HSD tests in the post hoc analysis. To visualize
the generalized linear model results, we plotted box plots via “ggplot2” and used different
colors to indicate sites that had significantly different levels of species richness within a
season. It is important to note that differences in bat species richness among sites could be
affected by the physical conditions near a site. Sites with more vegetation coverage could
usually detect bats in a smaller range [62,64,72] and possibly fewer species, given that we
did not have forest interior specialist species in our study area [63,64].

Next, we conducted Mantel’s tests to compare community composition between
sites. Mantel’s test compares two matrices for correlation, based on multivariate relative
distances [73]. We used the month as the sample unit to describe bat communities at each
site by calculating mean species-specific bat activities in a month and compared sites in
pairs in each year. We binned nightly data together for monthly comparison to reduce the
uncertainty among nights caused by different detection probabilities across species. When
comparing other sites with the GSC rooftop level for 2017, we only used data between July
to December in 2017 from other sites as the Mantel’s test requires two matrices to be the
same size, and the GSC rooftop level was set up in July 2017. It is important to note that
the bat community was represented by the acoustic activity level instead of number of
individual bats. We used the Bray–Curtis distance to calculate the dissimilarity matrix due
to there being many zeros in our data. For all Mantel’s tests, we ran 9999 permutations
per test and used Spearman’s methods to calculate correlations. To visualize relationships
among sites based on the Mantel test, we generated a correlogram indicating if any site
pair showed a significant correlation based on monthly mean bat activity matrices via
“ggplot2”.

Lastly, we used nonmetric multidimensional scaling (NMDS) to describe how com-
munity composition changed over time at each site. Nonmetric multidimensional scaling
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is an ordination technique that graphically presents community relationships by projecting
each community from a multidimensional space into a lower-dimensional plot [73]. In
our NMDS analysis, we used the same method as with the Mantel test to describe bat
communities at each site monthly. Each data point, representing a site at each month, was
quantified in a seven-dimensional space, where each dimension represented a bat species.
This analysis described whether one or a few species dominated the acoustic space at each
site during each month and whether dominance patterns changed over time. The domi-
nance was indicated by the relative amount of bat acoustic activity in comparison among
species at a site and did not reflect the absolute amount of bat acoustic activity among sites.
We conducted 500 runs with random starts to search for the best two-dimensional solution
with the lowest stress using R package “Vegan” [74]. For each NMDS solution at each site,
we extracted NMDS scores for each axis and plotted the graph by “ggplot2” and reported
stress value for each graph. The interpretation of NMDS plots should focus on the spatial
proximity patterns instead of the NMDS scores on each axis [73]. The physical conditions
at each site could affect the probability to detect and record bats and thus affect the NMDS
scores.

3. Results

From the spring of 2017 to the winter of 2020, we conducted bat acoustic monitoring
through 16 seasons at seven sites. In total, we recorded 744,286 bat passes and identified
444,916 passes to species (Table 1, Supplementary Material Table S2). The UNCG open
wetland and the UNCG open control had the highest numbers of bat passes across all sites.
The UNCG woody control or the GSC ground level tended to have the lowest numbers of
bat passes. Summer was the season with the highest number of bat passes, whereas winter
had the lowest bat passes for all sites. Interestingly, at UNCG sites, the spring usually had
more bat passes than during the fall. In contrast, at GSC sites, the fall had more bat passes
than during the spring (Table 1).

Table 1. Total bat passes recorded at each study site in each season in Greensboro, NC, USA.

UNCG
Open Wetland

UNCG
Open Control

UNCG Woody
Wetland

UNCG Woody
Control

GSC
Rooftop Level

GSC
Canopy Level

GSC
Ground Level

2017 Spring 22,481 23,379 8824 3559 N/A 1394 262
2017 Summer 36,428 36,284 5565 1131 8792 7725 1148

2017 Fall 7917 5938 2152 2054 5514 2514 1635
2017 Winter 4794 2445 1526 1561 309 281 280
2018 Spring 19,952 19,578 9588 3964 4765 1909 497

