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Abstract: The historic reconstruction of residential land cover is of significance to uncover the human-
environment relationship and its changing dynamics. Taking into account the historical census data
and cadastral maps of seven villages, this study generated residential land cover maps for the Bursa
Region in the 1850s using a model based on natural constraints, land zoning, socio-economic factors
and residential suitability. Two different historical reconstructions were generated; one based on a
high density residential model and another based on a low density model. The simulated landcover
information was used as an ancillary data to redistribute aggregated census counts to fine scale raster
cells. Two different statistical models were developed; one based on probability maps and the other
applying regression models including Ordinary Least Squares (OLS) and Geographically Weighted
Regression (GWR) models. The regression models were validated with historical census data of the
1840s. From regression models, socio-economic and physical characteristics, accessibility and natural
amenities showed significant impacts on the distribution of population. Model validation analysis
revealed that GWR is more accurate than OLS models. The generated residential land cover and
gridded population datasets can provide a basis for the historical study of population and land use.

Keywords: historic reconstruction; residential land cover; census data; socio-economic and physical
factors; accessibility; natural amenities; population mapping; Bursa region; Turkey

1. Introduction

The structure of the landscape has been influenced by anthropogenic factors that
have increased considerably both in intensity and on scale over the past centuries [1,2].
Historical land cover/use information is essential in understanding how anthropogenic
factors impact the landscape, biophysical environments, and ecosystems, including bio-
diversity loss, changes in global hydrological and biogeochemical cycles, environmental
deterioration, fragmentation and habitat loss, climate change and more [3,4]. Historic land
cover information is also important as it provides a baseline for projections of future land
cover/use [5], food security [6], climate [7], energy use/greenhouse gas emissions [8], and
biodiversity [9]. The reconstruction of historic land cover is of great significance particu-
larly for developing countries such as Turkey for carrying out environmental research and
assessing the environmental performance of urban regions and cities. Therefore, this study
aims to reconstruct historical residential land cover/use within the boundaries of the Bursa
region (Turkey) for the 1850s.

Although the causes behind landscape changes are diverse and vary across space and
time, they can nevertheless be analysed under two main groups [10]: (1) proximate (direct)
causes relate to human activities which directly affect the land use (e.g., agricultural aban-
donment, building construction etc.) [11,12]; and (2) underlying causes comprise various
factors influencing land cover/use change such as demographic, economic, technological,
institutional, cultural factors and natural processes (e.g., climate change impacts) [13,14].
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In our case, non-urban land in the Bursa region was converted to residential land due to
demographic and economic reasons. High population growth and economic well-being led
to larger settlements while there were also smaller settlements housing sparse populations
and small-scale economic activities. We aim to reconstruct the building footprints that
resulted from land conversion from non-urban uses to residential land due to proximate
and underlying causes. The land cover change studies require spatially explicit and high-
resolution information for a better understanding of how different parts of the land use
system operate, the means by which the land system interacts with other components, and
the best ways to reduce uncertainty in the analysis of land change [15]. The information
on land change is crucial to promoting sustainable development because the land change
process can result in land use conflicts due to consumption of scarce land resources, and
the capacity of land to adapt to these changes is limited [16].

Census data is a primary source for a variety of studies on demographic topics.
Even though census data have been collected regularly, they are usually released in an
aggregated form corresponding to each defined administrative unit. This may cause
prompt changes in the locations of the administrative boundary that do not definitely relate
to any natural or artificial processes. Also, the use of aggregated census data may conceal
spatial heterogeneity within administrative units ‘with replacing a range of values with
a given aggregated value’ [17]. The heterogeneity related to the size of the geographical
units can cause substantial disturbances in the analysis referring to modifiable areal unit
problem (MAUP). Besides MAUP, Martin [18] highlights the limitations of the use of
census data including time lags between collection of the data and publication, and the
susceptibility of the census data to changes of administrative boundaries. Dasymetric
mapping techniques have long been adopted to disaggregate data to fine units of the
population distribution [19]. The recent developments in remote sensing technologies
and geospatial data processing have promoted dasymetric mapping applications to create
more accurate data on population distributions including the Gridded Population of the
World (GPW), the Global Rural Urban Mapping Project (GRUMP), the LandScan Global
Population database and WorldPop (Asia, Africa and South America).

The large area population datasets provide valuable contributions to related research,
but these data have coarse spatial resolution, which limits their use for local area applica-
tions for many countries, particularly those of developing regions of the World. A recent
challenge is to map spatial distribution of populations in the developing countries such as
Turkey, where detailed population and high-resolution spatial data are lacking. Similar
challenges appear because of data availability issues in estimation, particularly the histor-
ical population distributions. The Ottoman state administration, which ruled the Bursa
region since the early 14th century until its demise in 1919, started to conduct population
censuses in the 1830s, registering only males for tax and military conscription purposes [20].
Modern universal censuses also covering females were launched in the 1880s. However,
their micro level results are not accessible for research and their spatial resolution is quite
low due to aggregation to the level of sub-districts, which are not useful for spatial distri-
bution of the population to settlements. The most reliable source of population data per
settlement are the population registers from the 1840s, which were used for conscription
planning purposes and constitute the demographic sources of this study.

Dasymetric modelling methods use ancillary data along with geographic information
systems (GIS) and remote-sensed data to refine the geographical representation of the
census variable reported as coarse spatial aggregations. Land cover/use, night lights, geo-
physical factors, urban/rural areas, building data and roads have been used as ancillary
data to disaggregate population to fine-scale maps [21,22]. Although land cover/use data
have been recognised as the best option to reflect population density [23], the data that are
required from remote sensing images do not exist to model the distribution of historical
population.

The digital reconstruction of the historical land cover is truly challenging, which
requires close interdisciplinary work (e.g., geology, geodesy, cartography, history, remote



Land 2021, 10, 1077

3o0f 34

sensing, hydrology, climatology, archaeology) and methodological development [2]. Un-
til the mid-twentieth century (e.g., Corona missions) [24], remotely sensed data from
satellites did not exist, as it only became available from the Landsat mission launched in
1972 [25]. Due to lack of fine-scale historical datasets, the reconstruction work of historical
land cover/use is generally based on existing historical data including country level or
regional/local statistics and records, demographic statistics, historical maps and model
assumptions [26]. Reconstruction of land cover during historical periods is carried out
using two approaches: quantity reconstruction and spatial pattern reconstruction [27].
The former method focuses on trend analysis and research on regional differences during
historical periods with the focus on statistical data, while the latter approach aims at recon-
struction of the spatial distribution of land cover/use based on specific spatial allocation
principles and the land quantity data [27,28]. Quantity reconstruction is of significance
for the development and assessment of the collections and multi-source historical data.
Pattern reconstructions, on the other hand, provide the basis for land cover/use change
analysis, and drivers and impact assessments of land change on climate, ecosystems and
the environment.

In this study, we followed a pattern reconstruction approach by focusing on the resi-
dential land cover/use within the boundaries of the Bursa region for around 590 settlements
for the 1850s. We developed suitability maps representing the potential sites for residen-
tial land development using the fuzzy membership method integrated with the analytic
hierarchy process (AHP). We used our selected suitability map and the information on
natural constraints, residential zones and socio-economic factors to develop probability
maps for residential land development that would assist in reconstructing the residential
land cover/use in the Bursa region.

To allocate population on the reconstructed residential land cover, we followed two
different approaches: in the former approach, we allocated the aggregated historical
population to the reconstructed residential cells, assuming a positive linear relationship of
population with the probability values of the corresponding probability raster map. The
latter approach, on the other hand, utilises regression analysis methods including OLS
and GWR for modelling the population distribution. GWR is a local regression method
which takes into account many unobserved factors (e.g., land use, road density) that may
affect the stability of the relationship of the selected map features with the population. We
applied the GWR method to data for the Bursa region of Turkey to step down census data
from the 1850s to smaller spatial units corresponding to 30 m x 30 m residential raster cells.
For comparative purposes, a global regression model (OLS) was additionally computed.

