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Abstract: Protecting areas of important ecological value is one of the main approaches to safeguarding
the Earth’s ecosystems. However, the long-term effectiveness of protected areas is often uncertain.
Focusing on China’s ecological conservation redline policy (Eco-redline policy) introduced in recent
years, this study attempted to examine the effectiveness of alternative policy interventions and their
implications on future land-use and land-cover (LULC) patterns. A scenario analysis was employed
to elucidate the implications of different policy interventions for Chongqing capital, one of the most
representative cities in China. These interventions considered the spatial extent of Eco-redline areas
(ERAs) and the management intensity within these areas. LULC data for two different periods from
2000 (first year) to 2010 (end year) were derived from satellite images and then used for future (2050)
LULC projections, incorporating the various policy interventions. Furthermore, several landscape
indices, including the shape complexity, contrast, and aggregation of forest patches were calculated
for each scenario. After comparing the scenarios, our analysis suggests that the current extent of
ERAs may not be sufficient, although their management intensity is. Therefore, we suggest that
during the optimization of the Eco-redline policy, ERAs are gradually increased while maintaining
their current management intensity.

Keywords: protected area; eco-redline policy; scenario analysis; land-use projection; landscape index

1. Introduction

The establishment of protected areas is a means of maintaining biodiversity while
assuring the sustainable provision of ecosystem services [1–3]. In the tenth meeting of the
Conference of the Parties regarding the Convention on Biological Diversity, one of the most
critical Aichi Targets was set: at least 17% of terrestrial land and 10% of waters should be
effectively protected by 2020. In the fifth edition of the Global Biodiversity Outlook, it was
concluded that this target had been partially achieved [4]. An updated target, increasing
these protected areas to 30% by 2030, has been proposed in the first drafts of the fifteenth
meeting of the Conference of the Parties [5] and could be recommended as a new deal for
humans and nature. However, the debate over the necessary proportion of protected areas
seems likely to persist because of the complexity of the recommendations provided by
studies with different spatiotemporal patterns and selection methods and focus on different
ecological processes. A recent review indicated that the protected area coverage called for
by previous studies has a large range (30–70%) at a global level [6].

Management methods and the corresponding intensity of land-use regulation is an-
other important point in setting up protected areas, in addition to their spatial extent.
Although hierarchical and zoning-based protected area management has reached interna-
tional consensus, owing to the complexity of social development and ecosystems, there
are almost no universal solutions applicable to all countries or regions. In some developed
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countries, such as the United States and New Zealand, national parks have achieved re-
markable results. However, this approach may not be appropriate in some developing
countries, owing to their large rural populations which rely on natural resources and have
a low tolerance for the large predators that play essential roles in many ecosystems [7].
Poor management has led to poaching and logging in some protected areas, turning them
into “paper parks” e.g., [8,9], a severe issue that requires awareness and action [10].

Despite these difficulties, some countries and regions are still attempting to develop
new methods of establishing and governing protected areas. In recent years, China has
been implementing a national ecological conservation policy: the Ecological Conservation
Redlines (Eco-redline) policy, which refers to the use of red lines to demarcate areas that
have important ecological functions within the scope of ecological space and which must
therefore be strictly protected [11]. By assessing the ecosystem services and ecological
sensitivity of the target areas, areas with important ecological functions and ecological
sensitivity are identified and then superimposed and calibrated with existing protected
areas (e.g., nature reserves and national parks) to form Eco-redline areas (ERAs).

As one of the most important ecological policies in China, the Eco-redline policy will
have a lasting influence on many aspects of social and economic development. Most gov-
ernment departments fall under the scope of the policy, whether they make development
plans or environmental protection plans. Land use and land cover (LULC) result from
human–nature interactions, and changes may be beneficial or detrimental to human beings,
profoundly affecting human well-being and welfare [12]. Therefore, evaluating the impact
of the Eco-redline policy on LULC is crucial to the future implementation and optimization
of this policy.

In this regard, scenario analysis is considered an effective method of assessing the
medium- and long-term impacts of a policy [13]. Scenario analyses in protected area studies
often consider alternative policy interventions for protected areas and the drivers of change
(e.g., climate change, economic development, and population growth) that influence the
operation of the protected areas. For example, using data on the area and percentage
of protected areas in countries worldwide from 1950–2005, McDonald and Boucher [14]
modeled future projections of protected areas in 2030 to examine the effectiveness of two
contrasting strategies: strict conservation and multiple-use (in which resource extraction is
partly permitted). Based on LULC change between 1990 and 2001, Martinuzzi, et al. [15]
quantified areas of urban landscapes, croplands, and natural vegetation around protected
areas in the United States under business as usual, forest incentive, high crop demand, and
urban containment scenarios. Velazco, et al. [16] modeled plant species losses resulting
from the continuous emission of greenhouse gases in Bolivia, Brazil, and Paraguay in 2050
and 2080, and found that the current protected area network is not sufficient to safeguard
the most valuable Corrado plant species, even in the most optimistic scenario.

There are also several studies on the demarcation and management of Eco-redlines,
some of which used scenario analysis. For instance, taking Shanghai as an example,
Bai, et al. [17] analyzed multiple land-use scenarios with different policy interventions to
explore their impacts on LULC and ecosystem services and assess their implications for the
effective implementation of the Eco-redline policy. Using the CLUE-S model, Jia, et al. [18]
explored the impacts of the Eco-redline policy on spatiotemporal land-use changes in
Beijing. They concluded that the Eco-redline policy could improve the spatial integrity
and connectivity of ecological functions. Ju, et al. [19] projected the urban expansion of
the Beijing–Tianjin–Hebei megaregion in China by 2030 with and without the Eco-redline
policy to show the effects of the policy on runoff.

However, there is not much discussion on how to further optimize the Eco-redline
policy. Many studies compared scenarios in which the Eco-redline policy either exists
or not, to illustrate the positive effects or deficiencies of the policy but did not provide
specific adjustment suggestions. In addition, restricted by practical conditions such as
financial support especially in developing countries or regions, there are usually trade-offs
between different approaches. Therefore, which approach should be prioritized needs
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to be considered in policymaking. About the study area, existing studies most often use
the northern plains or the developed eastern regions of China as examples. These studies
have paid little attention to China’s central and western regions, which are dominated by
mountains and hills and remain relatively underdeveloped. Thus, we aimed to examine
the effectiveness of alternative policy interventions and their implications on future LULC
patterns, focusing on the capital of Chongqing, the only municipality under direct control
of the central government in western China. We employed scenario analysis with different
ERA spatial extents and management intensities, using LULC simulation and landscape
indices to analyze how these interventions influence ERA effectiveness. According to
the implementation outline of Eco-redline policy from the central government [11], each
province or city in China needs to regularly (e.g., every 5 or 10 years) evaluate the effective-
ness of its ERAs and make appropriate adjustments if necessary. By comparing the impact
of different measures on the landscape, we try to evaluate which approach is more critical
to promoting the Eco-redline policy; thus, our results will provide theoretical support in
subsequent policymaking.