2018 Summer 35,358 19,219 5879 398 11,350 4972 1482
2018 Fall 2621 8898 1481 1898 7554 1104 909

2018 Winter 2728 1460 844 546 131 205 115
2019 Spring 18,481 33,980 10,098 5217 2783 852 824

2019 Summer 32,177 30,544 3906 873 13,172 4789 738
2019 Fall 3662 5744 558 1436 11,869 1045 1183

2019 Winter 2154 1806 812 887 225 153 117
2020 Spring 20,712 28,819 12,160 10,979 1235 1177 498

2020 Summer 35,598 26,851 2512 1227 10,072 8586 2274
2020 Fall 6775 3020 1858 435 9066 3122 756

2020 Winter 417 271 81 83 242 19 59

3.1. Wetland vs. Control Bat Activity Comparison by Wilcoxon Tests

For the wetland versus control comparison on bat activity, we found varying results
by wetland type, season, and species. For total bat activity at the open sites, there was
no difference between the wetland and the control sites in the first five seasons after
construction (Figure 1). In the subsequent eleven seasons, there were six with statistical
differences, three with higher total bat activity at the wetland and three at the control,
without a consistent pattern (Figure 1, Supplementary Material Table S2). In contrast, at the
woody sites, total bat activity was significantly higher at the wetland for ten seasons, in-
cluding every summer and most springs (Figure 2, Supplementary Material Table S2). At
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both wetlands, the effect of constructed wetlands on total bat activity did not change
through time. Similar to total bat activity, the effect of constructed wetlands on the
eastern red bat and the tricolored bat was generally consistent over time at both open
and woody wetlands. For the eastern red bat, bat activity was higher at both wetlands
than the corresponding control sites for all summers and most springs (Figures 1 and 2,
Supplementary Material Table S2). For the tricolored bat, wetland construction generally
resulted in lower activity at wetland sites as compared to the control sites across most
seasons (Figures 1 and 2, Supplementary Material Table S2).
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For some species, the effect of constructed wetlands varied, depending on whether the
wetland was in the open grass or the woods. Hoary bat activity was significantly higher
at the open wetland than the open control for ten seasons and no difference was found
for the remaining six seasons (Figure 1, Supplementary Material Table S2). However, in
the woods, there was no difference between the wetland and the control for most of the
seasons (Figure 2, Supplementary Material Table S2). The open wetland had significantly
higher Mexican free-tailed bat activity than the open control in 12 seasons (Figure 1,
Supplementary Material Table S2). However, there were seven seasons when the woody
wetland had significantly lower Mexican free-tailed bat activity than the woody control
(Figure 2, Supplementary Material Table S2).

We found that the effect of constructed wetlands on bat activity changed over time
for the silver-haired bat, the big brown bat, and the evening bat at certain wetlands.
Generally, both the open wetland and the woody wetland had higher bat activity compared
to control sites during the first year for these species (Figures 1 and 2, Supplementary
Material Table S2). However, starting in the spring or summer of 2018, roughly a year
to fifteen months after the wetland construction, the activity patterns changed. For the
silver-haired bat, the open wetland continued having higher activity than the open control.
However, the woody wetland and woody control alternately had higher activity among
seasons (Figures 1 and 2, Supplementary Material Table S2). For the big brown bat and the
evening bat, the woody wetland continued to have higher activity than the woody control.



Land 2021, 10, 1087 9 of 18

However, the open wetland started having significantly lower bat activity than the control
(Figures 1 and 2, Supplementary Material Table S2).

3.2. Species Richness Comparison by Generalized Linear Models

Both season and site affected whether the wetland had higher species richness than
the control. In all summers and three springs (except spring 2020), the woody wetland
had higher species richness than the woody control (Figure 3, Supplementary Material
Table S1). However, for most falls and winters, there was no difference for this pair. In three
falls (except fall 2018) and two summers (2018 and 2019), the open wetland had higher
species richness than the open control (Figure 3, Supplementary Material Table S1). In
two seasons, fall 2020 for the woody pair and spring 2018 for the open pair, the control
site had higher species richness than the wetland. Generally, species richness was higher
at the open pair than the woody pair. When comparing sites on the UNCG campus with
three sites at GSC, the open wetland generally had the same level of species richness as the
GSC rooftop site, both having the highest species count within a season. Species richness
at the woody wetland was more often lower than the GSC canopy level or ground level. In
eleven seasons, the woody control site had the lowest species richness (Figure 3).
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3.3. Community Composition Comparison by Mantel’s Tests

