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Abstract: The scientific evaluation of landscape fragmentation and connectivity is important for
habitat conservation. It is strongly influenced by the spatial resolution of source maps, particularly
in urban environments. However, there is limited comprehensive investigation of the spatial grain
effect on urban habitat and few in-depth analysis across different urban gradients. In this paper, we
scrutinize the spatial grain effects of urban green space (UGS) cover maps (derived from remote
sensing imagery and survey data) with respect to evaluating habitat fragmentation and connectivity,
comparing among different urban gradient scenarios (downtown, urban periphery, and suburban
area) in Hangzhou, a megacity in China. The fragmentation was detected from three indices, in-
cluding Entropy, Contagion, and Hypsometry. Then morphological spatial pattern analysis (MSPA)
was applied for the landscape element identification. The possibility of connectivity (PC) and patch
importance (dPC) were proposed for measuring the landscape connectivity based on Cores and
Bridges from MSPA results. The results indicate that the farther the location is from downtown, the
less sensitive the landscape element proportion to the spatial resolution. Among the three fragmenta-
tion indices, the overall hypsometry index has the lowest sensitivity to the spatial resolution, which
implies this index’s broader application value. Considering connectivity, high spatial resolution maps
are appropriate for analyzing highly heterogeneous urban areas, while medium spatial resolution
maps are more applicable to urban periphery and suburban area with larger UGS patches and less
fragmentation. This study suggests that the spatial resolution of UGS maps substantially influence
habitat fragmentation and connectivity, which is critical for decision making in urban planning and
management.

Keywords: fragmentation; connectivity; habitat conservation; spatial grain effect; urban green space;
morphological spatial pattern analysis

1. Introduction

Urban green spaces (UGSs) are important for urban biodiversity maintenance and
human well-being [1–4]. However, with continued urbanization and increasing human
activities, UGS patches are increasingly fragmented, severely affecting the sustainable
development of cities [5]. The loss and fragmentation result in progressive changes in the
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spatial landscape patterns of habitats, affecting species survival and posing serious threat
to biodiversity conservation in urban regions [6,7]. Whether in landscape ecology research
or urban sustainable development planning, habitat conservation is a topic that has long
been valued [4]. In order to ensure that the evaluation of habitat conservation status has
higher practical value, it is vital to scientifically measure the landscape patterns [8].

Fragmentation indicates whether a habitat patch is large enough to support population
survival of certain species [9]. The key to the evaluation of UGS fragmentation lies in the
selection and construction of indicators [10,11]. Traditional fragmentation indices, such
as mean patch size (MPS) and mean proximity index (MPI) [6,12,13], can be calculated by
landscape pattern index software, such as Fragstats [14]. Some studies have adopted a
comprehensive multi-index approach to improve fragmentation analysis, such as using
principal component analysis to integrate several landscape indices [15].

Connectivity measures the extent to which the landscape facilitates species to move
between fragments [16]. Conventional connectivity indices, such as the ecological connec-
tivity index (ECI), monitor the functional connectivity between different elements of the
landscape [17]. Mitsova et al. (2011) compared the changes in open space connectivity
of urban fringe areas under two scenarios of rapid urbanization and green space protec-
tion by using a graph-theory-based software [18], Conefor Sensinode [19,20], involving
several connectivity indices such as Harary index (H), landscape coincidence probability
(LCP), integral index of connectivity (IIC), and probability of connectivity (PC) [21]. It is
worth emphasizing that graph-theoretical approaches measure the importance of corridors
between “nodes” in a network but only by using preprocessed data [22]. Therefore an inte-
grative method based on mathematical morphology called morphological spatial pattern
analysis (MSPA) was proposed [23]. It classifies the area into mutually exclusive landscape
elements such as cores, connectors, edges, and isolated elements [24]. This approach can
automatically detect structural links between core patches and provide an analytical basis
for effectively constructing urban ecological networks [25,26].

By considering the multi-scale characteristics of the urbanization process, the differ-
ences in the response mechanism of the UGS landscape patterns (e.g., the number, area,
and spatial structure) can be varied with scale (i.e., grain size and extent) [27–30]. The
sensitivity of landscape patterns to spatial resolution has been studied comprehensively
in different research directions, for instance, forest conservation, and natural reserve [22].
Ostapowicz et al. (2008) stated that the increase in spatial resolution may result in data
generalization resulting in either the removal of the small size features or their potential
transformation into non-core MSPA elements. However, the spatial grain effects on urban
habitat assessment have received little attention. Coarse spatial resolution data may not
reveal spatial heterogeneity of urban landscapes [31,32]. Upscaling of UGS maps can
degrade important information, especially some small patches representing the small-scale
parks or narrow green belts, which are actually key elements in fine-scale UGS planning
and management. Therefore, the exploration of spatial grain effect is vital in fine-scale UGS
research.