2. Materials and Methods
2.1. Study Area

Chongqing is in southwest China, in the upper reaches of the Yangtze River (Figure 1).
The capital of Chongqing is its administrative and economic center. It covers a total
area of 5470 km2 and has nine districts under its jurisdiction, with a total population of
nearly 8 million. The landforms of Chongqing are dominated by mountains and hills,
of which mountains account for 76%, giving it the name “mountain city” [20]. Since
the most influential development strategy in China, named Reform and Opening Up in
1978, Chongqing has undergone great changes in social and economic aspects over four
decades. From 2000 to 2018, almost every year, the annual GDP growth rate of Chongqing
exceeded 10%. In 2019, the GDP of Chongqing was USD 342 billion, with a medium to
high growth rate (6.3%), and GDP per capita just exceeded USD 10,000 [21]. Economic
development has brought rapid urbanization, with the urban population increasing from
35.6% in 2000 to 65.5% in 2018. According to the latest Eco-redline delimitation plan
released by Chongqing Municipal People’s Government [22], the ERAs in Chongqing
capital cover 912 km2, accounting for 17% of the total area. As there was no GIS data of the
ERAs available, we produced vector data from a digital Eco-redlines map, showing the
spatial distribution of the ERAs. The digitized ERAs covered a total area of 906 km2, which
is very close to the official datum (912 km2).

2.2. Framework of Analysis

Scenario analysis is the combined application of models and scenarios [23]. With the
development of GIS (geographic information system) technology, it becomes more and
more convenient to obtain and analyze LULC data or use it for modeling. In the current
study, we used the land change modeler (LCM) on TerrSet (version: 18.31) for land change
simulation, which allows users to consider different policy interventions such as zoning
regulations, land development plans, and road developments. We used 2050 as the time
horizon for future projection and LULC maps from 2000 and 2010 for between different
LULC classes, based on Chongqing’s socio-economic development. In addition, an LULC
map from 2015 was used for the verification of the land change simulation.
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Figure 1. Location of Chongqing capital, China.

Figure 2 demonstrates the framework of the analysis. Generally, it can be divided into
the following steps: the construction of the land change model, the setting and conversions
of the scenarios, the generation of future LULC images, and the calculation and statistical
test of the landscape indices of the LULC images. First, cloud-free historical satellite images
of 2000, 2010, and 2015 were acquired. The satellite images were then used to conduct
LULC classification. The classified 2000 and 2010 LULC images were then used for land
change modeling. A predicted 2015 LULC was created using the model and compared with
the real 2015 LULC image. The model was then readjusted multiple times until satisfactory
accuracy was obtained. Once the model was ready, the second step was the setting and
converting of scenarios. Six scenarios based on different assumptions which incorporated
the change of area and management intensity were proposed. The interference layers
corresponding to different scenarios were generated and loaded into the model to simulate
the future LULC images in 2050. Next, to compare the differences between these LULCs
under different scenarios, several key forest patch landscape indices were calculated for
each scenario. Finally, the landscape indices were used for statistical tests to find the
effectiveness of the change of area and management intensity of ERAs. The following
sections will provide more detailed explanations.

2.3. Data Acquisition of Historical Satellite Images

Landsat surface reflectance data images provided by the United States Geological
Survey were sourced using the Google Earth Engine (GEE) platform. The Landsat surface
reflectance data has a spatial resolution of 30 m, a temporal resolution of 16 days, and
has been atmospherically corrected. GEE provides a function to filter for cloud-free pix-
els (https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C0
1_T1_SR accessed on 20 September 2021) by reading the description of the cloud cover in
the metadata. In addition to this function, the IMAGE_QUALITY and CLOUD_COVER
image properties were also used during pixel filtering.

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_SR


Land 2021, 10, 1084 5 of 25
Land 2021, 10, x FOR PEER REVIEW 5 of 27 
 

 
Figure 2. General methodology. 

2.3. Data Acquisition of Historical Satellite Images 
Landsat surface reflectance data images provided by the United States Geological 

Survey were sourced using the Google Earth Engine (GEE) platform. The Landsat surface 
reflectance data has a spatial resolution of 30 m, a temporal resolution of 16 days, and has 
been atmospherically corrected. GEE provides a function to filter for cloud-free pixels 
(https://developers.google.com/earth-engine/datasets/catalog/LAND-
SAT_LT05_C01_T1_SR accessed on 20 September 2021) by reading the description of the 
cloud cover in the metadata. In addition to this function, the IMAGE_QUALITY and 
CLOUD_COVER image properties were also used during pixel filtering. 

To minimize phenological influences, the 2000, 2010, and 2015 images were prelimi-
narily screened by month. After many attempts, we accepted that almost no image of a 
single month could cover the entire study area. In addition, cloudless images in summer 
and autumn generally covered no more than half the area. Therefore, we decided to use 
multiple images from adjacent periods for the subsequent land classification and then 
overlap them to obtain an LULC map of the whole study area. The following two criteria 
were applied in selecting images: first, the date range needed to be within three years of 
the target year; second, images from two months were used for each target year. Com-
pared with the strategy of fusing images from different periods first and then classifying 
them, this strategy of first selecting images with higher homogeneity for separate classifi-
cation and then overlapping (simply classify first then overlap) can effectively reduce the 
negative influences of phenology and sensor differences on later classification. The final 
images used for the target year 2000 were from July 2000 and July 2001; for 2010, they 
were from August 2010 and June 2008; and for 2015, they were from August 2015 and July 
2016. A topographic illumination correction method proposed by Poortinga, et al. [24] was 
applied to all the images to reduce visual interpretation errors in the following LULC clas-
sification. 

Figure 2. General methodology.

To minimize phenological influences, the 2000, 2010, and 2015 images were prelimi-
narily screened by month. After many attempts, we accepted that almost no image of a
single month could cover the entire study area. In addition, cloudless images in summer
and autumn generally covered no more than half the area. Therefore, we decided to use
multiple images from adjacent periods for the subsequent land classification and then
overlap them to obtain an LULC map of the whole study area. The following two criteria
were applied in selecting images: first, the date range needed to be within three years of
the target year; second, images from two months were used for each target year. Compared
with the strategy of fusing images from different periods first and then classifying them,
this strategy of first selecting images with higher homogeneity for separate classification
and then overlapping (simply classify first then overlap) can effectively reduce the negative
influences of phenology and sensor differences on later classification. The final images
used for the target year 2000 were from July 2000 and July 2001; for 2010, they were from
August 2010 and June 2008; and for 2015, they were from August 2015 and July 2016. A
topographic illumination correction method proposed by Poortinga, et al. [24] was applied
to all the images to reduce visual interpretation errors in the following LULC classification.

2.4. LULC Classification

We encountered two challenges in the LULC classification of the study area. One was
that the LULC was fragmented, and the other was the influence of cloud, fog, and haze.
After many attempts to classify the satellite images using various common classification
methods (e.g., supervised classification, unsupervised classification, and segmentation
classification), decision tree classification was employed to minimize the errors and in-
consistencies in images from different years and classify the images. The indices and
calculation methods are shown in Table 1. Considering convenience during later modeling
and the reality of LULC in Chongqing capital, the satellite images were classified into six
LULC categories: urban, cropland, forest, shrubland, grass, and water, which refer to the
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categories defined by the Chinese Academy of Sciences and were slightly adjusted [25].
Figure 3 illustrates the classification process, taking August 2010 as an example. The digital
numbers of each band were linearly stretched from 0–255 and then used to calculate the
indices. The thresholds of the indices of all six images are presented in Table 2.