Both wetlands had different community compositions from control sites in 2017
immediately after the wetland construction (both p > 0.05, Figure 4, Supplementary Material
Table S3). However, over time, the community composition difference between a wetland
and its control site disappeared (Figure 4). Between the open wetland and the open
control, only the first year was different. The woody wetland and the woody control
were different in 2017 and 2018 but showed no difference in 2019 and 2020. In 2017, after
the construction, the community composition matrices were correlated between the two
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wetlands (p < 0.05, Supplementary Material Table S3), suggesting similar compositions.
Interestingly, when comparing the open wetland with three GSC sites, there were strong
community matrices correlations (all p < 0.005, Figure 4), indicating the open wetland had
a community composition similar to sites in a large urban park. As the open wetland
aged, the composition matrices were still correlated. In contrast, the woody wetland
community composition was never similar to sites at GSC except for 2018, when the woody
wetland had a composition similar to the GSC canopy level. At the woody control site, the
community composition was always different from any site at GSC. All three sites at GSC
did not show any compositional difference among them (Figure 4).

Land 2021, 10, x FOR PEER REVIEW 10 of 18 
 

different in 2017 and 2018 but showed no difference in 2019 and 2020. In 2017, after the 
construction, the community composition matrices were correlated between the two wet-
lands (p < 0.05, Supplementary Material Table S3), suggesting similar compositions. Inter-
estingly, when comparing the open wetland with three GSC sites, there were strong com-
munity matrices correlations (all p < 0.005, Figure 4), indicating the open wetland had a 
community composition similar to sites in a large urban park. As the open wetland aged, 
the composition matrices were still correlated. In contrast, the woody wetland community 
composition was never similar to sites at GSC except for 2018, when the woody wetland 
had a composition similar to the GSC canopy level. At the woody control site, the com-
munity composition was always different from any site at GSC. All three sites at GSC did 
not show any compositional difference among them (Figure 4). 

 
Figure 4. Correlogram showing community composition comparison among study sites in Greensboro, North Carolina, 
USA. Mantel’s tests were used to compare sites. A p value smaller than 0.05 (shown in light and dark blue) indicated two 
sites were significantly correlated and had no compositional difference whereas a p value larger than 0.05 (shown in yel-
low) indicated two communities being different. 

3.4. Community Composition Changes over Time by NMDS 
Among the four sites on the UNCG campus, the open wetland showed the most ob-

vious seasonal community composition variation (Figure 5a). In the winter, the commu-
nity at the open wetland mostly associated with the hoary bat. Spring seemed to be the 
transition season with most species present. In the summer of 2017, the bat community at 
the open wetland had associations with the tricolored bat or the evening bat and the big 
brown bat. Later in 2019 or 2020, the dominant species in the summer shifted to the big 
brown bat, suggesting a changing summer community since the construction of the wet-
land. In the fall, the community associated with either the evening bat or the tricolored bat. 

Figure 4. Correlogram showing community composition comparison among study sites in Greensboro, NC, USA. Mantel’s
tests were used to compare sites. A p value smaller than 0.05 (shown in light and dark blue) indicated two sites were
significantly correlated and had no compositional difference whereas a p value larger than 0.05 (shown in yellow) indicated
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3.4. Community Composition Changes over Time by NMDS

Among the four sites on the UNCG campus, the open wetland showed the most obvi-
ous seasonal community composition variation (Figure 5a). In the winter, the community at
the open wetland mostly associated with the hoary bat. Spring seemed to be the transition
season with most species present. In the summer of 2017, the bat community at the open
wetland had associations with the tricolored bat or the evening bat and the big brown bat.
Later in 2019 or 2020, the dominant species in the summer shifted to the big brown bat,
suggesting a changing summer community since the construction of the wetland. In the
fall, the community associated with either the evening bat or the tricolored bat.
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0.101); (c) woody wetland (stress 0.1554); (d) woody control (stress 0.163).