Spatial grain effect is also associated with landscape composition (e.g., diversity of
patch types) and configuration (e.g., spatial arrangement of different patch types) [29]. In
effect, landscape patterns can be varied under different urban gradients, which further
results in variations in the evaluation results of ecological functions [11,33]. The gradient
analysis methods of UGS patterns mainly include the transect analysis method [34], buffer
gradient analysis [35], and comparative study based on urban-rural spatial zoning [15,36].
Among them, the method of urban-rural spatial zoning is to divide land use into built-up
areas, urban fringe, and rural areas with reference to administrative divisions or govern-
ment planning standards. The major advantages of this method are simplicity, efficiency,
and appropriateness for preliminary comparisons of changes in landscape patterns under
different urban-rural gradients [15,36]. Conclusions have been drawn in some studies
that the proportion core patches decreased as the spatial resolution increased [9], and
differences in composition and configuration did not influence the general tendencies [22],
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which however, are only sound over homogeneous regions such as a forest. The same
assessments in the urban context with high spatial heterogeneity could result in different
conclusions. As the research perspective gradually extended from a single landscape to
landscape gradients, especially across urban and rural landscapes, inference and experience
can be obtained to assist urban-rural planning by observing the evaluation results with
different input spatial resolutions.

In terms of UGSs, research based on conventional urban landscape metrics can be a
daunting task due to the quality and coverage of data sources. Coarse spatial resolution
remote data do not accurately detect the sharp edges of irregular patches [37]. This problem
raises a range of concerns for accurate monitoring and managing UGSs as a large proportion
of vegetation in urban landscape remain complex, irregular, and highly fragmented. Over
the years, with the continuous development of remote sensing technologies, the data
sources of urban research have been greatly improved in terms of resolution and coverage,
which provide practical means for compiling land cover maps [38]. High spatial resolution
remotely sensed data (e.g., QuickBird, IKONOS, and GF-2) offer details of UGSs that
have enhanced scientific research, planning and management [39,40]. Coupled with the
updated information extraction methods (e.g., object-based image analysis (OBIA) [41]
and deep neural networks [42]), it is no longer a problem to quickly and accurately obtain
distribution and change information of UGSs for serving simultaneous observation and
ecological environment evolution at different scales. Although a considerable number of
studies have utilized coarse, medium and high spatial resolution data to analyze UGSs,
it is imperative to scrutinize systematically and comprehensively the degree to which
spatial resolution (grain) influences monitoring fragmentation and connectivity of UGSs.
Moreover, less attention has been given to how obtained results can benefit research or
management objectives of UGSs. Driven by the growing concerns over the impacts of rapid
urbanization on UGSs, there is an acute need for the precise detection of fragmentation
and connectivity in UGSs.

This paper aims to narrow this gap of information by providing robust knowledge that
will enable appropriately using different spatial resolutions data in quantifying fragmenta-
tion and connectivity of UGSs. To perform this, we conducted three key steps: (1) extracting
UGS maps from source maps with three different spatial resolutions and determining the
test extents across urban gradients; (2) quantifying landscape elements by MSPA; and
(3) identifying urban habitat fragmentation and connectivity of different scenarios based
on index measurements and graph-theoretical approaches.

2. Materials and Methods
2.1. Study Area and Data Preprocess

Three study areas were selected in the urban districts of Hangzhou City, distributing
in the downtown area (in the built-up area), on the urban periphery (the transitional
zone on the margin of built-up area), and in the suburban area (outside the built-up
area), in order to detect the differences among urban gradients (Figure 1). Hangzhou
(118◦21′~120◦30′ E, 29◦11′~30◦33′ N), as the capital city of Zhejiang province, China, is
located at the southern wing of the Yangtze River Delta. It belongs to the subtropical
monsoon climate with four distinct seasons and abundant rainfall. It is also known as a
scenic tourist city, famous for the West Lake Scenic Zone and Xixi National Wetland Park.
In recent years, the Hangzhou government has conscientiously implemented the spirit of
China’s construction of ecological civilization [43] in UGS planning and management. It
has set clear goals for UGS construction from quantity to quality, from overall planning to
details, and is committed to continuously satisfying ecological security and aesthetics of
the living environment. In 2017, Hangzhou was officially awarded the title of “National
Ecological Garden City” on the Global Cities Forum. As of 2019, the green coverage rate of
Hangzhou’s built-up area has reached 40.58%, and the total number of scenic spots in the
urban districts has reached 260, covering an area of 3208 ha [44]. Although Hangzhou’s
greening has reached a relatively high level in terms of quantity, the “quality” level needs
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to be further explored through scientific research, that is, the spatial configuration of
UGS patches that can function normally to maintain biodiversity. In this study, we set
up a 2000 m fishnet on the layer of Hangzhou urban districts in order to limit the sample
window size and selected the samples based on the urban growth boundary derived from
nightlight data, referencing Xue et al.’s (2018) work [45].
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Figure 1. Three UGS maps with different spatial resolutions, i.e., GLC_FCS_layer (30 m), Forest_layer (10 m), and OBIA
layer (1 m). Scenario A, B, and C are the three chosen sample study areas located in the downtown area, on the urban
periphery, and in the suburban area.

Three UGS cover maps with different input spatial resolutions were considered in this
study:

1. The GCS_FCS_layer (30 m spatial resolution) was derived from a novel global
30 m land-cover classification with a fine classification system for the year 2020
(GLC_FCS30-2020) [46]. In order to map the GCS_FCS_layer, we filtered out the
corresponding vegetation coverage categories in the source map as UGSs and defined
the remaining categories as non-UGSs.