Table 1. Indices for decision tree classification.

Index Full Name or Explanation Calculation Method

NDVI Normalized Difference
Vegetation Index (NIR − RED)/(NIR + RED)

MNDWI Modified Normalized
Difference Water Index (GREEN − SWIR)/(GREEN − SWIR)

NDBI Normalized Difference
Building Index (SWIR − NIR)/(SWIR + NIR)

Slope Topographic slope Calculated based on DEM.
NIR + SWIR
− 2 × RED Band calculation value Calculated as its expression.

Land 2021, 10, x FOR PEER REVIEW 6 of 27 
 

2.4. LULC Classification 
We encountered two challenges in the LULC classification of the study area. One was 

that the LULC was fragmented, and the other was the influence of cloud, fog, and haze. 
After many attempts to classify the satellite images using various common classification 
methods (e.g., supervised classification, unsupervised classification, and segmentation 
classification), decision tree classification was employed to minimize the errors and in-
consistencies in images from different years and classify the images. The indices and cal-
culation methods are shown in Table 1. Considering convenience during later modeling 
and the reality of LULC in Chongqing capital, the satellite images were classified into six 
LULC categories: urban, cropland, forest, shrubland, grass, and water, which refer to the 
categories defined by the Chinese Academy of Sciences and were slightly adjusted [25]. 
Figure 3 illustrates the classification process, taking August 2010 as an example. The dig-
ital numbers of each band were linearly stretched from 0–255 and then used to calculate 
the indices. The thresholds of the indices of all six images are presented in Table 2. 

 
Figure 3. Decision tree classification process (August 2010 as an example). 

Table 1. Indices for decision tree classification. 

Index Full Name or Explanation Calculation Method 

NDVI Normalized Difference Vegetation In-
dex 

(NIR – RED) / (NIR + RED) 

MNDWI Modified Normalized Difference Wa-
ter Index 

(GREEN – SWIR) / (GREEN – 
SWIR) 

NDBI Normalized Difference Building In-
dex 

(SWIR – NIR) / (SWIR + NIR) 

Slope Topographic slope Calculated based on DEM. 

NIR + 
SWIR 

– 2 × RED 
Band calculation value Calculated as its expression. 

The normalized difference vegetation index (NDVI) was first used for the separation 
of vegetation and non-vegetation. The modified normalized difference water index 
(MNDWI) is very effective in extracting water bodies [26]. It was thus used to distinguish 
between urban landscapes and water bodies in the non-vegetation areas. Originally, the 
normalized difference building index (NDBI) was used to extract buildings e.g., [27,28], 
as it can also be used in conjunction with the NDVI to distinguish vegetation, built-up 
areas, and bare soil. Through visual interpretation of the satellite images and comparison 
with high-resolution historical images provided by Google Earth, we found that a small 

Figure 3. Decision tree classification process (August 2010 as an example).

Table 2. Thresholds of indices for decision tree classification.

Index July 2000 July 2001 June 2008 August 2010 August 2015 July 2016

NDVI 0.47 0.47 0.47 0.47 0.55 0.55
MNDWI 0 −0.05 −0.03 −0.03 0 −0.05

NDBI −0.12 −0.12 −0.14 −0.14 −0.12 −0.18
Slope 30 30 30 30 30 30

NIR + SWIR
− 2 × RED 85 and 130 72 and 113 73 and 113 87 and 137 97 and 128 85 and 128

The normalized difference vegetation index (NDVI) was first used for the separation of
vegetation and non-vegetation. The modified normalized difference water index (MNDWI)
is very effective in extracting water bodies [26]. It was thus used to distinguish between
urban landscapes and water bodies in the non-vegetation areas. Originally, the normalized
difference building index (NDBI) was used to extract buildings e.g., [27,28], as it can also
be used in conjunction with the NDVI to distinguish vegetation, built-up areas, and bare
soil. Through visual interpretation of the satellite images and comparison with high-
resolution historical images provided by Google Earth, we found that a small amount
of grassland with low vegetation cover and soil as a background existed in the study
area. The NDBI values of these grasslands were significantly different to those in areas
with high vegetation cover, like forests. Urban areas were extracted using the NDVI in
the previous step. Therefore, the NDBI was used to distinguish grasslands from areas
with higher vegetation cover. The subdivision of the areas with high vegetation cover
was challenging because their spectral characteristics are similar. As overly steep land is
generally unsuitable for agricultural planting, slope degree was often used to distinguish
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woodland from cropland, e.g., [29,30]. As mountains and hills dominate Chongqing and
several projects on the conversion and consolidation of sloping land have been underway
for many years, e.g., the “Grain for Green” program [31], we were careful to use 30◦ as a
threshold to initially extract some forest and shrubland areas. The relatively high threshold
of 30◦ was used to minimize the risk of classifying cropland as woodland. After analyzing
the band values, we found that the band values from infrared to red differed between forest,
shrubland, and cropland. Therefore, the simple calculation of the band value “near infrared
(NIR) + shortwave infrared (SWIR) − 2 × RED” was used to separate forest, shrubland,
and cropland. Forests usually had the lowest “NIR + SWIR − 2 × RED” values, while
shrublands had the highest, and the cropland values usually fell in between. Forests and
shrublands with slopes less than 30◦ were distinguished using a fixed value (100), which
was determined by trial and error. For areas with a slope greater than 30◦, two thresholds
were used to divide them into forests, croplands, and shrublands in turn (Figure 3, Table 2).
In this study, the GREEN, RED, NIR, and SWIR bands correspond to b2, b3, b4, and b5 in
Landsat 5 images, and b3, b4, b5, and b6 (SWIR 1) in Landsat 8 images, respectively.

The thresholds for the decision tree were based on the statistical analysis of the regions
of interest (ROIs) in each category. ROIs were randomly selected from the segmented
images by referring to high-resolution historical images on Google Earth. Six ROIs, cor-
responding to the six classification categories, were carefully selected to ensure balance
in the quantity of each category and uniformity of distribution. The means and standard
deviations (SD) of the indices used in the decision tree for each ROI were calculated. The
distance between the threshold and the mean value of the target extraction category should
preferably be at least twice the SD and should not be less than one SD in special cases, to
ensure that the different categories can be easily distinguished. The meticulous extraction
of the ROIs was used to determine the threshold values and for accuracy validation.

Finally, the classified image was generalized to remove isolated pixels using a 3 × 3
kernel-mode filter then validated using the ROIs as references. The overall accuracy for
the 2000, 2010, and 2015 images was 80.2%, 86.3%, and 81.1%, respectively, while the
corresponding kappa index of agreement was 0.74, 0.81, and 0.76, respectively. Figure 4
shows the classified LULC images for 2000, 2010, and 2015.

2.5. Land Change Modeling

The most important steps in land change modeling using LCM in TerrSet are the
identification of major LULC transitions and the screening of corresponding explanatory
variables. The rest settings such as new development plan by the government, infrastruc-
ture changes, road growth, and adjustment of change difficulty are selected depending on
the actual needs. Our modeling process is comprised of the following major parts.