2. Literature Review

Recently, considerable progress has been achieved in developing the historical land
cover data and producing historical land reconstructions at global, regional and local scales.
An example of a global model is the SAGE which reconstructed the global distribution of
the arable crop land for the past 300 years based on the present distribution of global land
use [29]. A more detailed modelling approach in HYDE (History Database of the Global
Environment) allocated historic cropland, pastures and urban area with a 10-km spatial
resolution based on land use estimates and population maps covering the period 1000 BC
to 2005 AD [30]. There are other studies which used or improved the applied methods
for more detailed reconstructions including the global research of Pongratz et al. [1], who
reconstructed the global agricultural land for the period 800-1700 AD; Hurtt et al. [31] who
reconstructed cropland pastures from 1700 AD to the present; and Olofson and Hickler [32]
who reconstructed permanent and non-permanent agricultural land from 4000 BC to the
present. Kaplan et al. [33] focused on the reconstruction of historical natural vegetation
covering the 1500-1850 period in Europe based on historic population records. Ge [34]
worked on the ‘Cropland Taxes’ recorded in historical documents and focused on the
change characteristics in arable land quantity and its driving factors in 18 provinces of
China in the last 300 years. A different Chinese study by Zhang [35] collected records from
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historical documents to identify the primary natural vegetation pattern prior to agricultural
development in the late 17th century. In contrast, Fensham and Fairfax [36] utilised land
survey records to reconstruct pre-European vegetation patterns during the late 19th and
early 20th centuries in Queensland, Australia. Bolliger et al. [37] used the US data of
the General Land Office’s original PLS to examine the ecological restoration potentials
of Wisconsin, USA. The same dataset was used to reconstruct pre-settlement vegetation
maps in many midwestern states including studies by Brown [38] and Schulte et al. [39].
Foster [40] also used historical documents to analyse land use change dynamics between
1730 and 1990 in central New England, USA. The spatially explicit agricultural and urban
cover maps in these examples offer data for long time periods but they have coarse spatial
resolution and low levels of local accuracy, which limit the applicability of these global
reconstruction models within regional/local contexts.

Case studies of high-resolution land cover/use reconstructions are mainly conducted
for relatively small study areas due to limited availability of historical spatial data and
the time required for preparing and analysing historical maps. Among the studies of
local area reconstructions, high precision spatial maps have been produced, for example,
for Poland [41], Belgium [42], Switzerland [43], Sweden [44], France [45], Romania [46],
China [27], and the US [4]. As examples of local area reconstructions, Antrop [47] focused
on a reconstruction of landscape at the Mediterranean regional scale based on 25 years
of observations. Carni et al. [48] reconstructed forest vegetation in Slovenia developed
from old maps available in historical archives. Petit and Lambin [49] explored land cover
changes between 1775 and 1929 based on model reconstruction and historical maps in the
Belgian Ardennes. Kuemmerle et al. [50] studied land use changes in southern Romania
following the collapse of socialist era. Orczewska [51] investigated the forest landscapes
in southwestern Poland from the first topographical map in 1780 until the end of 20th
century. Ye and Fang [52] modeled the land cover changes based on historical maps and
reconstructions over the past 300 years in the northeastern region of China. Kumar et al. [3]
examined the determinants of historical, (1850-2000) spatial and temporal changes in
cropland cover in the United States. A more recent study by Yang et al. [53] researched
historical land use changes using a historical land use reconstruction model for the 1976-
2005 period in northeastern China. Lastly, Ustaoglu et al. [54] estimated non-irrigated
crop production and its spatial distribution in the 1840s of the Bursa region (Turkey) using
historical population, cropland survey data and other ancillary data. Among studies
that reconstructed historical land cover/use in Turkey, Evrendilek et al. [55] investigated
historical land cover/use changes in Yenicaga peatland in the Black Sea region of Turkey for
the assessment of carbon emissions between 1944-2009. There are other studies limited to
more local contexts, including reconstruction of the Roman and Byzantine city of Hierapolis
in Phrygia (Pamukkale, Turkey) [56], the Letoon shrine in the Xanthos plain (Turkey) [57],
the Selcuk historical site in the Aegean region (Turkey) [58], and others. Although such
case studies provide detailed information on the local land change processes, a broader
comparative framework is needed for an in-depth understanding of land use change
patterns and their drivers, and for accurate modelling of climate effects and biogeochemical
processes at regional scales. In fact, there is currently a growing need for harmonised,
spatially explicit and high-resolution land use products concerning the cities as well as
regions of Turkey. Our study aims at satisfying this demand given that there is no study
focusing on the reconstruction of land cover/use at high spatial resolution in the Bursa
region that is located in northwestern Turkey.

3. Study Area and Data

Bursa as a region has had highly fertile lands and a diverse geography (Figure 1),
shoring to the Marmara Sea in the north and having the third highest mountain of Turkey,
Uludag, in its centre and having sizable lakes in it. It had a relatively high population
density during the Ottoman Empire and a variety of sources of economic development
from agriculture to industry, including important agro-industries such as olive oil and wine
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making and silk production, in addition to its commercial centres of intra- and interregional
trade, such as the city of Bursa and its harbours of Gemlik and Mudanya. For the Bursa
region, to a very large extent we adopted the Ottoman administrative structure of the Bursa
district (sancak) of the 1840s. We just added the sub-district (kaza) of Pazarkoy from the
neighbouring Kocaeli district to cover today’s Bursa province in its entirety within our
territory.
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Figure 1. Map of Bursa region with administrative borders from 1935. Source: Open Street Map layer
by ESRIL.

The economy of the Ottoman Empire should be seen as a collective of regional
economies with its large and diverse territory. A regional scale also provides advan-
tageous data structures to examine long-term socioeconomic transformations. With this
study we estimate residential areas of the settlements of the Bursa region fitting to the 1935
administrative borders to a large extent. 1935 is the year of the second population census
of the Republic of Turkey. Furthermore, the series of agricultural statistics available for the
years 1937, 1938, and 1939 provide data aggregated to the sub-district level.

We visualise administrative boundaries of 10 sub-districts of Bursa province in 1935
in Figure 1. For the mid-nineteenth century no map was produced for the administrative
boundaries. Our Bursa region from the mid-nineteenth century had 12 sub-districts and
a total of 590 settlements of various sizes, mostly hamlets, villages, and small towns, but
also including the city of Bursa, which was the capital of the district with its very urban
character for the period [59]. We used a custom-made geospatial content management
system, which among other sources also used georeferenced historical maps to geolocate
and assign population counts for all the listed settlements in the population registers. We
had a 100 percent success rate in geolocating the settlements. We have manually harvested
population data of all the settlements in our purpose-defined Bursa region from 22 Ottoman
population registers available in the Turkish Presidency State Archives of the Republic of
Turkey, Department of Ottoman Archives (NFS.d. 648, 649, 651, 1378, 1397, 1399, 1403,
1406, 1411, 1412, 1437, 1444, 1452, 1462, 1466, 1472, 1472, 1473, 1482, 1485, 1491, 1518)
dated to the 1840s. These population registers count male populations per settlement. By
doubling the male populations, we estimated total settlement populations. The registers
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Table 1. Ethno-religious breakdown of male population in registered categories *.

also recorded non-sedentary groups including nomads and tribes. For example, the register
NFS.d. 1518, a compilation for the Bursa district, lists few nomadic groups including well
known Karakegilis. Furthermore, the registers provide information on non-residential
populations, mainly seasonal male workers lodging without their families. As our purpose
in this study is to estimate the residential areas, we did not locate and did not include
non-sedentary and non-residential populations in our geospatial database.