2. The Forest_layer (10 m spatial resolution) was derived from the Forest Resource In-
ventory in Zhejiang province [47]. Forest resource planning and design investigation
were organized and carried out by the county-level state-owned forestry bureau and
forest farm. The vegetation patch survey within the entire survey area was mainly
adopted, covering urban and rural areas. In 2017, the Zhejiang Forestry Department
deployed and carried out a forest resource inventory update, including the inventory
of forest community structure, naturalness, and other vegetation (e.g., herbaceous
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plants) and ecological factors, taking two years to complete. This work has laid the
foundation for the establishment of the provincial forestry ecological monitoring
system and ecological construction. In this study, the forestry survey patches are
regard as UGS patches, and the remaining space are regarded as non-UGS patches.

3. The OBIA_layer (1 m spatial resolution) was derived from the GF-2 remote sens-
ing imagery in 2019 (China Centre For Resources Satellite Data and Application,
http://www.cresda.com/EN/, accessed on 10 December 2020) in order to obtain
more detailed UGS cover maps than the previous maps, fitting better to the actual
margin of UGSs. Preprocessing (geometric correction and image sharpening) of re-
mote sensing imagery was completed on ENVI 5.3®. The OBIA technique, consisting
of segmentation and classification, was derived using eCognition®. For the segmenta-
tion phase, the ESP2 tool [48] was applied to obtain the optimal segmentation scale as
76 for the multi-scale segmentation; the support vector machine (SVM) was selected
as the classifier for the classification phase based on the selection of a series of spectral
features including mean value and standard deviation of blue/green/red, brightness,
and NDVI. Finally, the OBIA_layer was obtained with two classes including UGS and
non-UGS.

2.2. Fragmentation

In this study, we selected three indices, Entropy, Contagion, and Hypsometry, to
reveal fragmentation. The three indices were all measured in GuidosToolbox software,
version 3.0 [49]. The input image in GuidosToolbox is required to be a binary raster
map with foreground/background, where the foreground corresponds to the class of
interest (e.g., UGS patches), and the background (non-UGS patches) is its complement. We
computed three fragmentation indices for the nine raster samples. These three indices are
able to join all rasters within the sample area and derive a global value, making the results
comparable and aiding trend analysis. Triple information was intended to be explored in
this section: (1) the trends of fragmentation degrees with gradient, (2) the sensitivity of
different input data sources to these trends, and (3) the sensitivity of different fragmentation
indices to different data sources.

2.2.1. Entropy

In thermodynamics, Entropy indicates the degree of disorder in a system, whereas
the concept could be transferred as an indicator for spatial fragmentation in spatial geome-
try [50]. For a given foreground, an image with a single foreground object has minimum
entropy; when the given area is split into a maximum number and dispersed equally over
the entire image, Entropy reaches the maximum value [51]. This study achieved Entropy
according to the algorithm, which could be traced from the classical definition of entropy in
information theory [52]. In Shannon’s original concept, Pi refers to percentages of species
classes in categorical maps [50]. Here, for the binary raster maps, the algorithm area is
applied to investigate the differences between cell values in all 8 directions, and log is the
base 2 logarithm [49]. The FRAGentropy is defined as follows.

FRAGentropy = −∑ Pi ∗ log2(Pi) (1)

2.2.2. Contagion

The traditional contagion index (CONTAG) describes the degree of agglomeration
or spreading trend of different patch types in the landscape. Generally speaking, a high
sprawl value (tends to 100%) indicates that a certain dominant patch type in the landscape
has formed good connectivity; on the contrary (tends to 0), it indicates that the landscape
is a dense pattern with multiple elements, where the degree of fragmentation is relatively
high [50,53]. Therefore, the fragmentation index here can be defined as the reciprocal
relation of the contagion index, i.e., an image region with high contagion is equivalent to
having low fragmentation. The FRAGContagion is defined as follows:

http://www.cresda.com/EN/
http://www.cresda.com/EN/
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CONTAG =

1 +
∑m

i=1 ∑m
k=1

[
Pi ×

gik
∑m

k=1 gik
× ln

(
Pi ×

gik
∑m

k=1 gik

)]
2 ln(m)

× 100%FRAGcontagion = 1−CONTAG (2)

where Pi is the percentage of the area occupied by type i patches; gik is the number of
adjacent patches of type i and type k; m is the total number of patch types. In this study,
type i represents the foreground (UGS), type k represents the background (Non-UGS), and
the total number of patch types m is 2.

2.2.3. Hypsometry

Habitat fragmentation can be measured based on the normalized landscape hyp-
sometric curve (NLHC), which was derived by [54]. NLHC summarizes the Euclidean
distance distribution for a given binary landscape map as positive values in the foreground
and negative values in the background. The degree of fragmentation corresponds to the
area under the NLHC covered between minimum possible fragmentations and maximum
fragmentation [54]. Hypsometry provides values in the range of [0, 100]%. The degree of an
overall fragmentation for a given image is defined by the weighted sum of fragmentation
in the foreground and the background:

FRAGhypsometry =

(
f g_area
f g_ f rag

+
bg_area
bg_ f rag

)
× 100% f g_ f rag =

1∫
0

NLHC f g −
1∫

0

NLHC f g_minbg_ f rag =

0∫
−1

NLHCbg −
0∫
−1

NLHCbg_min (3)

where bg/ f g_area is the foreground/background area, respectively, and bg/ f g_ f rag is
the foreground/background fragmentation, respectively. NLHC f g/bg is an NLHC for the
foreground /background class of a given landscape, and NLHC f g/bg_min is an NLHC for
the foreground/background class of a landscape with the same proportion of foreground
but maximum foreground aggregation (i.e., minimum fragmentation).