2.5.1. Identification of Major LULC Transitions

It is difficult and often unnecessary to analyze and simulate all LULC transitions. The
LCM allows users to focus only on major transitions or those which may have a significant
influence. Therefore, change analysis was first conducted to identify the major LULC
transitions. We used land-use accounts and a change matrix to identify the main change
trends and major transitions. Land-use accounts are an effective tool to explain the flow of
each land category by explaining their gain, loss, persistence, net change, and turnover [32].
In the land-use accounts table, “gain” means a new formation from other categories, “loss”
means consumption by other categories and persistence means no change, “net change” is
the gain minus the loss, and “turnover” is the sum of gain and loss, reflecting all areas that
underwent changes. Thus, a land-use accounts table was first used to show the general
change trends of each LULC category (Table 3). The specific changes between LULC
categories were displayed using a change matrix (Table 4).
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Table 3. Land accounts of Chongqing capital from 2000 to 2010 (unit: km2).

Category Urban Cropland Forest Shrub Grass Water Total

Land use in 2000 289 4133 814 73 27 139 5475
Gain 315 109 72 80 19 14 610
Loss 29 373 130 44 22 11 610

Persistence 260 3760 683 30 4 128 4865
Net change (gain – loss) 286 –264 –58 37 –3 3 0

Total turnover (gain + loss) 344 482 202 124 41 25 1219
Percentage of gain 109.1 % 2.6 % 8.8 % 109.7 % 71.7 % 9.9 % 11.1 %
Percentage of loss 10.1 % 9 % 16 % 59.4 % 83.3 % 8.1 % 11.1 %

Percentage of persistence 89.9 % 91 % 84 % 40.6 % 16.7 % 91.9 % 88.9 %
Percentage of net change 99 % –6.4 % –7.2 % 50.3 % –11.6 % 1.9 % 0

Percentage of total turnover 119.3 % 11.7 % 24.9 % 169.2 % 155.1 % 18 % 22.3 %
Land use in 2010 575 3869 755 110 24 142 5475

“Gain” means new formation from other categories, “loss” means consumption by other categories and persistence means no change, “net
change” is gain minus loss and “turnover” is the sum of gain and loss which refers to all areas that had undergone changes.
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Table 4. LULC change matrix of Chongqing capital from 2000 to 2010 (unit: km2).

Year

2010

Category Urban Cropland Forest Shrub Grass Water

Category Total 575 3869 755 110 24 142

2000

Urban 289 260 15 8 1 1 4
Cropland 4133 264 3760 49 43 12 5

Forest 814 40 50 683 34 4 2
Shrub 73 5 28 8 30 1 1
Grass 27 2 13 4 1 4 1
Water 139 4 2 3 1 2 128

The selection of transitions for modeling ultimately depends on the research purpose.
Usually, a threshold transition area is set to distinguish major transitions. In our study, after
careful analysis of the land-use accounts and change matrix, we decided to use 20 km2 as
the threshold value, and transitions with an area less than this were ignored during change
modeling. Seven major transitions were eventually included during change modeling
(Table 5). A further advantage of the LCM is that it provides another tool, the multi-layer
perceptron neural network tool, which can model several or even all changes at once that
have similar driving forces (with the exception of logistic regression) [33]. Therefore, in
this study, we divided the seven major transitions into three sub-models: urbanization,
reclamation, and conservation, to represent three change trends. However, after many
trials, the accuracy of the conservation model was always lower than 0.60. Thus, the
transitions from cropland to forest and from cropland to shrubland were ultimately not
merged into a sub-model but were calculated using separate models named “Conservation
1” and “Conservation 2,” respectively (Table 5).

Table 5. Major transitions from 2000 to 2010 and sub-models.

Before After Transition Area (km2) Model Name

Cropland Urban 264 Urbanization
Forest Urban 40 Urbanization
Forest Cropland 50 Reclamation
Shrub Cropland 28 Reclamation
Forest Shrub 34 Reclamation

Cropland Forest 49 Conservation 1
Cropland Shrub 43 Conservation 2

2.5.2. Determination of Explanatory Variables

Transition potential modeling is used to find suitable explanatory variables and gener-
ate transition potential maps based on the calculation of these variables [34]. The prelimi-
narily selected variables are shown in Table 6, including evidence likelihood–normalized
past changes, topographic factors (elevation and slope degree), the distance to each cate-
gory, the distance from roads, and the distribution density of each category. The elevation
and slope degree were calculated using the NASA Shuttle Radar Topography Mission
Digital Elevation (30 m) dataset [35], which was downloaded through the GEE. The road
maps were from the National Earth System Science Data Center, the National Science &
Technology Infrastructure of China (http://www.geodata.cn, accessed on 7 July 2021).
There were five categories of roads included on the maps: railways, expressways, national
roads, provincial roads, and county roads. For the LCM, the roads needed to be divided
into three major levels; thus, railways and expressways were grouped into primary roads,
national and provincial roads were grouped into secondary roads, and county roads were
classified as tertiary roads. The distance parameters were Euclidean distance and the map
density values were created using a 7 × 7 kernel on TerrSet.

http://www.geodata.cn


Land 2021, 10, 1084 10 of 25

Table 6. Explanatory variables in land change modeling and their Cramer’s Vs.

Variable Type Normalization Cramer’s V

1 Past changes Qualitative Evidence likelihood 0.5225
2 Density of Water Qualitative - 0.4189
3 Distance to Water Quantitative Natural log 0.4065
4 Distance to Forest Quantitative Natural log 0.3845
5 Elevation Quantitative - 0.3776
6 Density of Cropland Qualitative - 0.3688
7 Distance to Cropland Quantitative Natural log 0.3669
8 Density of Forest Qualitative - 0.3307
9 Density of Urban Qualitative - 0.2879

10 Distance to Urban Quantitative Natural log 0.2734
11 Slope Quantitative - 0.2558
12 Density of Shrub Qualitative - 0.1624
13 Distance to Shrub Quantitative Natural log 0.1436

14 Distance to secondary roads
(national and provincial roads) Quantitative - 0.1341

15 Distance to primary roads
(railway and expressway) Quantitative - 0.1312

16 Density of Grass Qualitative - 0.0860
17 Distance to Grass Quantitative Natural log 0.0783

18 Distance to tertiary roads
(County roads) Quantitative - 0.0580

Variables are listed in descending order with Cramer’s V, and only those with Cramer’s V greater than 0.1 are
used for preliminary modeling.

Not all explanatory variables must be employed in the final modeling. The selection
of suitable explanatory variables can be divided into two steps. First, LCM provides a
quick tool, Cramer’s V, to measure the explanatory power of variables. Cramer’s V ranges
from 0 to 1; the larger the value, the stronger the potential association. In our study,
variables with a Cramer’s V less than 0.1 were eliminated (Table 6). Second, the multi-layer
perceptron neural network analysis provides a more comprehensive report, including the
detailed explanatory power of each variable. According to their influence order and a
stepwise backward-elimination analysis, variables with less influence were dropped to
achieve a more parsimonious model (Table 7). It should be noted here that “accuracy”
refers to the model simulation accuracy when the corresponding variable is forced as a
constant; thus, in general, the lower the accuracy, the higher the influence ranking of the
variable. Once the accuracy of the selected explanatory variables was acceptable (larger
than 70% in our study), the transition potential map could be created automatically by
the modeler.