Especially after the 1840s with the planned introduction, yet failed implementation,
of universal conscription, the Ottoman administration was eager to quantify and register
its male population with individual age information both for Muslim as well as for non-
Muslim subjects [60]. The Muslims were listed for recruitment, and non-Muslims for
poll-tax levy purposes, both of them based on age. This was the reason for the first wave
of population registries in the 1840s. A total of approximately 11,000 population registers
are available within the NFS.d. collection in the Ottoman Archives. This collection only
became available in 2011. Their exact geographical extent has not yet been studied. We
know for sure that they cover today’s entire Bulgaria and Northern Macedonia, parts of
Bosnia and Herzegovina, Greece, Serbia, and Turkey exhaustively, with several series. In
this study we focus on the region of Bursa due to the limitations set by cadastral maps.

In our chosen area, in the district of Bursa, a total of 93,541 males with different ethno-
religious affiliations are registered in 590 locations. In our modelling we set 1000 residents
as a threshold for urbanity. We examined the settlements in our sample data and noted that
only the settlements with populations greater than 1000 showed urban characteristics in the
1840s. When we divide our locations in two additional groups: rural agrarian settlements
having less than 500 males, and urban ones with more than 500 registered male residents,
we have the following ethno-religious breakdowns (Table 1). In our estimations of residen-
tial areas, we did not take ethno-religious affiliations of the residents into consideration and
did not assign it any exploratory power. In the Bursa region there were few urban centres.
Only 23 out of 590 locations had more than 1000 residents. There were 567 rural settlements
with less than 500 registered males and a total male population of 54,291. In our study
we prioritize these rural settlements with low populations. Ethno-religious heterogeneity
is considerably higher in the larger, and for our understanding urban, 23 locations. In
the remaining group of settlements, more than 85 percent of the registered males were
Muslims and only around 12 percent Orthodox Christian, and three percent Armenian.
Ethno-religious division of labour and its possible impact on residential patterns in the
mid-nineteenth century Ottoman Empire are not clear even for urban locations. For Bursa
we know that there were mixed neighbourhoods where Muslims lived with Orthodox
Christians or Armenians [59]. Ethno-religious division of labour is a disputed topic in
Ottoman historiography, and we lack data-driven studies to reach firm conclusions on
occupational concentrations along ethnic and/or religious lines among Ottoman subjects.

The most extensive study on this theme (covering 16 urban locations) did not detect
a strict occupational specialization [61]. For our rural region, with very low levels of
economic and occupational diversification and with a dominantly Muslim population,
we do not think our estimation of residential areas will be affected by the ethno-religious
composition of the population.

1

Ethno-Religious Total Male Total Male Population in 23 Total Male Population
Cate og Population in Y% Largest/Urban Locations Y% in 567 Locations Having %
gory 590 Locations Having More Than 500 Males Less Than 500 Males
Muslim 63,000 67.4 16,587 42.3 46,413 85.5
Orthodox Christian 17,891 19.1 11,641 29.7 6250 115
Armenian 11,488 12.3 9860 25.1 1628 3
Jewish 655 0.7 350 0.9 0 0
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Table 1. Cont.
Ethno-Religious Total Male Total Male Population in 23 Total Male Population
Cate og Population in Y% Largest/Urban Locations % in 567 Locations Having %
gory 590 Locations Having More Than 500 Males Less Than 500 Males
Roma/Sinti 340 0.4 655 1.7 0 0
Catholic 157 0.2 157 0.4 0 0
Total 93,541 100 39,250 100 54,291 100

Note: ! Population registers record males in ethno-religious categories of the mid-nineteenth century millet system [62]. We just combined
Muslim and Armenian (kiptis) into one Roma/Sinti category.

There are no other reliable available series of population registers or censuses for
the entire nineteenth century. Bursa as a region did not suffer any major demographic
shocks in the 1840s or 1850s. There were also no substantial migration waves in this
period, if we leave aside the incoming refugees following the Crimean War (1853-1856)
in the late 1850s. This is the reason we are confident our population census data from
the 1840s are commensurable and in accord with population levels of the 1850s. For
the 1850s, we have detailed cadastral maps of seven villages located in the vicinity of
Bursa city available in the Turkish Presidency State Archives of the Republic of Turkey,
Department of Ottoman Archives, Map Collection (HRT.h. 561, 562, 564, 565, 566, 567).
These detailed maps, with an average scale of 1:2000, provide high-resolution spatial
distribution of residential and agricultural land uses for the villages of Aksu, Babasultan,
Fidyekizik, Inkaya, Kestel, Soganli, and Congara (Figure 2). The map collection of the
Ottoman Archives was closed to research for decades until its reopening in 2008 after a
thorough reorganization. Unfortunately, in this new organization, maps in the collection
do not have any metadata or additional documentation and the collection consists solely of
maps. The accompanying documentation produced along with the maps is not available.
This situation has massive limitations, including for the cadastral maps we used. Their
accompanying cadastral registers or any other documentation have been detached from
them. There is no research on these maps. Studies on limited Ottoman cadastral activity are
also very sparse [63]. We do not know the exact purpose or the extent of the cadastral effort.
What we can assume is that these maps were connected to the cadastral map of the city of
Bursa prepared after the devastating 1855 earthquake. Although this earthquake caused
massive destruction and extensive rebuilding activity for the city [64] there is no indication
that it destroyed or changed the residential areas in the countryside. Therefore, we cannot
differentiate the land use specificities on the maps. However, in this study we are focusing
on the residential areas and therefore, the lack of information on property or usufruct
relations are not of central importance. Since the maps delineate both the residential areas
as well as the fields of the settlements, we are convinced that they convey the information
we need. To the best of our knowledge these maps were only used twice in the literature
to estimate approximate maximum walking time distances to cultivated fields from the
residential centres and for geosampling purposes [54,65].

In our model, accessibility is an important variable. However, there is no reliable map
with accurate detail for connectivity and accessibility of all rural settlements in the region
of Bursa produced before the 1940s. The most advanced maps from the late Ottoman
Empire are the series produced by the General Staff of the Ottoman Army starting in the
1910s, yet they are not detailed enough to be used in our regional modelling, as they lack
rural transport connections. The oldest series of maps suitable for our purposes are the
military maps produced by the German General Staff, the Department of Wartime Map
and Survey Service during World War II (Deutsche Heereskarte 1:200,000 Tiirkei) [66].
Although these maps are produced approximately one hundred years later then the period
of our examination, among their alternatives they are still the most suitable ones for our
modelling.
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Figure 2. The land cover data for the sampling villages of Bursa in the 1850s. Source: Turkish Presidency State Archives of
the Republic of Turkey, Department of Ottoman Archives (HRT.h. 561, 562, 564, 565, 566, 567).

The segments of the transport infrastructure used for the needs of the agricultural
sector in the region, and in the country in general, did not experience any radical change
either regarding the road making technologies (no extensive macadam road network) or
vehicles used on the roads (mainly ox and horse carts but no wagons) until the 1940s [67].
For the region of Bursa, if we leave aside newly established settlements’ connections, there
are only a few exceptions: the Gemlik-Bursa road that was constructed in 1865 [68], and the
Mudanya-Bursa railroad completed in 1892 [69]. Both lines were aimed at connecting the
city of Bursa with its harbours and did not transform the transport in the region. Gemlik
connection was still not suitable for wagons and the Mudanya railway was not connected
to the Ottoman Anatolian railways. These are the reasons we assume a static logistical
infrastructure between the 1840s and the 1940s in the region.