2.3. Landscape Elements Identification

We applied MSPA to detect the landscape elements of the UGS patches, which is
also performed with GuidosToolbox 3.0. MSPA is a customized sequence of mathematical
morphological operators, targeted at the description of the geometry and connectivity of
the image components [24]. The foreground area can be classified as seven generic MSPA
elements at the pixel level: Core, Islet, Bridge, Loop, Edge, Perforation, and Branch, which
are mutually exclusive (Figure 2). The meaning of MSPA elements is explained in Table 1.
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Table 1. Descriptions of the seven MSPA element types under mathematical and landscape ecological meaning.

Landscape Element Type Spatial Morphological Definition * Landscape Ecological Meaning

Core Interior area excluding perimeter
Larger habitat patches in foreground pixels, providing
relatively larger habitats space for species; represents
ecological sources of importance for protecting biodiversity

Islet Disjoint and too small to contain Core Isolated, broken small patches that are not connected to
each other, with low connectivity

Bridge Connected to different Core area
Narrow area connected the cores, representing a corridor
that connects patches in an ecological network; essential for
biological migration and landscape connectivity

Loop Connected to the same Core area
Similar to the Bridge, but only represents the corridors that
communicate within the same core for the migration of
internal species

Edge External object parameter
Transitional zone between the core zone and the external
non-green space; its width varies according to the migration
characteristics of different species

Perforation Internal object parameter
Transitional zone between the core zone and the internal
non-green space; its width varies according to the migration
characteristics of different species

Branch Connected at one end to Edge,
perforation, Bridge, or Loop

Extending area of green space; only one end is connected to
the green space

* Source: http://forest.jrc.ec.europa.eu/download/software/guidos/mspa/ (accessed on 12 May 2021).

GuidosToolbox has introduced two key parameters that influence the sensitivity of
MSPA results to the input scale: pixel size P and parameter S for determining the edge
width [22]. In general, P depends on the input spatial resolution of the binary maps. The
increase in P may result in the decrease in detailed elements (e.g., Islet, Loop, Bridge, and
Branch). The customized S directly determines the width threshold of the Edge, Perforation,
Loop, and Bridge, which are set according to the theoretical basis of the landscape ecological
design [55]. In this study, P was the study object and already set based on the three input
UGS maps. The setting of S is based on the following considerations.

For many species, edge effect is one of the main factors affecting habitat quality. The
edge effect is mainly caused by changes in the microclimate effects (such as edge light,
wind, dryness, etc.), resulting in changes in the composition of edge vegetation and the
depth for edge species to enter the habitat [55]. However, with the change of vegetation
types and target species, the influence range of the edge effect varies greatly, ranging
from a meter to a hundred meters. In specific planning, consideration should be given
to actual conditions. Since there is currently no clear agreement on the appropriate edge
width for urban habitat patches, we can only summarize it through extensive literature
review. Previous studies have argued that when the width of the biological protection
corridor is set to 30 m, the river ecosystem can be protected from logging [56], fish, reptiles,
amphibians, birds and mammals can be protected [6,57], and the minimum corridor width
for shade-tolerant tree species can be maintained [58]. Moreover, from the experimental
level, because the green patches inside the city is much smaller and fragmentized, setting
the edge width too large will cause the research to fail to detect the core area, thus affecting
the results. Therefore, the edge width has been recommended to be 30 m for the scenarios
in this study.

2.4. Connectivity

In this study, connectivity index analysis was conducted with Conefor Sensinode soft-
ware, version 2.6 [20], available for the outputs obtained in the MSPA analysis. We applied
the probability of connectivity (PC) index, defined as the probability that a species falls into
surrounding reachable habitat patches [19]. Only the core and bridge are considered in the
connectivity index analysis [59]. According to the extent of the study areas, the distribution
of UGS patches, and existing research references, the distance threshold was determined to

http://forest.jrc.ec.europa.eu/download/software/guidos/mspa/
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be 1000 m, and the probability was 0.5 [19,26,60]. The equation of PC index is shown as
follows:

PC =
∑n

i=1 ∑n
j=1 aiajP∗ij
A2

L
(4)

where n is the total number of patches in the landscape, P∗ij represents the maximum
probability of species spreading between patch i and patch j, ai and aj represent the areas
of patch i and j, respectively, and AL is the area of the landscape.

The patch importance (dPC) was also calculated. The patch importance is presented as
the delta of PC, and it allows the identification and prioritization of important patches that
mostly contribute to overall landscape connectivity [59]. The higher the dPC, the higher
the importance of the patch in landscape connectivity and the more obvious its core status
in the UGS landscape system. The equation is shown as follows:

dPC(%) =
PC− PC′

PC
× 100% (5)

where PC indicates the possible connectivity index of a patch in the landscape, and PC′

indicates the possible connectivity index of the landscape after the patch is removed.