2.5.3. Incorporation of Government-Led Land Development

The Chongqing Municipal Government announced a land development plan for
the capital urban area from 2007–2020 [36], which provided a map showing the planned
construction zones in the Chongqing capital. Therefore, we digitized the construction
zones and converted them into an incentive layer for urban expansion (Figure 5). Because
the deadline for this development plan was 2020 and the target projection year was 2050,
we added buffer zones of 2 km around the 2020 construction plans, indicating long-term
development areas, and assigned them a value of 2 to indicate the higher urbanization
probability within these areas. It should be noted that, before model accuracy assessment,
the development plan layer was also imported into the model for land change simulation,
but we did not incorporate the 2-km buffer zones around the construction areas because the
planning period of the development plan, i.e., “2007–2020,” covered the later year “2010”
and the verification year “2015”.
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Table 7. Explanatory power of variables in sub-models and the ultimate selection for modeling.

Variable Urbanization Reclamation Conservation 1 Conservation 2

Accuracy
(%)

Influence
Order Selected Accuracy

(%)
Influence

Order Selected Accuracy
(%)

Influence
Order Selected Accuracy

(%)
Influence

Order Selected

With all variables 81.56 N/A 73.27 N/A 77.7 N/A 72.95 N/A
1 Past changes 55.65 2 Yes 51.68 1 Yes 77.7 12 72.95 13
2 Density of Water 81.13 10 Yes 73.05 10 77.67 10 72.88 8
3 Distance to Water 81.38 12 73.29 14 77.75 15 72.87 7
4 Distance to Forest 81.57 15 73.27 13 77.69 11 72.94 12
5 Elevation 80.36 8 Yes 72.98 9 77.6 6 71.86 3 Yes
6 Density of Cropland 78.76 4 Yes 70.48 5 Yes 77.29 3 Yes 73.02 15
7 Distance to Cropland 81.56 14 73.26 12 77.7 13 72.95 14
8 Density of Forest 49.16 1 Yes 52.92 2 Yes 46.5 1 Yes 60.95 1 Yes
9 Density of Urban 77.73 3 Yes 73.11 11 77.66 9 72.91 10

10 Distance to Urban 81.11 9 Yes 72.31 6 Yes 77.52 4 72.25 5 Yes
11 Slope 80.02 6 Yes 59.41 3 Yes 77.54 5 Yes 72.21 4
12 Density of Shrub 81.27 11 65.03 4 Yes 77.63 8 Yes 72.92 11 Yes
13 Distance to Shrub 81.43 13 72.9 7 Yes 77.61 7 72.59 6
14 Distance to secondary roads 80.15 7 Yes 73.41 15 77.74 14 72.89 9
15 Distance to primary roads 79.43 5 Yes 72.9 8 Yes 77.13 2 Yes 71.39 2 Yes

The accuracy refers to the model simulation accuracy when the corresponding variable is forced as a constant; thus, in general, the smaller the accuracy, the higher the ranking of its influence order. To keep the
model simple, only high-impact variables were selected for the final model.
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2.5.4. Validation of the Model

The projected 2015 LULC image was generated using the above settings. Meanwhile,
a soft-prediction image was also created for validation. Soft prediction yielded a map
indicating the change potential for LULC transitions. Thus, it can be used to quantify
the predictive power of the model by comparing it to the image showing real change.
The area under the curve (AUC, ranging from 0–1) was calculated by comparing the soft
prediction image and the Boolean image showing the difference between the projected
and real LULC images for 2015 [37]. Usually, transition potential modeling requires many
attempts (selecting different explanatory variables, etc.). Considering the objective of our
study, when the AUC exceeded 0.7, the model was used for future projection.

2.5.5. Road Growth Settings

Over relatively short periods, road growth simulation is optional, for example, in the
2015 validation projection. However, in this study, the target year 2050 is 40 years after the
later year of the model, 2010. The proximity to roads may be a strong factor in LULC change,
especially considering that China is still a developing country and has a considerable
demand for roads. The LCM provides a tool for dynamic road development which can
help determine how road networks may grow. The logic behind the road development tool
is that primary roads can be extended and grow secondary roads, secondary roads can also
be extended and grow tertiary roads, and tertiary roads can just be extended. The primary
roads are generated automatically according to the internal calculations of the tool. Users
need to decide the “road spacing” and “road length” of the secondary and tertiary roads,
reflecting the frequency with which the lower-grade roads grow along the higher-grade
roads and their degree of extension. In our study, the “road spacing” and “road length”
values for secondary roads were 12 and 5 km, respectively, while those for tertiary roads
were 12 and 3 km.

2.5.6. LULC Projection

The LCM produces an LULC change map through a multi-objective land allocation
procedure which determines the change potential of the involved transitions by maximizing
the suitability of the land for all the objectives [38]. The LULC transition quantities are
calculated by an internal Markov model, then these transitions are allocated by a multi-
objective land allocation algorithm. Each scenario is converted to a set of suitability maps
for the decision process, and these can be loaded into the LCM to project the corresponding
LULC map. The settings and conversions of the scenarios are described below in detail.
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2.6. Scenario Settings and Conversions

The primary objective of this study was to explore the impact of the Eco-redline
policy and assess various policy implications for the further improvement of policy im-
plementation. In our analysis, two factors were integrated with the settings and analysis
of future scenarios: 1) the spatial extent of the ERAs and 2) their management intensity.
The “Normal Eco-redline” scenario was first set to represent a scenario in which the policy
is implemented according to the current situation (Table 8). The “Normal Eco-redline”
scenario served as a baseline scenario. The “No Eco-redline” scenario was set to explore
land-use consequences in the absence of the Eco-redline policy. The “Less ERAs” and
“More ERAs” scenarios were derived by adjusting the “Normal Eco-redline” scenario;
“Less ERAs” incorporated smaller ERAs than those in the “Normal Eco-redline” scenario,
while “More ERAs” incorporated larger ERAs. The “Loose management” and “Strict man-
agement” scenarios refer to the adjustment of management intensity, i.e., strengthening
and loosening management, respectively.

Table 8. Future scenarios for Eco-redline policy.

Scenario Assumption Area Treatment Management Intensity

No Eco-redline Not implemented / /
Normal

Eco-redline
Normal

implementation No Normal

Less ERAs Eco-redline areas expand Expand outward 500 m Normal
More ERAs Eco-redline areas shrink Shrink inward 500 m Normal

Loose management Management intensity is lower No Loose
Strict management Management intensity is higher No Strict

The above-mentioned assumptions for each scenario were translated into the model.
We achieved the manipulation of the spatial extent of the ERAs by employing a 500-m
buffer zone, based on the current ERAs (Figure 6). The “Less ERAs” scenario subtracted
a negative buffer zone, while the “More ERAs” scenario added a positive buffer zone.
The LCM can introduce constraints or incentive coefficients for each LULC transition to
simulate the difficulty of change. A value of 1 represents no impact while a value of
0 represents an absolute constraint. Values between 0 to 1 were treated as constraints
and values larger than 1 acted as incentives. Thus, with regard to management intensity,
the major LULC transitions were assigned different constraint or incentive coefficients to
represent corresponding management intensities (Table 9). For example, within the ERAs,
cropland to urban transition is absolutely prohibited at normal management intensity, so
it was assigned a 0 value, but it is slightly allowed under loose management, so it was
assigned a value of 0.2. In the Strict management scenario, the transition of cropland to
forest is highly encouraged in ERAs, so it was assigned a value of 2.