4. Methods

We used land cover datasets that cover the sampled seven villages (Figure 2) and
census data combined with geo-physical, accessibility, location and natural amenities data
to produce residential land cover and gridded population distribution maps for Bursa
in the 1850s. We used aspect, elevation and slope as geo-physical factors; distance from
roads as accessibility-based factors; distance from main settlement centres and village
centres as location; distance from the sea, the mountain, water bodies, and lakes as natural
amenities. Flat slope, lower elevation and an aspect ratio indicating southern and east-
ern orientations are highly valued for residential development [70,71]. The steep slopes
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are costly for residential construction and also susceptible to soil erosion and landslide
hazards [72]. Aspects indicating southern and eastern directions are more suitable for
residential development given that these are exposed to more sunlight and heat during
winter time compared to other orientations. Regarding accessibility, the locations closer to
the roads are highly valued due to decreasing costs of transportation of people, goods and
services [71]. The zones in the vicinity of village centres and main settlement centres enjoy
the economic benefits resulting from agglomeration of commercial uses as well as mixed
used land developments [71]. The zones close to natural amenities are highly valued not
only for their recreation characteristics but also their provision of ecosystem services to the
inhabitants [73].

Five main methodological stages were undertaken: (1) areal extent delineation using
population and land cover samples to identify the size of the build-up in the study area;
(2) suitability analysis for the detection of potential sites for residential land development
through integrating multi criteria analysis (MCA) with fuzzy membership approaches;
(3) generating probability maps of residential development through combining residen-
tial zones, socio-economic factors, and natural constraints data with the suitability maps;
(4) modelling population distribution using probability maps, OLS and GWR regression
approaches; and (5) assessing the accuracy of the population distribution models obtained
from regression analysis. Figure 3 summarises the whole modelling procedure. All ele-
ments of the model will be elaborated in the following sections.
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Figure 3. Flowchart for residential land cover and population map production.

4.1. Reconstruction of Residential Land Cover/Use
4.1.1. Areal Extent Delineation

Historical records from the Ottoman administration during the 1840s do not contain
information on the residential areal extent for all of the settlements in the study area.
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Therefore, the areal extent of each residential area in a settlement (Area;) was estimated
based on a power scaling relationship with its population (Pop;) [74,75]:

Area; = txPop? (1)
where « is the coefficient and § is the scaling factor. Concerning Equation (1), a strong
relationship was found for different study areas such as Mexico [75] and the US [4]. Differ-
ent § values were also estimated for the UK (0.375), Japan (0.914), and China (1.38) [76].
Equation (1) was fitted to the data of the seven villages which have spatial land use infor-
mation (Figure 2) to estimate « and B. The spatial structure of small settlements appear
disorganised and are generally characterised by low population density [75]. We have such
examples in our study area where low density population was settled in a more spacious
land (e.g., Soganli, Inkaya and Fidyekizik) compared to high density populations settled
in a relatively smaller area (see Table Al in Appendix A). Therefore, using Equation (1),
we estimated two different equations separately for two different types of settlements: the
former settlement type represents low density built-up having population less than or
equal to 250, and the latter is a high density area with a population greater than 250. Using
the estimates of « and B and population data, the areal extent of residential land cover was
estimated for all the unknown data points. Similarly, based on the correlation between
the known population and land area, the areal extent of agricultural land cover was also
estimated for the settlements which lack information. Here are some basic assumptions of
the residential reconstruction model:

1. We have the point data in GIS representing the central point of each of the settlement
centres of Bursa. It is assumed that built-up land developed outwards from their central
point where the central locations were occupied first and the farthest locations were
occupied last. The residential areas computed from Equation (1) for each settlement
were represented by circular zones that were drawn from the settlement centre outwards
(Figure Al in Appendix A). This is in line with the concentric zone theory of Burgess [77]
from 1925, which indicates that as a city develops, it spreads out from the central core.

2. This is also true for the settlements located along the coastal area; but in this case,
settlements developed from their centre (that are generally located close to the coastal area)
to the inner land areas. Due to physical restrictions, the settlements in the coastal area were
developed more densely compared to those located in the mainland.

3. Two models can be distinguished: first, there is high density built-up land where all
the residential development takes place within the inner circular zone representing the total
area that is built-up (Figure A1). Second, low density development is considered where the
radius of the (inner) circle was doubled (shifting from the inner to the outer circular zone
in Figure A1). It is observed from the sampling villages that residential development was
generally dispersed from its centre to the outer zone by doubling or tripling the radius of
the inner circular area.

4.1.2. Non-Inhabitable Land

The land with natural constraints such as water bodies, lakes and areas with elevation
higher than 1000 m were regarded as non-inhabitable. For the 1850s, we note that there
is no land that was recorded as protected land due to its biological diversity and natural
or cultural resources. Although protected areas are considered as non-inhabitable, these
were not included in the analysis due to data availability issues. Therefore, only the land
with natural constraints were considered as non-inhabitable. The influence coefficient
of inhabitability, wy x for pixel x was set to zero for non-inhabitable areas and one for
inhabitable areas.

4.1.3. Residential Land Use Suitability

The allocation of residential land cover/use can be approached using MCA applica-
tions such as land suitability analysis. In the current context, land suitability analysis was
applied to develop a probability map and to predict the historical residential land cover
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dictated by geo-physical parameters such as slope, aspect, elevation, as well as accessibility,
location and natural amenities (Figure 4) [78,79].

Figure 4. Suitability value maps for each criterion used in the study. Note: The figures represent
suitability criteria including from top left to bottom right aspect, elevation, slope, distance to roads,
distance to residential centres, distance to villages, distance to the sea, distance to lakes, distance
to water bodies and distance to the mountain. The dark colours show the highest suitability areas
whereas the light colurs are associated with the lowest suitability.

As can be expected, many factors can be selected for the land studies, and those finally
selected are in line with the study objectives, the information available etc. We considered
10 factors grouped into three groups that were evaluated through the AHP as shown in
Figure 5. The objective is defined at the top, the three main criteria are at the second
level and the corresponding sub-criteria are given at the third level (for an example of
the decision hierarchy model for the AHP, see Ustaoglu and Aydinoglu, [73]). The land
suitability model (Figure 5) in our study operates vertically, where each criteria map is
multiplied with the corresponding weight at the third, second and first level and then all
individual results are added to obtain the final suitability map.
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Residential land use suitability
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attributes and location amenities
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-Aspect -Roads -Coastal line
JFievation -Village centers -Water bodies
-Main residential -Lakes
centers -Mountains

Figure 5. Decision hierarchy model for the AHP.

AHP is a commonly used method in spatial multi-criteria decision analysis. The
pairwise comparison approach developed by Saaty [80] is based on the establishment of
hierarchies of relative importance. Each criterion is assigned a value from each class to
identify the weights calculated from pairwise comparison matrices. From the pairwise
comparison matrix, final values of the factors under each corresponding hierarchy are
obtained as well as the consistency ratios (CR), which indicate consistency of the values
assigned in each matrix according to Equation (2):

CR = % where
CI = Amaxzn @
- n-1

where Anmax is the principle eigenvalue of the matrix, n is the order of the matrix, CI is
the consistency index and RI is the average of resulting CI depending on order n. In
Saaty’s [80] explanation, CR less than 0.10 indicates that the pairwise comparison matrix
has acceptable consistency, otherwise the matrix includes inconsistencies. In the current
study, the CR computed for each pairwise comparison matrix was lower than 0.10, implying
that the weight values are consistent (Table A2 in Appendix A). Four different scenarios
were considered for the suitability assessments. In the first scenario, accessibility and
location were given the highest priority in the residential suitability analysis. In Scenarios 2
and 3, physical attributes and natural amenities were of high importance, respectively. In
Scenario 4, equal weights were assigned to the three main criteria influencing the residential
suitability (see Figure A2 in the Appendix A). The AHP weights computed for each scenario
are given in Table 2.