The community composition pattern at the open control sites was similar to the open
wetland, with the hoary bat being the dominant species for the winter and the big brown
bat for the summer (Figure 5b). However, there were a few summer and fall months
in 2019 and 2020 when the tricolored bat became more prevalent at this site. In the fall,
the community composition varied and did not form a clear grouping pattern. At the
woody wetland, the winter and summer community compositions separated distinctively.
However, neither spring nor fall had a clear pattern associating the site with certain species
(Figure 5c). At the woody control site, the separation among seasons was weaker than the
other three sites, suggesting no particular species used this site more often than others at
any time of the year (Figure 5d). No clear separation by year was found at both woody
wetland and woody control.

Among three sites at GSC, the rooftop level site had the clearest seasonal separation.
Similar to the open wetland at UNCG, in the winter the community was dominated by the
hoary bat (Figure 6a). However, different from the open wetland, the association with the
evening or tricolored bat at this site was found in the summer instead of the fall. The big
brown bat was the dominant species at the rooftop level site in the fall. Both the canopy
and ground-level sites only had the summer separated from other seasons (Figure 6b,c).
The ground level site at GSC was dominated by the big brown bat in the summer, except for
the summer of 2020 when the evening bat was the most common species in the community
(Figure 6c). In fact, at all three sites, the evening bat was prevalent in the summer of 2020,
making the community different from other summer seasons.
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4. Discussion

Four years of continuous monitoring at two constructed wetlands revealed different
outcomes. How bats responded to constructed wetlands could change over time. We
found that total bat activity was higher at the woody wetland than the control, whereas
generally, total bat activity was not different for the wetland and its control in the open
grass. Constructed wetlands in forests have not been as well studied as wetlands in the
open. However, it is known that water sources within forests provide important drinking
and foraging habitats for bats [24,75]. For the wetland in the open grass, our results
are consistent with a previous study in the Southeastern US, which found no difference
between wetlands and controls after the wetland restoration at a much broader scale [36].
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However, two studies in South Africa and Germany showed that constructed wetlands
in open areas had higher total bat activity than other land covers [21,22], suggesting there
could be species-specific responses to constructed wetlands.

Among the seven species we studied, we found that only four species showed a
consistent response between open and woody wetlands over time. Eastern red bat activity
was higher at wetlands compared to controls, consistent with the short-term one-year
response that we found at these sites [34]. We also found that tricolored bat activity was
consistently lower at wetlands compared to controls, suggesting constructed wetlands
might repel this species. Previous studies have demonstrated that the tricolored bat prefers
relatively low-quality eutrophicated water at both local and regional scales, likely due
to emerging aquatic insects associated with eutrophicated water [18,76]. Wetlands have
the ability to filter water and improve water quality [3,5], and water quality at these
wetlands may not have been suitable for tricolored bats to forage preferred insect preys.
Interestingly, in a broad scale analysis in the same region, the tricolored bat was found
positively correlated to woody wetlands [77], suggesting there should be more studies on
how the tricolored bat responds to both vegetation and water. For the hoary bat and the
Mexican free-tailed bat, only the open wetland showed an effect. This is likely because these
species usually fly over the canopy in open space and are less suitable for maneuvering
through forests [60,78,79]. This finding suggests that the location of small constructed
urban wetlands is important for attracting bats.

For three species, we found that constructed wetlands had higher bat activity than
controls immediately after construction but the difference disappeared over time. In the
short term, within a year, the big brown bat, the silver-haired bat, and the evening bat
all showed increases with construction wetlands [34]. However, starting in the second or
third year, some wetlands had lower bat activity than controls for these species. This is a
result that can only be found in multiple-year studies and has not been reported previously.
Why would there be a discrepancy between short and long term? Our wetlands changed
over time as planted aquatic vegetation became mature and might have altered the water
surface area available for drinking. It is likely that water quality also changed, which could
alter insect prey availability for bats at the wetlands. Studies of the relationship between
aquatic vegetation structure and bat activity deserve future attention. We also propose
future studies to examine constructed wetlands with different vegetation management
schemes. Notwithstanding, it is still puzzling why only certain species of bats changed
their preference. It is likely that different species of bats benefit from wetlands in unique
and different ways and we need to better understand what aspects of wetlands each
species is responding to and, more broadly, how each bat species uses wetlands. How
natural wetlands support wildlife is not completely understood [37–39] and our results at
constructed wetlands underscore this.