Table 9. Constraint coefficients under different management intensities.

Sub Model Transition
Management Intensity

Normal Loose Strict

Urbanization
Crop to Urban 0 0.2 0

Forest to Urban 0 0.2 0

Reclamation

Forest to Cropland 0.5 0.8 0

Shrub to Cropland 0.5 0.8 0

Forest to Shrub 0.5 0.8 0

Conservation 1 Cropland to Forest 1.5 1.2 2

Conservation 2 Cropland to Shrub 1.5 1.2 2
0: absolute constraint; 1: no impact; 0 ~ 1: constraint, the smaller the stronger; > 1: incentive, the larger
the stronger.
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2.7. Future Projection for 2050

Before projection, recalculation stages must be specified. The period from 2010–2050 is
40 years, four times the length of the model period (2000–2010), so four recalculation stages
were set in this study. The dynamic roads settings and recalculation stages were the same
for all scenarios. The LULC images for all the scenarios were then generated, according to
their different ERAs and management intensity coefficients.

2.8. Landscape Index

The landscape index is one of the most popular indicators to address the spatial and
temporal characteristics, change trends, and driving factors of LULC. According to the ex-
planation of the Eco-redline policy by the Chongqing Municipal People’s Government [22],
the primary protection targets of Chongqing’s Eco-redlines are forests, wetlands, and
grassland ecosystems. Our land change modeling indicated that the water and grass areas
in Chongqing capital are relatively small and stable, and the changes related to them were
not included in the major transitions (Table 5). Therefore, the forest (including both the
forest and shrubland categories in this study) landscape indices are the best indicators to
identify the effectiveness of the Eco-redline policy in Chongqing capital.

Many landscape indices have similar meanings and can be strongly correlated. To
reduce this potential correlation, three aspects of forest patches representing distinctly
different landscape features were considered in the current study. To be more precise,
shape complexity, contrast with other patch categories, and aggregation of the same LULC
class (i.e., forest) were calculated to compare the effectiveness of ERAs under the different
scenarios. Shape complexity, which reflects the shape and size of a patch and their potential
interaction, is highly related to ecological processes both within the patch and along its
edges, e.g., [39]. The degree of contrast reflects the quality of the microhabitats and climates
at the edge of the patch, which is critical for the survival and migration of some species [40].
In particular, an increase of urban patches around a forest, caused by urban expansion, may
seriously affect the overall functioning of the forest. Therefore, it is often suggested that
sufficient buffer space be left around protected areas to ensure their conservation value,
e.g., [41]. As a comprehensive indicator of patch distribution, forest aggregation is highly
correlated with connectivity; thus, it can be used as an indicator of the quality of ecological
corridors [42]. Although there is still debate as to whether to maintain a few large forest
patches (i.e., land sparing) or a large number of small forest patches (i.e., land sharing),
the aggregation degree of an excessively fragmented landscape is generally smaller and
is considered detrimental to ecological functions [43]. In practice, it is usually difficult to
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quantitatively determine the optimal values or intervals of landscape indices. Considering
that the topography of Chongqing capital is fragmented, land-use change occurs frequently
and human–land conflict is severe. For forest patches, which dominate most ecological
processes, relatively low shape complexity, low contrast, and high aggregation are thought
to be preferable, and these served as the criteria when comparing the effectiveness of the
various ERA and management-intensity scenarios.

From FRAGSTATS version 4.2 [44], three class-level forest indices, the perimeter-area
fractal dimension (PAFRAC), total edge contrast index (TECI), and aggregation index
(AI), were selected to represent shape complexity, contrast, and aggregation, respectively
(Table 10). As the proportion of shrubland to forest was small (see Tables 3 and 4), the
shrubland was integrated into the forest for the calculation of the landscape indices to
simplify the calculations and comparisons. In addition, a table indicating the magnitude
of the contrast is needed in the calculation of the contrast index, with values from 0–1
reflecting increasing contrast (Table 11). An exhaustive sampling strategy was selected,
using 10 × 10-km squares to divide the whole area of Chongqing capital into 69 tiles. The
landscape indices of the forest patches in these 69 tiles were calculated to represent the
forest landscape characteristics of the whole of Chongqing capital.

Table 10. Landscape indices and the corresponding features to reflect.

No. Feature Index Description

1 Shape
complexity

Perimeter-Area
fractal dimension

(PAFRAC)

Calculated by regressing the logarithm of patch
area against the logarithm of patch perimeter.

Ranging from 1 to 2.

2 Contrast Total edge contrast
index (TECI)

It equals the sum of lengths of edges multiplied
by contrast weight then divided by the sum of

lengths of edges. Ranging from 0 to 100.

3 Aggregation Aggregation
index (AI)

The number of like adjacencies divided by the
maximum possible number of like adjacencies.

Ranging from 0 to 100.

Table 11. Edge contrast values for LULC categories.

Category Urban Cropland Forest and Shrub Grass Water

Urban 0
Cropland 0.7 0

Forest and Shrub 0.9 0.6 0
Grass 0.9 0.5 0.3 0
Water 0.9 0.7 0.7 0.7 0

2.9. Statistical Analysis

Owing to the large differences in LULC in the 69 tiles, a normality test was first
conducted on the landscape indices. According to the results of the Shapiro–Wilk test,
none of the indices were normally distributed (p < 0.05). The nonparametric Friedman
rank-sum test was therefore used to examine the significance of the variance in all pairwise
combinations of the six groups of landscapes indices. All analyses were carried out on SPSS
v22.0 (IBM, USA). Box plots were used to display the median, first quartile, third quartile,
minimum, and maximum values of the landscape indices for each scenario. The letters on
the boxes indicate the significance of statistical analysis, while indices sharing the same
letter indicate that the differences between them were not statistically significant (p < 0.05).

3. Results
3.1. Historical LULC Changes

Table 3 demonstrates the land-use account results from 2000–2010. In general, cropland
dominated the study area, followed by urban landscape and forest, while the areas of
shrubland, grass, and water were relatively small. The urban area changed drastically from
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289 to 575 km2, a net increase of 99%, reflecting rapid urbanization. The area of cropland
increased by 109 km2 while 373 km2 were converted to other land types, resulting in a net
decrease of 264 km2. However, because the total amount of cropland was large, its total
turnover rate was not high, only 11.7%. The total amount of forest decreased by 58 km2,
owing to an increase of 72 km2 and a decrease of 130 km2. Overall, the net change in forest
was not drastic, only a 7.2% decrease. Unlike the forest, the shrubland area increased from
73 to 110 km2. Although the net increase was only 37 km2, the total turnover rate of the
shrubland was considerable, at 169.2%. This could be attributed to natural succession
and/or ecological protection programs, e.g., the Grain for Green Project. Although the
total turnover rate of grassland was extremely high (155.1%), the total amount was small
(from 27 to 24 km2), and the net change rate was also low (−11.6%). The water bodies
mainly comprised the two large rivers in the study area, the Jialing and Yangtze Rivers,
and their areas remained relatively constant. Therefore, from the above analysis, LULC
changes from 2000–2010 mainly occurred in the urban, cropland, forest, and shrubland
areas. The change matrix shows the details of these transitions (Table 4). The main sources
of urban expansion were cropland (264 km2) and forest (40 km2). Cropland was not only
transformed into urban areas but also into forest (49 km2) and shrubland (43 km2). Forest
areas mainly transitioned into cropland (50 km2) and shrubland (34 km2), as well as urban
areas, while shrubland transitioned mainly into cropland (28 km2). These were the seven
major transitions (Table 5).