For the standardisation of suitability criteria maps, different approaches can be used,
including deterministic, probabilistic and fuzzy methods. By contrast to the deterministic
approach, it is possible to model concepts with transitional membership with the use
of the fuzzy membership method [81]. Conventional maps represent discrete attributes
following a Boolean approach resulting in a point, a line or a polygon. Nevertheless, no
partial membership exists in the deterministic approach that contradicts with the fuzzy
logic, which allows objects or elements to have intermediate values. In the current study,
we employed three different models to develop fuzzy membership functions. These are
the Gaussian function, the monotonically decreasing sigmoid, and the linear functions.
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The variable type and fuzzy membership functions for the corresponding criteria are
summarised in Figure 6.

Table 2. AHP weights of the evaluation criteria for residential suitability.

AHP Weights

Sub-Criteria Model 1 Model 2 Model 3 Model 4
Aspect 0.049 0.179 0.022 0.083
Slope 0.116 0.426 0.052 0.198
Elevation 0.031 0.113 0.014 0.052
Dist_Roads 0.141 0.038 0.038 0.065
Dist_Village centers 0.353 0.096 0.096 0.164
Dist_Resident centers 0.223 0.061 0.061 0.104
Dist_Mountains 0.022 0.022 0.176 0.082
Dist_Water bodies 0.026 0.026 0.214 0.099
Dist_Lakes 0.018 0.018 0.151 0.070
Dist_Coastline 0.022 0.022 0.176 0.082

Main criteria Sub-criteria Mid-point Spread Type of fuzzy function Shape of lhe.!a[f\ﬁf;-rhon
Physical Aspect 2 01 L 3 _ = ™ Symmetnc .
Slope - - Linear function Monotomcally decreasing '
Elevation - - Limear function Monotomically decreasng L]
Accessibilaty Distance from roads Lumear function Mongtomcally decreasing o
and location Distance from village centers 37832 3 Sigmond fi M, ally decreasmng
Distance from main residential
centers 379562 3 Sigmord function Monotomcally decreasing
Natural Distance from mountains 323336 3 S d fi M ally decreasing
amenities Distance from water bodies 19036.6 3 Sigmoid function Monotonically decreasing
Distance from lakes 342492 3 Sigmord function Mosnotomcally decreasing J
Distance from the coastline 442983 3 Sigmoid function Monototacally decreasing .-‘“

Figure 6. Selected factors for residential land suitability analysis.

The suitability maps created for Scenarios 1 to 4 will be summarised at the end of the
results section. In the suitability maps, the values range between 0 and 1, 0 representing the
lowest suitability whereas 1 stands for the highest suitability. Following the development
of suitability maps, the influence coefficient of suitability, w, , for pixel x can be calculated
using Equation (3):

Px,i

n

): Px,i
x=1

Wy = wherex €i=(1,...,N) ®)

where p, ; is the pixel value representing the suitability index of the corresponding pixel x,
and i represents each of the settlements in the study area wherei =1, ... ,590. Equation (3)
indicates that suitability index value of each pixel is normalised through dividing each
of the pixel value to the sum of total pixel values assigned to each location i. In order to
compute the coefficient of suitability, w; ,, we used the suitability map of Scenario 4, which
is based on equal weights of the main criteria, and left other scenarios to be searched in a
comparative study in the future work.

4.1.4. Socio-Economic Factors

Following Fang and Jawitz [4], we separated socio-economic factors for urban (U)
areas from those for rural (R) areas. We applied the distance decay model, which indicates
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that residential density decreases with increasing distance from the urban centre. The
urban areas comprise the residential settlements in our study, area having populations
greater than 1000 people. The distance decay model is in line with the typical urban model
in which the density of urban activity follows a declining slope as one moves away the
central city [82]. Changes in density across different distances from the city centre reflect a
variety of geo-physical and socio-economic factors. The inverse power function was used
to represent the distance decay effect on population density from the central core to the
outskirts. The influence coefficient of socio-economic factors, w3 ,, for urban pixels (x € U)
is given as follows [4]:

W3,y = r;,l.)“' forxel 4)

where r, ; is the radial distance from the central point of residential area i to pixel x, and A;
is the density gradient for each of the residential area i. Following Chen [83], the density
gradient, A;, is linked to the scaling factor § from Equation (1). Using Equation (5), A values
were calculated for each settlement 7 in the study area such as:

=2 (1= p) (5)

For rural areas, proximity to main residential centres is advantageous for socio-
economic development. We have considered this impact as one of the factors influencing
the residential suitability index. Because we used the aforementioned impact in developing
the suitability maps, in contrast to Fang and Jawitz [4] we did not compute it separately in
order to prevent double counting.

4.2. Population Mapping
4.2.1. Population Mapping Using Probability Maps

Based on high-density and low-density models defined previously, the probability of
finding residential land cover under the given assumptions was calculated for all locations
using the following equation [4]:

_ W1xW2,xW3 x

P, Py forx € Z = (U,R) (6)

Zwl,x wz,x 203,,(

where Z represents urban (U) or rural (R) pixel; w; x, wy x, w3, are as defined previously.
For the distribution of population, it is assumed that the cells having higher probability
values are more densely developed compared to those having lower values. Equation (6)
was implemented with the use of model builder in ArcGIS to produce the probability maps
and historical population datasets.

4.2.2. Population Mapping Using Multivariate Regression Models

Multivariate OLS regression and GWR models were developed to disaggregate the
census data from 590 settlements to smaller spatial units of reconstructed residential
land cover to provide detailed information on the population locations. The explanatory
variables relate to socio-economic conditions, E;, (e.g., the area of agricultural land that was
used as a proxy for the agricultural holdings of the residents; the area of residential land
indicating the density of residential development), physical, P;, (e.g., slope, elevation) and
locational characteristics, L;, (e.g., distance to settlement centres and to main residential
centres), accessibility, A;, (e.g., distance to roads) and natural amenities, N;, (e.g., distance to
lakes, water sources, mountains and the coastal area). Socio-economic conditions represent
social resources which attract populations to residential areas. Spatial characteristics (e.g.,
A; and L;) capture locational conditions and geographic advantages of residential land
use. The physical attributes indicate that flat surfaces and lower elevation are the most
valued for the residential development compared to high slope and high elevation locations.
The zones close to natural amenities are the most valued for their development potential
regarding the residential land as well as the development potential of green areas in the
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vicinity of residential land uses. Therefore, the relationship between population, POP;, and
the determinant variables at location i can be written as follows:

POP; = f(E;, P, A, L;, N;) 7)

We specified the population and explanatory factors relationship as a linear function
of the exogenous variables (Equation (7)). Regarding the OLS regression analysis, three
different models were developed: Model 1 is based on a selected sample data of population
less than or equal to 250; Model 2 focuses on the sample where the population is more
than 250; and Model 3 is based on the full sample data representing all the settlements
in the study area. To consider multi-collinearity, first we computed pairwise correlation
coefficients of the variables, and then the variables with higher correlations were removed.

GWR was developed to explore the determinants of population growth, particularly
considering the cases where spatial non-stationary relationships prevail [84]. By contrast
to the OLS model, the GWR is carried out using the localised sampling points within a
geographic space. It is therefore assumed that depending on location, defined as pairwise
coordinates (x,y), the modelled relationship presents variations. The GWR model can be
defined as:

P
yi= ﬁo(u]', T)]') + Z ﬁi(u]', U]‘)xij + g (8)
i=1

where (u;,0;) represents the coordinates for location j; Bo(u;,v;) are the local regression
coefficients for independent variables, x;, at location j. By(u ,v;) is the intercept and ¢; is the
error term. By(u;,0;) was estimated with the following equation:

Bi(uj,vj) = 2 wi(yx — Bo(uj, vj) — 2[3 (uj,v}) x,]) )

where wjy is the distance decay function for location j and k, assuming that observations
close to sample point j have a higher impact on local regression parameters. Therefore,
regression parameters will have different influence on each specific location given a system
of estimations based on geographical weighting. wj, were calculated using the Gauss
function method [84] which is given in Equation (10):

W = exp(—d;./b%) (10)

where dj; represents the distance between location j and k; and b represents the kernel
bandwidth. GWR calculates optimum distance for fixed kernel and optimum number
of neighbours for adaptive kernel [85]. The optimal number of nearest neighbours is
determined by selecting the model with the lowest Akaike Information Criterion (AIC)
score. Regarding fixed kernel, it is assumed that bandwidth at each regression point is
constant whereas it is a variable bandwidth for adaptive kernel. In other words, GWR
assigns higher weights where data are more scattered and lower weights where data are
denser.