3. Results
3.1. Fragmentation

Entropy, Contagion, and Hypsometry were computed for the fragmentation based on
different spatial resolutions in three urban gradient scenarios (Figure 3). In terms of the
Entropy index, OBIA_layer had the lowest fragmentation value. With increasing distance
from downtown areas (from scenario A to C), the Entropy of the three maps gradually
declines, and the trend of Forest_layer is the most significant. With respect to Contagion,
OBIA_layer had the lowest fragmentation value. From scenario A to C, the Contagion of
the three maps dropped, and thereafter behaved steady. Focusing on Hypsometry, from
scenario A to C, the Hypsometry of the three maps generally declined. In each scenario,
the overall hypsometry index showed similar values in the three maps.
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The normalized landscape hypsometric curve (NLHC) provided detailed information
for understanding internal mechanisms (Figure 4). The shape of the NLHC depicted a
spatial structure of a given landscape. For a given landscape, the degree of fragmen-
tation corresponded to the area under the NLHC covered between minimum possible
fragmentation (black) and maximum fragmentation (red). The degree of fragmentation in
the foreground and background decreased with increasing distance from the downtown
area. This finding implied that NLHC can more stably reflect the relationship between
the proportion of patch coverage and the degree of fragmentation. Among different input
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spatial resolutions, foreground fragmentation did not provide a clear trend. However,
the background fragmentation showed a clear trend for it had a neutralizing effect on the
overall index.
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Figure 4. NLHCs calculated for study areas with different UGS cover maps across urban gradients. The distributions of
urban gradient scenario A, B, and C are in Figure 1. The overall fragmentation index is shown at the top left corner in each
chart, while fragmentation of its foreground (i.e., forest) component is shown in green, and its background component
(i.e., non-forest) is in blue. The degree of fragmentation corresponds to the area under the NLHC covered between minimum
possible fragmentation (black) and maximum fragmentation (red).

3.2. Landscape Elements Identification

Based on MSPA, the three urban gradient scenarios (A, B, and C) of the three maps
all form pixel maps composed of seven landscape elements (Figure 5). We also counted
the proportion and number of elements in each sample (Table 2) in order to observe the
sensitivity of the MSPA results to the input spatial resolution.

In the terms of controlling the extent variable (400 ha sample window), the farther
location in the same map is from the downtown area, the higher the foreground proportion
(UGS), and this phenomenon exists in all three maps. However, the proportion variations
of the same urban gradient scenario in different maps were not parallel. Specifically, as
the spatial resolution increased, the foreground proportion of scenario A (downtown)
gradually increased, while scenario B (on the urban periphery) and scenario C (suburban
area) both decreased first and thereafter increased. The OBIA_layer in all three scenarios
had the highest foreground proportion. The standard deviation gradually decreased from
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downtown area to suburban area, indicating that the foreground proportion is similar
among maps with different input spatial resolutions.

Among the seven landscape elements, the Cores and the Bridge deserved special
attention. Observing the nine scenarios, scenario C of GLC_FCS_layer had the largest area
of Core (327.48 ha, 81.87% in total) while scenario A of OBIA_layer had the largest area
of Bridge (36.20 ha, 9.05% in total). In the same map, the farther the location is from the
downtown area, the higher the Core proportion, and this phenomenon exists in all three
maps; the bridge area does not show obvious laws related to the urban gradient. However,
in the same scenario, the Core proportion was not significantly sensitive to the spatial
resolution whereas the Bridge showed a significant positive correlation with the spatial
resolution. Meanwhile, the standard deviation of the proportion gradually decreased from
scenario A to scenario C, indicating that the Bridge proportion tended to be similar among
maps with different input spatial resolutions.
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Figure 5. MSPA results of the three maps (GLC_GCS_layer, Forest_layer, and OBIA_layer) in the three scenarios (A, B, and
C) with seven landscape elements. The distributions of A, B, and C are in Figure 1.

3.3. Connectivity

The PC index results for each UGS cover map are shown from the overall PC index
value, dPC, and area (Table 3). The two key landscape elements, i.e., Core and Bridge, were
counted separately for they have different connotations and functions in landscape ecology
and urban practice (Table 3). Distributions of the value range of Cores and Bridges are also
displayed (Figure 6).



Land 2021, 10, 1065 11 of 18

Table 2. An inventory table of MSPA results for the three UGS cover maps. The proportion variation column displays the variation tendency of the proportion in total from low spatial
resolution map to high-resolution map.

MSPA
Elements

Urban
Gradient
Scenario

1. GCL_FCS_layer (30 m) 2. Forest_layer (10 m) 3. OBIA_layer (1 m) Proportion Variation

Proportion
in Fore-
ground

(%)

Proportion
in Total

(%)
Area
(ha)

Element
Num-

ber

Proportion
in Fore-
ground

(%)

Proportion
in Total

(%)
Area
(ha)

Element
Num-

ber

Proportion
in Fore-
ground

(%)

Proportion
in Total

(%)
Area
(ha)

Element
Num-

ber
1→2 2→3 1→3 Stdev.