From the perspective of the distribution of these LULC transitions (Figure 4), the
formation of new urban areas mainly occurred in the center of the study area and showed
a north–south expansion trend. The urban area in the southwest also increased to a certain
extent. In the northern part of the study area, the conversion of forest and shrubland into
cropland, i.e., land reclamation, was prevalent, while the trend of cropland becoming forest
and shrubland, i.e., ecological protection, was more prominent in the southeast.

3.2. Land Change Modeling

In the preliminary screening of the explanatory variables, “distance to grass,” “distance
to tertiary roads,” and “density” were eliminated because their Cramer’s Vs were less than
0.1 (Table 6). To ensure accuracy and keep the model concise, the explanatory variables
ultimately used in the sub-models were somewhat different (Table 7). The “distance to
primary roads” and “density of forest” variables showed the best explanatory power and
were thus selected in all sub-models. The projection performances of “slope”, “distance to
urban”, “density of cropland”, and “density of shrubland” were also good; thus, they were
used in at least three sub-models. For the overall accuracy, the AUC was 0.781, indicating
that the land change model was acceptable for future projection.

3.3. LULC in 2050 under Six Scenarios

Figure 7 is the LULC of Chongqing capital under six scenarios in 2050. When com-
paring the 2050 scenario LULC images with that of 2010 (Figure 4), all scenarios showed
that urbanization will cover most of the central and western parts of Chongqing capital,
while the urban patches in the north and southeast will not change overly much. When
comparing the No Eco-redline LULC images to all the other scenarios, the patches of
forests and shrubland in the north-south mountain ranges (where the ERAs are mainly
distributed) are clearly more extensive in all the Eco-redline scenarios than in the No
Eco-redline scenario. Comparing the LULC images of the Less ERAs, Normal Eco-redline,
and More ERAs scenarios indicated that the patches of forest and shrubland become more
concentrated in the mountains as the ERAs increased. As for the management intensity,
there are more patches of forests and shrubland in and near the mountains in the LULC
images of the Loose management, Normal Eco-redline, and Strict management scenarios.
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Combined with LULC between 2000 and 2010 (Figure 4), it is clear that urbanization
remains the most prominent trend in every scenario. To further explore the impact of the
Eco-redline policy on LULC, we divided the nine districts into two parts: the core area and
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the suburban area (Figure 8). The core area included six districts in the central and western
regions (Yuzhong, Dadukou, Jiangbei, Shapingba, Jiulongpo, and Nan’an), while the other
three districts on the periphery belonged to the suburban area (Beibei, Yubei, and Ba’nan).
Table 12 lists the proportion of urban area and the sum of forest and shrubland in the core
and suburban areas in two dimensions representing the area and management intensity.
In the area dimension, the general trend is the more and larger the ERAs, the more urban
patches will emerge in the core area, and the more forest and shrubland will emerge in the
suburban area. In the management intensity dimension, increasing management intensity
will result in increased urban patches and decreased forest and shrub patches in the core
area, while in the suburban area, the urban patches will remain almost stable and forest
and shrubland patches will increase.
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Figure 8. Division of 9 districts in core area and suburban area (core area: Yuzhong, Dadukou,
Jiangbei, Shapingba, Jiulongpo, and Nan’an; suburban area: Beibei, Yubei, and Ba’nan).

Table 12. The percentages of urban areas and sum of forest and shrub areas of different scenarios in 2050 from the dimension
of area and management intensity.

Scenario
Dimension of Area Dimension of Management Intensity

No
Eco-Redline

Less
ERAs

Normal
Eco-Redline

More
ERAs

No
Eco-Redline

Loose
Management

Normal
Eco-Redline

Strict
Management

Urban Urban
Core area 51.3% 51.8% 51.9% 52.2% 51.3% 51.9% 51.9% 52.0%

Suburban area 16.8% 16.8% 16.8% 16.7% 16.8% 16.7% 16.8% 16.8%
Forest and Shrub Forest and Shrub

Core area 13.1% 11.6% 11.4% 11.7% 13.1% 12.3% 11.4% 11.0%
Suburban area 16.9% 18.5% 19.2% 19.3% 16.9% 18.2% 19.2% 19.5%

3.4. Landscape Indices of 2050 LULC Images

The landscape indices of the future projection images and the results of statistical
analysis are shown in Figure 9. In the area dimension (Figure 9a), as the ERAs increased,
the PAFRAC values gradually decreased, but the difference was only significant between
the Less ERAs and More ERAs scenarios. The change trend of TECI was similar to that
of PAFRAC; the differences between the Less ERAs, Normal Eco-redline, and More ERAs
scenarios were not significant, but all of them had significantly smaller TECI values than
the No Eco-redline scenario. For the AI, the values increased with increasing ERAs, and
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those of the No Eco-redline and Less ERAs scenarios were significantly lower than that of
the Normal Eco-redline scenario, while the difference between the Normal Eco-redline and
More ERAs scenarios was not significant.
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In the management intensity dimension (Figure 9b), the PAFRAC did not show a
monotonous change trend, and the value of the Normal Eco-redline scenario was signifi-
cantly lower than that of the Strict management scenario but was not significantly different
from the No Eco-redline and Loose management scenario values. With increasing manage-
ment intensity, TECI decreased and the Normal Eco-redline value was only slightly, but
significantly, lower than the No Eco-redline value, while it was not significantly different
from the Loose management or Strict management scenario values. For the AI values, there
were no significant differences between the Normal Eco-redline scenario and the other
scenarios, but the AI of the Strict management scenario was significantly higher than those
of the No Eco-redline and Loose management scenarios.

4. Discussion
4.1. The Eco-Redline Policy Helps to Promote Land-Use Compaction

Although China has made great strides in industrialization and urbanization, the
country still faces many land-use problems, e.g., blind urban expansion, improper planning,
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and low use efficiency [45–47]. Therefore, it is proposed to improve the quality of land use
and establish sustainable land-use patterns to ensure the long-term development of society
and the economy, e.g., [48,49]. Various factors need to be comprehensively considered in
land planning (including the establishment and management of protected areas) such as
climate, geography, transportation, e.g., [50–52]. The complex and mountainous terrain
makes the land planning of Chongqing more difficult than that of flat cities or coastal cities
with regional advantages [53,54]. In 2002, Chongqing’s economic growth rate exceeded
10%, but after years of high growth, it slowed to around 6% in 2018 [55]. With the medium-
high economic growth, urbanization is likely to remain the major trend in Chongqing
capital in the next few decades [56,57], which means that more people will continue to
move from rural or suburban areas to urban areas. Analysis in the area dimension indicated
that the larger the ERAs become, the more significant the proportion of urban areas in the
core area will become, while the urban areas in the suburbs will remain relatively stable
(Table 12). This suggests that the Eco-redline policy has little effect on urban expansion
in the suburbs, but will stimulate urbanization in the core area. Meanwhile, there will be
fewer forest and shrubland areas in the core area and more in the suburbs, as the ERAs
grow. This indicates that, overall, the larger the ERAs, the more urban areas in the core
area, and the more forests in the suburbs. There was a similar trend for management
intensity. There seems to be a division between the core area and the suburbs. While the
core area undertakes the task of economic development, the suburbs are more responsible
for ecological conservation.