Because the results are sensitive to bandwidth, it is necessary to determine the op-
timum bandwidth [11]. If the bandwidth is known, it can be applied directly. If the
bandwidth is unknown, the AIC of minimum discrepancy estimation can be used. For
some location i, we obtained negatively estimated population values. Therefore, the local
bandwidth were adaptively adjusted to prevent the coefficients from becoming less than
zero in the cases where negative population values were predicted (see Chu et al. [21]). We
estimated four different models as summarised below:

MIlgwr : Pop; = f(E;, P;) (11)

M2cwr : Pop; = f(E;, N;) (12)
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M3gwr : Pop; = f(E;, P;, Ai, N;) (13)
Mdcwg : Pop; = f(E;, L;, N;) (14)

where the variables of E;, P;, L;, A; and N; are as defined previously. The variables used in
each of these models were selected based on the pairwise correlations given that highly
correlated variables were removed from the regressions. The multicollinearity in the
GWR models were detected with the ‘condition number’, which evaluates the local multi-
collinearity. Results associated with condition numbers larger than 30 may be unreliable.
From Equations (11) to (14), the estimations of condition numbers were smaller than
30 indicating that multicollinearity is not an issue for the estimated models.

4.2.3. Model Validation

The model validation was undertaken using two measures as well as the Moran’s I
index was used. Firstly, we computed root mean square error (RMSE) and total absolute
error (TAE). The TAE is a measure of the total error observed in the study area while RMSE
measures average deviation produced in the study area. The formulas are given below
where P; and P’; are the observed and predicted values of population in location i, and 7 is
the total number of settlements.

n 1/2
RMSE = lnlzwi - p (15)
i=1
1 /
'21|P i — P
1=
TAE= | = | x100 (16)
L P
i=1

Moran’s I statistic (Moran [86]) indicates whether the data is clustered, dispersed or
randomly distributed. A statistically significant positive Moran’s Index implies a spatial
clustering while a negative Moran’s I index indicates dispersion. To test for autocorrelation
effects, we applied Moran’s Index to the estimated residuals of both models of OLS and
GWR.

5. Results
5.1. Historic Residential Reconstructions

Two different historical reconstructions were undertaken using Equation (6); one based
on the high density residential land use model and other based on the low density model.
Figure 7 presents the different results of these two reconstructions for the 1850s, which
were developed as 30 x 30 m raster maps. The former model resulted in smaller areas(i.e.
around 25% area of the latter model) due to the assumption of compact development
patterns, which contradicts with the dispersed pattern adopted in the latter model. By
using the high density model, the total amount of residential land was 0.36% of the total
area. Contrary to that, the ratio becomes 1.45% with the low-density model.

The estimated coefficients and scaling factors indicating the relationship between
population and size of the residential area are given in Equations (17) and (18). We note
that there is a negative relationship with the area and population for the smaller settlements
whereas the relationship becomes positive for the larger settlements with a population
greater than 250.

Area; pesidential = 277,552.4[m?] x Pop; 029°% a7)
R* =0.96

P 2 0.39344
ﬁ;ezl'gsé‘g”tml 3936749 [m*] x Pop; for each area (i) of Pop; > 250 (18)
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Figure 7. Population distribution maps. (a) High density model; (b) Low density model.

Based on these findings, we examined the spatial distribution of population and popu-
lation density in the Bursa region. Accordingly, the three most urbanised areas are the Bursa
city, Mihali¢ and Gemlik, which have populations of 30,968, 6258 and 3364, respectively.
The population growth observed in the area has led to development of settlement agglom-
erations across the study area, particularly located in the coastal area (Tirilye, Kumyaka,
Mudanya, Umurbey, Diirdane, Gemlik), along water streams (Alayli, Yenisehir, Adibini,
Cerrah, Golyazi, Kayapa, Goriikle) and Iznik Lake (Benli, S616z, Yenicihan, Cakirl), and on
the southern plains of Uludag (Cekirge, Isabey, Tepecik, Bursa city). We also note that there
are high density settlements mainly located in the mountainous areas around the bodies of
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water and along the coastal line. The reasons for these population dynamics might be the
favourable climate and the geophysical conditions and attractiveness of natural attributes
to the residents of these settlements. The details of reconstructed maps are provided in
Figure 8, which compares the differences between simulated and observed residential
land cover for the sampled villages where spatial data on land cover/use exist. It is noted
that the observed population is well represented with the low-density model because the
observed residential land is more dispersed compared to the simulated land cover of the
high-density model. Given this, population distribution analysis from regression models
in the next section will be based on the low-density model.

Babasultan

i s 1N

Reconstructed population
Value

- High : 9,9589

Low : 0,551864

\&/ - Census tract population

Figure 8. Comparison of observed and simulated residential cover maps for the sampled villages.
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5.2. Results of Population Distribution and Validation

The estimated relationship between population and the determinant factors obtained

from OLS is given in Table 3. Although the results of R? and F-statistics indicated that Model
3 is the best performing model among others, Model 1 shows the lowest overall estimation
errors (see Figure A3 in Appendix A). We have negative outlier points identified in the
boxplot indicating that population was underestimated for some settlements whereas it
was overestimated for others associated with positive outlier points (Figure A3). Although
Model 3 is the most comprehensive model comprising all the settlements and the favourable
results obtained from R2 statistics, we used Models 1 and 2 due to their low estimation
errors for the prediction and distribution of population to the fine scale raster cells.

Table 3. Estimates from the OLS regression model.

Model OLS1: Pop < 250)

Model OLS2: Pop > 250)

Model OLS3: Pop >0

Model 1a Model 1b Model 2a Model 2b Model 3a Model 3b
Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient
*3% *% *3% *F
Constant 350957 ** (1043)  350.591 ** (8.15) ?510679715 5’39;5222{“) (11707207997) 1(%4225’
Elevation 0.007(0.01) - —1.053 * (0.61) - —0.071(0.11) -
Slope 0.379(0.41) 0.619 * (0.33) 42.626 * (27.55) - 3.144(4.72) -
Dist_roads 0.003(0.01) - —0.572 * (0.35) —0.573 * (0.32) —0.059(0.06) -
Dist_res_cent —0.001 * (0.01) —0.0003 ** (0.01) 0.011(0.01) - 0.002(0.00) -
Dist_village_cent 0.001(0.00) - 0.243(0.20) 0.247 *(0.18) 0.023(0.04) -
Dist_lakes —0.0001(0.00) - —0.003(0.01) - —0.0002(0.00) -
Dist_sea —0.0001(0.00) - 0.005(0.01) - 0.001(0.00) 0.003 ** (0.00)
Dist_mountain —0.0001(0.00) - —0.024 ** (0.01) —0.024 ** (0.01) —0.003(0.00) -
Dist_water —0.0002(0.00) - —0.027 ** (0.01) —0.021 ** (0.01) —0.011 ** (0.01) —0.009 ** (0.00)
Res_land —0.003 ** (0.00) —0.003 ** (0.00) 0.109 ** (0.00) 0.109 ** (0.00) 0.015 ** (0.00) 0.015 ** (0.01)
Agri_land —1.003 ** (0.00) —1.006 ** (0.00) 0.001(0.00) - 0.0002 ** (0.00) 0.0003 ** (0.00)
Dependent var. Pop Pop Pop Pop Pop Pop
Sample size 432 432 158 158 590 590
R-squared 0.73 0.74 0.79 0.79 0.89 0.9
F-stat 107.09 ** 296.59 ** 50.70 ** 112.17 ** 458.93 ** 1267.69 **

Note: In paranthesis are the standard errors; * significant at 10%; ** significant at 5%; Res_land: Total residential land area of the
corresponding village in square meters; Agri_land: Total agricultural land area of the corresponding village in square meters.