Foreground
A - 7.30 29.08 - - 19.17 76.68 - - 34.55 138.2 - ↗ ↗ ↗ 13.66
B - 75.77 303.08 - - 70.27 281.08 - - 80.36 321.44 - ↘ ↗ ↗ 5.05
C - 89.27 357.08 - - 87.93 351.72 - - 92.16 368.64 - ↘ ↗ ↗ 2.16

Core
A 4.83 0.35 1.4 4 0.28 0.05 0.21 5 1.35 0.47 1.88 15 ↘ ↗ ↗ 0.22
B 90.24 68.37 273.48 3 78.91 55.45 221.80 6 68.59 55.12 220.48 12 ↘ ↘ ↘ 7.56
C 91.71 81.87 327.48 2 90.75 79.80 319.20 3 87.49 80.63 322.52 3 ↘ ↗ ↘ 1.04

Islet
A 71.30 5.18 20.72 48 49.32 9.45 37.8 61 55.15 19.06 76.24 607 ↗ ↗ ↗ 7.11
B 0.55 0.42 1.68 2 1.33 0.94 3.76 30 2.55 2.05 8.20 156 ↗ ↗ ↗ 0.83
C 0.07 0.07 0.28 1 0.27 0.24 0.96 2 0.85 0.79 3.16 156 ↘ ↗ ↗ 0.38

Bridge
A 0.00 0.00 0.00 0 0.74 0.14 0.56 1 26.19 9.05 36.20 66 ↗ ↗ ↗ 5.19
B 0.00 0.00 0.00 0 0.97 0.68 2.72 14 5.74 4.61 18.44 149 ↗ ↗ ↗ 2.49
C 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.44 0.41 1.64 36 → ↗ ↗ 0.24

Loop
A 0.00 0.00 0.00 0 24.62 4.72 18.88 5 5.11 1.77 7.08 13 ↗ ↘ ↗ 2.38
B 0.00 0.00 0.00 0 0.35 0.25 1.00 3 4.79 3.85 15.40 280 ↗ ↗ ↗ 2.15
C 0.54 0.48 1.92 6 0.09 0.08 0.32 4 0.96 0.88 3.52 163 ↘ ↗ ↗ 0.40

Edge
A 13.60 0.99 3.96 4 4.40 0.84 3.36 8 6.51 2.25 9.00 20 ↘ ↗ ↗ 0.77
B 8.08 6.12 24.48 5 15.68 11.02 44.08 8 12.39 9.96 39.84 15 ↗ ↘ ↗ 2.58
C 6.15 5.49 21.96 5 8.24 7.24 28.96 7 8.17 7.53 30.12 10 ↗ ↗ ↗ 1.10

Perforation
A 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 → → → 0.00
B 0.00 0.00 0.00 0 0.99 0.70 2.80 2 4.01 3.22 12.88 13 ↗ ↗ ↗ 1.69
C 0.89 0.79 3.16 2 0.00 0.00 0.00 0 1.07 0.99 3.96 10 ↘ ↗ ↗ 0.52

Branch
A 10.27 0.75 3.00 6 20.64 3.96 15.84 77 5.68 1.96 7.84 221 ↗ ↘ ↗ 1.62
B 1.13 0.86 3.44 18 1.76 1.24 4.96 89 1.93 1.55 6.20 538 ↗ ↗ ↗ 0.35
C 0.64 0.57 2.28 18 0.65 0.57 0.28 51 1.01 0.94 3.76 435 ↘ ↗ ↗ 0.21

Background
A - 92.73 370.92 - - 80.83 323.32 - - 65.45 261.8 - ↘ ↘ ↘ 13.68
B - 24.23 96.92 - - 29.73 118.92 - - 19.64 78.56 - ↗ ↘ ↘ 5.05
C - 10.73 42.92 - - 12.07 48.28 - - 7.84 31.36 - ↗ ↘ ↘ 2.16

* “↗”, “↘”, and “→” represent for the value variation from low spatial resolution from high spatial resolution.
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Table 3. PC index results for each UGS cover map: PC value, the top three dPC of Cores and Bridges,
and the total area (∑area) of all obtained Cores and Bridges.

GCL_FCS_layer (30 m) Forest_layer (10 m) OBIA_layer (1 m)

A B C A B C A B C

PC 0.0000093 0.49 0.71 0.0000086 0.37 0.70 0.011 0.39 0.67
dPC (%)

Core

First 59.57 99.98 99.99 13.19 97.66 92.62 6.07 94.66 99.98
Second 51.84 2.07 0.37 9.98 17.27 44.98 0.71 15.35 0.10
Third 27.39 0.11 - 4.71 3.32 0.47 0.40 3.07 0.05
∑area
(ha) 1.44 280.35 335.70 0.23 235.52 339.03 1.87 220.68 322.84

Bridge
First - - 0.16 76.62 1.42 0.20 41.62 6.77 0.64

Second - - 0.16 30.00 0.88 - 32.81 2.27 0.44
Third - - 0.05 28.52 0.50 - 24.48 2.15 0.32
∑area
(ha) - - 0.72 0.97 9.06 0.32 42.90 31.94 4.23

∑area (ha) 1.44 280.35 335.70 1.20 235.58 339.35 44.77 252.62 327.07
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In each map, PC gradually increased from scenario A to C. For a single scenario,
OBIA_layer in A had the highest possible connectivity (PC = 0.011), and GCL_FCS_layer in
B and C was the highest (PC = 0.49, 0.71). In scenario A and B, the dPC of the first important
Cores decreased as the spatial resolution increases; in scenario C, dPC first decreased and
then increased.

Given bridge blocks changed very slightly in the GCL_FCS_layer, so we only focused
on Forest_layer and OBIA_layer. In scenario A, the importance of the first important
patch of Forest_layer was higher than that of OBIA_layer. In fact, Forest_layer had very
few Bridges identified and did not represent a better description of the connectivity of
Forest_layer in scenario A; on the contrary, the description on OBIA_layer’s Bridges was
more accurate. The area of the OBIA_layer bridge area and the dPC of the first important
patch indicated both the highest values in scenarios B and C.