4.2. Continue to Increase ERAs to Achieve Significant Effects

Although there is debate about how much of the areas should be protected, the
current lack of protected areas is a consensus supported by most studies conducted from an
ecological perspective. For example, McDonald and Boucher (2011) forecast the global land
protection will be driven by economic development to increase by 15–29% by 2030. [58]
identified the cost-effective zones (CEZs) for protected areas and proposed suggestions for
different countries and targets according to the projection and comparison of protecting
19%, 26%, and 43% global terrestrial area. Arroyo-Rodríguez et al. (2020) suggested the
forest cover should be larger than 40% when designing biodiversity-friendly landscapes,
in which large forest patches account for 10% and dispersed smaller patches account for
30%. Most of these studies discussed the coverage of protected areas at global or national
scales. Our research focuses on a city of thousands of square kilometers, filling the gap on
the local scale.

To continue to increase the coverage of protected areas is not only the conclusion of
many existing studies, but also one of the main measures that international environmental
organizations have called on the government to implement [59,60]. The Aichi Target of
protecting 17% of terrestrial areas and 10% of wetland areas is considered an interim goal,
e.g., [61]. Although each country and region had different progress in completing the
establishment of protected areas by 2020 (end year of Aichi Target), it is a general trend
to pursue higher goals in the future. In 2000, China’s nature reserves accounted for only
9.85% of its territory [62]. Due to continuous efforts, China declared that by the end of 2017,
nature reserves covered 14.86% of the country’s total land area in the sixth national report
for the Convention on Biological Diversity [63]. In this study, the ratio of ERAs to the total
area in the Less ERAs, Normal Eco-redline, and More ERAs scenarios were 10%, 17%, and
23%, respectively. This was also designed to get closer to the realistic trend. There are risks
in comparing conclusions on different scales, but our results also supported increasing
the extent of ERAs to achieve a significant effect. Although there are differences in the
results of the statistical tests, the general trend was that an increase in ERAs would decrease
PAFRAC and TECI, and increase AI (Figure 9a). This suggests that increasing the spatial
extent of ERAs could reduce the complexity and contrast of forest patches and increase
their aggregation. This may also apply to other cities that are dominated by mountains and
hills and whose terrain is fragmented. According to the central government guidelines [11],
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local governments need to regularly assess the effects of their respective Eco-redlines and
propose solutions. Thus, we suggest drawing more Eco-redlines to expand the ERAs,
improving their conservation value.

4.3. Provide Sufficient Support to Ensure Current Management Intensity

Studies revealed that globally, less than 50% of protected areas are effectively managed,
indicating that management intensity is critical to the effectiveness of protected areas [59,64].
Our results indicate that PAFRAC does not always decline as management intensity
increases; that is, increasing management intensity may not effectively reduce forest patch
complexity (Figure 9b). TECI changed very slightly with changes in management intensity,
and there were almost no significant differences between the scenarios. This implies that
increasing management intensity may not help to reduce the contrast between forests and
their surroundings. With an increase in management intensity, AI showed an increasing
trend, indicating that higher management intensity can help to improve aggregation.
Therefore, we conclude that excessive management intensity may not positively impact
landscape quality and that the current intensity of management is sufficient. What requires
attention is preventing management downgrading or the formation of paper parks, which
many studies have stressed e.g., [10,65].

The classification and zoning of protected areas is a common management method; for
example, the International Union for Conservation of Nature (IUCN) divides the protected
areas into six levels according to different management intensities and objectives [66].
According to the guidelines for the delineation of Eco-redlines, the scope of Eco-redlines
includes existing protected areas, e.g., nature reserves and national parks, as well as some
newly delineated areas [11]. This suggests that all the six types delineated by IUCN may
exist within the ERAs. Although the management principle of the ERAs is generally to
prohibit development, there is still a lack of detailed institutional arrangements. Developing
countries are often faced with inadequate management resources, such as a lack of effective
law enforcement and infrastructure [67,68]. Therefore, improving the existing legislation
and providing subsidies to support sufficient management intensity would be another
focus of future work.

4.4. Limitations and Perspectives

In this study, the existing ERAs were expanded and contracted for scenario analysis
to examine how the spatial extent of the ERAs would affect LULC, which is a relatively
simple approach. However, in the actual process of delineating ERAs, a range of different
methods can be applied to identify areas of high conservation value, such as ecosystem
services and ecological sensitivity assessments [11], ecological importance evaluations [69],
the ecological footprint approach [70], multi-dimensional eco-land classifications [71], and
ecological network constructions and assessments [72]. Combining these approaches with
land change simulation would improve the accuracy and credibility of the scenario analysis
to better inform policymakers. A similar limitation exists in our treatment of management
intensity. This study used the method of assigning values to provide incentives and disin-
centives for the land-use transitions under investigation, which was somewhat subjective.
More practice and experience is needed to make the constraint and incentive coefficients
more closely match the actual situation, by investigating the effectiveness of existing ERAs
across China. However, overall, this study illustrates that it is feasible to analyze the
effectiveness of protected area policies using scenario analysis based on current data and
models. Using more sophisticated methods, such as ecosystem services and ecological
network assessments, to identify where new Eco-redlines should be added and how to
enrich management methods is a vital task for the further optimization of Eco-redline
policies. Moreover, as a new attempt to improve the system of protected areas in densely
populated developing countries, our suggestions have reference value for other countries
or regions that are trying to promote the development of protected areas.
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5. Conclusions

This study employed scenario analysis to explore the impact of a protected area policy
on LULC in an area with rapid economic development to assess policy implications for
further improvement. We mainly analyzed the impact of two dimensions, area and manage-
ment intensity, on LULC. In the projected 2050 LULC images, the more ERAs or the stricter
the management intensity, the more urban pixels in the core area of Chongqing capital,
which indicates that the existing Eco-redline policy contributes to the compaction of land
use. Moreover, positive changes in landscape indices resulted from spatial expansion were
more significant than that of increasing management intensity. This result suggests that
the current ERAs may be insufficient to optimize the landscape of Chongqing capital and
that changes in management intensity do not induce many significant effects. Therefore,
we suggest that the local government gradually increases the area covered by Eco-redlines
during a continuous optimization process, and provides sufficient institutional and fi-
nancial support to maintain the current management intensity. We believe our analysis
methods are helpful for the implementation of ecological conservation policies in areas
with a complex topography and/or intense human–land conflicts.
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