The statistics obtained from GWR estimates are given in Table 4. Model GWR3 is the

best model given that sigma and AIC are the smallest; and R? and R?-adjusted are the
largest among other models. This is also confirmed in the box plot given that Model 3

Table 4. Statistics from the GWR model estimations.

Model GWR 1 Model GWR 2 Model GWR 3 Model GWR 4
Dependent var. Population Population Population Population
Slope, Dist_roads, Dist_village_centers,
Explanatory var. Elevation, Dist_lakes, Dist_water, Dist_lakes, Dist_sea, Dist_lakes,
Res_land_area Res_land_area Dist_watercourses, Dist_watercourses,
Res_land, Agri_land Res_land, Agri_land
Neighbours 30 20 25 20
Effective number 1 181.204 230.072 12.093 10.688
Sigma 2 610.21 514.55 67.855 110.444
AIC 9352.28 7321.08 270.31 255.09
R2 0.86 0.94 0.98 0.93
R2 adjusted 0.79 0.88 0.96 0.74

Notes: ! This indicates a tradeoff between the variance of the fitted values and the bias in the coefficient estimates and is related to the
choice of the bandwidth. For very large bandwidths, the effective number of coefficients approaches the actual number; local coefficient
estimates will have a small variance but will be biased and vice versa. 2 This is the square root of the normalised residual sum of squares.
This is the estimated standard deviation for the residuals. Sigma is used for AIC computations. Smaller values of sigma are preferred.
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And Model 4 showed the lowest overall estimation errors compared to other models
(Figure A4 in Appendix A). Therefore, Model GWR3 was used for the spatial distribution
of population to the residential cells. The spatial distribution of errors for both OLS and
GWR models are presented in Figures 9 and 10.
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Figure 9. Comparison of absolute errors across different OLS models including (a) OLS_1la;
(b) OLS_2a; and (c) OLS_3.
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Figure 10. Comparison of absolute errors across different GWR model including (a) GWR_1;
(b) GWR_2; (c) GWR_3; and (d) GWR_4.
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From Figure 9, estimation errors are the smallest for the settlements of populations
less than 250 (Model OLS1). When settlements having populations greater than 250 were
included in the regressions, we acknowledge that estimation errors have considerably
increased (e.g., Model OLS2 and Model OLS3). The largest estimation errors were observed
for the settlements located around the watercourses and those close to mountainous areas.
The error is more homogeneously distributed in the case of Model OLS3, which includes
all the settlements in the sample.

From Figure 10, the highest estimation errors were obtained from Models GWR1 and
GWR2 where the estimated errors were distributed homogeneously in the study area.
Models GWR3 and GWR4 showed the lowest estimation errors, which were distributed
more heterogeneously compared to the former models. The highest estimation errors were
observed for the settlements in the vicinity of Bursa city located on the southern plains of
Uludag, and close to residential centres (i.e., population > 1000) which are located along the
coastal area, on the western coast of Iznik Lake, and along the water courses, mainly in the
eastern and western parts of the Bursa region. The lowest error estimations were obtained
for the rest of the study area, implying that socio-economic and physical characteristics,
accessibility, and natural amenities were influential in the estimation of population in the
subject locations.

The population distribution maps created from the probability maps and regression
models are shown in Figure 11. A closer look at the values at pixel level shows that pixel
values differ due to different estimation methods used for population prediction.

The validation of regression models was done by comparing the population records at
the settlement level with the population estimates of the grids reported for each settlement
(e.g., the sum of all pixel population values for each settlement). From the TAE and RMSE
statistics computed for both OLS and GWR models, RMSE ranges between 0.19 and 91.5
for the OLS and between 7.13 and 40.22 for the GWR models (Table 5). Because it is shown
that TAE is more robust to skewed distributions compared to RMSE [87], as it is the case for
population density distributions, we will focus on TAE statistics as the main indicator of
model performance. Regarding OLS models, Model OLS2a perform better than other OLS
models and the worst results were obtained for Model OLS2b. Regarding the GWR, Model
GWR3 and Model GWR4 perform better than other GWR models and the worst model
was GWR1. From TAE statistics, it can be inferred that GWR models perform better than
OLS models. This confirms the findings of the literature which indicated that GWR is more
accurate than OLS models, as the latter do not consider the spatial variation of coefficients.

Table 5. Model validation results.

RMSE TAE
Model OLS 1a 1.327 0.211
Model OLS 1b 2.239 0.211
Model OLS 2a 0.192 0.102
Model OLS 2b 32.118 0.936
Model OLS 3a 86.253 1.231
Model OLS 3b 91.534 1.226
Model GWR 1 7.138 1.044
Model GWR 2 40.224 0.98
Model GWR 3 7.437 0.831
Model GWR 4 9.487 0.825

Notes: RMSE: Root mean square error; TAE: Total absolute error.

The results from Moran’s I statistic for the OLS and GWR models are shown in
Tables 6 and 7, respectively. Regarding OLS models, Moran’s I is ranging between 0.28 and
0.91 indicating spatial autocorrelation for the models OLS M2a and OLS M2b. For the other
models (Table 6), there is no spatial autocorrelation detected. Regarding GWR models,
Moran’s I ranges between —0.101 and —0.023 with p-values of 0.850 and 0.966, meaning
that the null hypothesis is not rejected i.e. the spatial variables are randomly distributed
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(Table 7). Finally, the overall presentation of spatial analysis and population modelling
work is given in Figure 12.
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Figure 11. Population distribution for the Bursa region in the 1850s. Results for different modeling approaches. Pixel size:
30 x 30 m. From top left to bottom right: (a) Method: Probability map, compact model (b) Method: Probability map,
dispersed model (c¢) Method: OLS1, dispersed model (pop < or =250) (d) Method: OLS2, dispersed model (pop > 250)
(e) Method: GWR3, dispersed model.

Table 6. Results from spatial autocorrelation statistics for the OLS models.

OLSMla OLSMilb OLSM2a OLSM2b OLSM3a OLSMs3b

Moran’s Index 0.5119 0.4329 0.2872 0.9174 0.5274 0.3803
Z-score 0.9407 0.7967 1.6716 4.686 0.9995 0.7217
p Value 0.3468 0.4256 0.0945 0.0000 0.3175 0.4704

Note: The values are based on inverse distance.
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Table 7. Results from spatial autocorrelation statistics for the GWR models.
GWRM1 GWRM2 GWRM3 GWRM4
Moran’s Index —0.0728 —0.0855 —0.101 —0.0238
Z-score —0.1348 —0.1586 —0.1879 —0.0418
p Value 0.8927 0.8739 0.8509 0.9665
Note: The values are based on inverse distance.