Recognizing that each bat species has specific needs and responses to wetlands,
it is also important to consider the bat community and how interspecific interactions
might affect the effects of constructed wetlands on bats. Our analysis on species richness
showed that wetlands generally have more species than the control for most seasons,
which was consistent with previous studies [22,34]. In a behavioral study conducted at
these wetlands, we found increased territory defense calls when multiple species were
present [61]. It is likely that constructed wetlands attracted more species and increased
interspecific interactions. Consequently, increased interspecific interactions might shape
bat communities over time [80,81].

Our community-level analyses also showed seasonal variations. The big brown bat
was associated with most seasons except for the winter, when the hoary bat was the
dominant species. All seven species have been documented to be residents in the Piedmont
of North Carolina for the winter [34,72]. However, we found that the big brown bat and the
silver-haired bat were the most active species in the winter in non-urban settings instead of
the hoary bat [72]. We suspect that there might be local scale seasonal migrations, similar
to a study on big brown bats in Colorado where urban big brown bats left the city during



Land 2021, 10, 1087 14 of 18

the winter season [82]. Community differences among seasons were always stronger at the
wetlands than at the control sites, suggesting that wetlands might increase interspecific
interactions and certain species used the wetlands more often than others. Over time, we
observed the open wetland bat community losing evening bats and becoming more big
brown bat-dominant. The construction of a wetland could be considered as a change in
the environment. A previous study showed that the big brown bat was more adaptive
to anthropogenic changes than evening bats [83], which might explain why evening bats
stopped using the wetland site once the wetland was constructed.

Combining results that the open wetland became more big brown bat-dominant, and
that big brown bat activity was higher at the control than the wetland, we suggest that
the wetland attracted big brown bats to Peabody Park on the UNCG campus. This is
supported by yearly comparisons of community composition between sites where we
found that the composition was different between the wetland and their matching controls
in the first year after wetland construction but not thereafter. We speculate that wetland
construction initially attracted more bats to Peabody Park. Over time, these bats could
have explored the entire park and found more preferable habitats within it. Peabody
Park is a small urban park near the city center. Studies have shown that the size of
urban green spaces and their relative location in the city could affect bat activity and
community composition [58–60], likely because of vegetation, water, noise level, and other
environmental characteristics [62,84,85]. Generally, larger parks tend to have higher bat
activity and higher diversity. Interestingly, our community-level analyses found that the
wetland in the open grass had a bat community composition similar to sites in GSC, a large
urban park. This result further demonstrates the potential benefits of small constructed
wetlands in urban areas.

5. Conclusions

Our analysis of four years of continuous bat monitoring data in constructed wetlands
found that how bats responded to constructed wetlands was both habitat- and species-
specific. A constructed wetland’s ability to attract bats depended on the wetland’s location.
Constructed wetlands in forests could significantly increase bat activity, while constructed
wetlands in the open grass played a bigger role in altering bat community composition.
Interspecific interactions were likely increased by the constructed wetlands. Therefore,
it is important to study how each species uses wetlands specifically regarding drinking
and foraging activities in the future. We suggest that the location of a constructed wetland
must be carefully planned based on what bat species the constructed wetland is intended
to conserve to ensure its goal of conserving bats. Overall, constructed wetlands in a small
urban park in our study were beneficial for bat diversity and community composition on a
scale that is typically seen only in large urban parks. However, as time passes, constructed
wetlands may no longer attract more bats due to other environmental changes. Therefore,
we emphasize the importance of long-term monitoring and the periodical evaluation of
wildlife conservation actions which may have unanticipated effects over time.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/land10101087/s1, Table S1: Generalized linear model for species richness analysis results
(including weather covariates results for each model) and post hoc paired Tukey comparison results
for bat species richness difference among sites within each season, Table S2: bat passes recorded and
bat passes identified to species by site and by season, median total bat activity and species-specific
bat activity and Wilcoxon test p value for paired wetland versus control sites, Table S3: Mantel’s test
p values comparing bat communities among sites year by year.
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