4. Discussion
4.1. The Spatial Grain Effect on Urban Habitat Landscape Patterns

As the most intuitive aspect of characterizing the habitat quality, fragmentation was
the primary index that we considered in this study. Although the patterns of the calcula-
tion results of the three fragmentation indices were different, they all showed a general
trend: from downtown area to the urban periphery, the fragmentation of UGS patches
gradually decreased. This is easy to understand: The UGS patches in urban area are small
and fragmented, while urban periphery mostly consisted of contiguous forests. On the
other hand, the sensitivity of the three indices relative to different spatial resolutions was
significantly different because of their own mechanisms behind them. This implies that if
the data source is limited, which index can be the recommended one for evaluating the
fragmentation of urban habitats.

Specifically, both Entropy and Contagion can be regarded as local aggregation metrics
but with a crucial difference: Contagion only considers foreground objects, while Entropy
is based on the simultaneous evaluation of foreground and background [49]. For instance,
a map with 90% of background coverage and a 10% of isolated foreground objects may
result in high fragmentation values for Contagion. However, for Entropy, this map will
have low fragmentation values because the dominant area coverage (background) is only
slightly fragmented by the foreground; low fragmentation value can still be obtained
for Entropy if the percentage of foreground and background is inverted. In this study,
taking GCL_FCS_layer as an example, the range of fragmentation value for Entropy in
the three scenarios is not very extensive and remains at a low level (Figure 3a), indicating
that the results well verified the above mechanism, while the fragmentation value for
Contagion is particularly high in scenario A (Figure 3b). In short, Entropy is suitable for
input data with similar proportions of foreground and background and cannot reflect
the difference between different urban gradients significantly when the proportion of
foreground and background is far apart; the calculation on Contagion only considers the
foreground, which is not applicable in the case where the proportion of foreground and
background is relatively large. Compared with the former two indices, Hypsometry has
better stability and is minimally affected by the input spatial resolution (Figure 3c). The
mechanism for NLHC was found that, for foreground coverage below 50%, there was
a positively correlated relationship between foreground coverage and the NLHC-based
fragmentation index and vice versa [54]. We believe that the Hypsometry index combines
duality and normalization to neutralize and generalize the fragmentation value, so that the
fragmentation values of layers of different spatial resolutions are similar, which includes
so-called lower sensitivity and higher stability. Therefore, we argue that if the data source is
limited in the fineness of spatial resolution, the overall hypsometry index is a considerable
choice for evaluating habitat landscape. Although this study shows that the Hypsometry
index is more stable towards changing spatial resolution, as long as the basic conditions
and planning requirements of the different study areas are clarified, these three indices can
be properly applied according to the situation.
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This research provided detailed information due to exploring the changes in the MSPA
element proportion across urban gradient scenarios rather than analyzing single spatial
resolution over a study region [31,61]. Standard deviation was employed to describe the
MSPA elements proportion fluctuation in each spatial resolution. The foreground and most
MSPA landscape elements showed a significant downward trend with increasing distance
from the downtown area. This pattern indicated that the farther from the downtown area,
the less sensitive the MSPA element proportion is relative to spatial resolution. For example,
the layers of different spatial resolutions showed little difference in the landscape element
proportion in a contiguous forest at urban periphery; in terms of the downtown area,
there existed obvious differences because high spatial resolution layers are more robust
for capturing fine information. This finding suggests two potential directions: (1) Higher
landscape heterogeneity may result in the selection of high spatial resolution input layers;
(2) if the study area has a significant urban landscape gradient, multi-scale layers can be
adopted in lieu of single spatial resolution.

Connectivity indices indicates the ecological endowment of habitat patches and pro-
vide scientific guidance for the construction of ecological networks in the future. Although
the above-mentioned conclusions tended to choose higher spatial resolution maps, they
may not be fully applicable in the analysis of connectivity. First, in a large number of
contiguous forests around the city, Perforation may increase as the spatial resolution in-
creases, so PC may decrease as the spatial resolution increases, which may result in an
overestimation towards certain planning and management scale. Then, the performance
of OBIA_layer’s on dPCs of the Bridges is more accurate, which play a more important
role than Cores, especially in scenario A; with the GLC_FCS_layer, the opposite result was
obtained, and Cores were not so small and were more important for connectivity, especially
in scenario C. The observed finding implies that if planners or researchers are constructing
ecological networks based on connectivity analysis, the study of the urban area should pay
more attention to the expression of details on the map. Thus, fine spatial resolution maps
are an appropriate choice. If the study area is focused on the urban periphery, with high
habitat coverage and low fragmentation, then the medium spatial resolution is a better
choice, which can avoid overestimation and improve computing efficiency.

In general, the UGS landscape patterns of different countries are also quite different.
For example, if maps with 30 m resolution is are used for monitoring the “pocket parks” in
China [62,63], the results could differ greatly from the actual situation, as some parks may
not big enough to be identified according to the given grain size; however, such resolution
could be sufficient for analysis in some European cities for large and contiguous UGS
patches [64]. It is worth noting that in the MSPA results, the Bridge, essential for biologi-
cal migration and landscape connectivity, is absent in the lower spatial resolution layer,
GLC_FCS_layer, but exists in higher spatial resolution layers, Forest_layer and OBIA_layer;
the Core, representing ecological sources of importance for protecting biodiversity, was
identified in all maps. This means that Core and Bridge are necessarily discussed separately,
because they differ in the connotation of landscape functions when describing connectivity,
and their sensitivities to spatial resolution are also different. Integrated descriptions can
easily neutralize many details.