Population /o, ) s | \|
distribution in S | . ~— 7 — /fi A — g
Bursa city: > \ — + 1 —T e j‘/\‘\ o
Results for ’>< . ) I_L — g —~_/ \ 2
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applications Map 1 Fig. 15a Map 2 Fig. 15b Map 3* Fig. 15¢ Map 4 Fig. 15d Map 5 Fig. 15 e

Socio-economic
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criteria Location, Physical ~ Location, Physical Socio-economic factors, Location, Accessibility,
attributes, Natural attributes, Natural factors, Location, Accessibility, Physical attributes
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Development Physical and Physical and Physical and Physical and
constraints natural factors natural factors natural factors natural factors
Parameter
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Model validation TAE, RMSE, TAE, RMSE,
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suitability class 187,555 ha 88,141 ha 38,017 ha 46,127 ha
Area of the lowest
suitability class 2,539 ha 578 ha 71.19 ha 603 ha

Figure 12. An overview of population mapping models. *Because Model OLS1 in Map 3 is based on
villages with population smaller than 250, the model did not apply population distribution of Bursa
city (population is more than 30,000).

6. Discussion

Using the historical census data, cadastral maps of seven villages and other ancillary
data (geo-physical, accessibility and location factors, natural constraints and natural ameni-
ties), we developed two different probability maps of residential development i.e. compact
versus dispersed land use patterns to create a high resolution historical reconstruction of
residential land use/cover in the Bursa region in the 1850s. A common method to test the
reliability of historical reconstructions is to compare the reconstructions with the informa-
tion from independent sources [53,88]. Detailed historical maps serve for this purpose,
and we compared the model results with the cadastral maps of seven villages, which are
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the only available historical sources obtained from the Ottoman archives. According to
map comparisons (Figure 8), we noted that the pattern of residential land use in the seven
villages is more dispersed rather than compact, nevertheless both cases were considered in
the modeling of historical reconstructions. Therefore, we concluded that the compact model
of historical reconstructions poorly explains the real situation, and dispersed modelling
outcomes are more successful in representing the residential land cover/use in the 1850s.
Given that the data on historical cadastral maps of the remaining settlements in Bursa
region is missing in the archives, we were not able to develop the land use map of the
region in digitized form from cadastral maps but attempted to develop probability maps
of residential development with an assumption of compact and dispersed development
patterns. The validation of historical reconstructions is therefore based on comparisons
with information from the cadastral maps of seven villages, and our modelling outcomes
for the rest of the villages were not validated due to missing historical information. Land
use/cover changes can be projected backward on the basis of existing time series informa-
tion on the spatial distribution of land cover/use and the driving forces of, and parameters
associated with, the land use changes. Regarding the Bursa region, there is hardly any
land cover/use map before the 1990s, and due to existence of limited time series spatial
maps, we were not able to project land cover/use changes backward [49,89]. Neither
we were able to simulate historical land uses through the application of a historical land
use reconstruction model [53,90,91]. Despite the limitations of data and methodological
framework, the reconstructed residential land cover/use map in the current study can
serve as an input in future studies that aim to analyse long term land use changes in the
Bursa region.

We followed two approaches for the spatial distribution of historical populations
on the reconstructed historical raster maps. The first approach was based on a linear
relationship with the probability map. This model requires construction of a residential
development probability map through the application of natural constraints, land zoning,
socio-economic factors and residential suitability. The second approach used a regression
analysis approach (OLS vs. GWR) which redistributed the population on reconstructed
raster cells. Because we assumed a positive linear relationship with the probability map,
there is no error analysis applicable to this model. The error analysis from the second
approach, on the other hand, indicated that Models OLS1a, OLS2a, GWR3 and GWR4
resulted in the smallest errors. From TAE statistics, we found that GWR models perform
better than OLS models. This confirms the findings in the literature [22,92-95], as GWR
considers spatial non-stationarity from the reconstructed residential land cover/use map.
The gridded population distribution maps obtained using the GWR approach can be used
to analyse spatio-temporal patterns of population density in the Bursa region and can be
used as an input in future studies focusing on exploring population dynamics in Turkey.

7. Conclusions

Based on the historical population census data and detailed settlement extents of some
sampled villages, this study developed residential land cover maps that were combined
with different statistical models of high-resolution population distribution in the Bursa
region in the mid-1800s. The reconstruction of residential land cover is based on natural
constraints, land zoning, residential suitability, and socio-economic factors, which can be
considered as influencing factors that have contributed to the accuracy of final map prod-
ucts. We selected three main criteria, including physical factors, location and accessibility,
and natural amenities for the suitability mapping of residential development, which were
classified using the fuzzy membership functions and weighted using the AHP method.
The integration of fuzzy membership with AHP is an advancement for the analysis of land
suitability, and in this way our study contributes to the previous studies which considered
deterministic approaches, fuzzy membership, or AHP alone for land suitability modelling.

In the current study, we adopted the low-density residential land cover maps as
ancillary data to create historic population grid maps for the Bursa region. The validation
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analysis that allowed a systematic comparison of the resulting grid population maps with
the reference data were utilized for specifying population disaggregation accuracies of
the regression models. In the current study, the GWR model has provided the highest
accuracies, as the model considers spatial non-stationary. This contrasts with the global
OLS model which does not consider spatial heterogeneity. The approach can be used as
an input for future studies for the analysis of land cover/use change dynamics and for
comparative work of high-resolution population distribution studies regarding the Bursa
region and other study areas.
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Appendix A. Tables and Figures

Table Al. Information on population and area of residential land across seven settlements of Bursa.

Total Area of Residential ~ Total Area of Agricultural

Village Population Land ! (m?) Land 2 (m2)
Aksu 378 38,180 7,785,767
Babasultan 458 45,811 4,582,647
Conkara 130 27,298 3,703,626
Fidyekizik 200 62,019 2,484,866
Inkaya 130 42,939 1,375,435
Kestel 228 67,887 4,093,205
Soganli 54 91,695 2,324,190

Note: ! Residential buildings and courtyards, cemetery and home gardens. 2 Chestnut gardens, olive trees,
mulberry groves, orchards, vineyards, fields, field of clover, meadows, and vegetable gardens.

Table A2. Pairwise comparison matrix of the evaluation criteria for residential suitability.

Physical Accessibility and Natural

Criteria Characteristics Location Amenities Weights
Physical characteristics 1 1/5 3 0.195
Accessibility&location 1 6 0.717
Natural amenities 1 0.088

CR: 0.098
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Table A2. Cont.

Physical characteristics

Sub-criteria Aspect Slope Elevation Weights
Aspect 1 1/3 2 0.249
Slope 1 3 0.594
Elevation 1 0.157
CR: 0.056
Acce551b111t¥&lf)cat10n Dist_Roads Dist_Village Dist_Residential Weights
Sub-criteria centers centers
Dist_Roads 1 1/2 % 0.196
Dist_Village centers 1 3 0.493
Dist_Residential centers 1 0.311
CR: 0.056
Natural al'nerfltles Dist_Mountains Dlst_Water Dist_Lakes Dist_Coastline Weights
Sub-criteria bodies
Dist_Mountains 1 1 1 1 0.246
Dist_Water bodies 1 2 1 0.298
Dist_Lakes 1 1 0.21
Dist_Coastline 1 0.246
CR: 0.022

Note: CR: Consistency Ratio.
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Figure Al. An example of residential development zones in Fidyekizik, Bursa, 185. Source: Turkish Presidency State
Archives of the Republic of Turkey, Department of Ottoman Archives (HRT.h. 561, 562, 564, 565, 566, 567). Note: Limited by
the historical land cover inventory data, the main land cover types observed in the sampled villages include agricultural
land, forestland, grassland, unutilised land, and built-up land. As we focus on reconstruction of residential land, it is
of significance to highlight that residential land cover is subdivided into categories including buildings and courtyards,
cemeteries and home gardens. Agricultural land, on the other hand, includes permanent crops (e.g., chestnut gardens, olive
trees, vineyards etc.), fields, meadows, and vegetable gardens.
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Figure A2. Residential suitability maps for different scenarios (a) Modell, (b) Model2, (c) Model3,
(d) Model4.
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