4.2. Insights of Data Sources and Methods in Urban Practice

The selection of the optimal spatial resolution depends upon the research or man-
agement objectives and the environmental configuration [65]. In the face of a highly
heterogeneous urban environment, refined planning policies and management are essen-
tial. In general, the spatial resolutions may be larger than many of the UGS patches under
the urban context [66]. Smaller patches of urban vegetation are often misclassified and
underestimated because of mixed pixels from remote sensing products derived from low
and medium spatial resolution data [67]. However, previous works may be limited by
a series of subjective or objective reasons that choose input maps with improper spatial
resolutions to evaluate urban habitat conservation status: (1) neglecting the analysis of the
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spatial grain effect of input UGS cover maps only to obtain results quickly and roughly;
and (2) the limitations of the access to data source acquirement resulting in low spatial
resolution.

Remote sensing data enable systematic mapping of landscape patterns of UGSs over a
range of spatial scales, including local, regional and global scales [68]. While medium spa-
tial resolution images such as Landsat data are very useful for monitoring broader patterns
of vegetation fragmentation in urban areas, they may fail to capture fine-grained change
patterns [69]. A number of studies demonstrated significant difference in quantitative
information of landscape pattern indices derived from medium spatial resolution images
in comparison with those from high spatial resolution data [70,71]. Just as the results in
this study, the evaluation based on the OBIA_layer is the most accurate. The foreground
proportion and the number of elements of Forest_layer and GLC_FCS_layer are both less
than those of OBIA_layer, and this phenomenon is most prominent in the downtown area.
Compared to the OBIA_layer, the spatial resolution of the remote sensing data deriving
GLC_FCS_layer is low, and the classification accuracy is not high; the Forest_layer is precise
enough, but it takes time and resources to conduct field work in the early stage, and the
main objects are woody plants. On the contrary, the OBIA_layer is derived from high
spatial resolution remote sensing images, which is closer to the real ground cover and can
be compiled in the office. The main disadvantages of this layer are as follows: knowledge
of the image processing software, being large and cumbersome to store, manipulate and
process, and high costs [72]. Therefore, data fusion and merging of medium and high
remote sensing data could be cost effective in mapping large cities and urban areas [73].

Additionally, a research or management project should take into account the efficiency
and feasibility of the methods. The MSPA is a highly efficient method that provides accu-
rate landscape spatial configurations. MSPA is not only useful for forestry applications
but this technique can also be applied to other fields [22,74], such as urban green infras-
tructure [9,32,61], water networks [23], and farmland [75]. This study takes advantage of
MSPA and focuses on UGSs, where the scale issue may be magnified under urban context
for its particular heterogeneity and numerous small patches.

4.3. Limitations and Future Prospects

Considering the limitation of data acquisition, this study only discussed three spatial
resolution. Future studies should apply more maps extracted from remote sensing data
(e.g., GF-1(2 m), SPOT 5 (2.5 m/5 m), etc.) in order to obtain finer spatial resolution
intervals, which can be more convincing for the exploration of laws. In addition, since this
study only considered the spatial grain effect and controlled the scale variable of “extent”,
multi-scaled research based on the direction of “extent” can also be carried out in the future.
For example, landscape variations can be detected from a metropolitan scale to the city
scale. Furthermore, this article mainly described the spatial scale, and future research can
introduce the time dimension in order to explore the differences in the results of dynamic
changes in landscape patterns due to the variation in resolution.

5. Conclusions

The spatial resolution of UGS cover maps influences the assessment of urban habitat
conservation status. Such differences are critical for decision making in UGS planning and
management. Therefore, this study systematically and comprehensively examined the
spatial grain effects of UGS cover maps with different spatial resolutions for measuring ur-
ban habitat fragmentation and connectivity, comparing the landscape patterns in different
urban gradient scenarios. By combining the MSPA and a series of landscape indices, key
conclusions can be conducted: (1) The farther the downtown area, the lower the sensitivity
of landscape element proportion relative to spatial resolution; (2) among the three fragmen-
tation indices, the overall hypsometry index is less sensitive to spatial resolution, which
can be recommended as an alternative index for evaluating the fragmentation of urban
habitats if the high spatial resolution imagery is limited; (3) when assessing connectivity,
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high spatial resolution maps are suitable for focusing on highly heterogeneous urban areas,
and medium spatial resolution is more suitable for focusing on urban periphery with large
habitat patches and low fragmentation.

Revelations have been excavated from this study that the spatial grain effect is quite
different among urban gradients. Different index selection will also result in different
habitat assessment results. Compared to a simple calculation of an overall index, the
combination of high spatial resolution UGS cover maps and MSPA is much more workable
for analysis. In addition, remote sensing techniques and OBIA can provide cost-effective
approach for supporting high spatial resolution data source input. The results based on
this layer are more accurate, reproducible, and consistent, allowing comparisons over time.
Our findings demonstrate that UGS practice should strike a balance between objectives
and selecting appropriate spatial resolution to obtain reliable outcomes.
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