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Abstract: Andean forests are home to a strikingly high diversity of plants, making it difficult to
understand the main drivers of species assembly. Trait-based approaches, however, help overcome
some challenges associated with high taxonomic complexity, providing insights into the main drivers
of species coexistence. Here, we evaluated the roles of climate, soil fertility, and symbiotic root
associations on shaping the assembly of six plant functional traits (leaf area, specific leaf area, dry
leaf matter content, leaf thickness, leaf toughness, and wood density) along an elevational gradient in
the species-rich northwestern Andean forests of Colombia. The two main axes of the correspondence
RLQ analysis explained 95.75% of the variability. The first axis was associated with the leaf economic
spectrum, while the second axis with the tradeoff between growth and survival. Furthermore, the
fourth corner method showed that both regional (climatic variables) and local factors (soil fertility,
symbiotic root associations, and light distribution) played a key role in determining plant trait
assembly. In summary, our study emphasizes the importance of considering both individual size and
local factors to better understand drivers of plant trait assembly along environmental gradients.

Keywords: functional traits; environmental drivers; mycorrhizas; fourth corner; RLQ; Andean forests

1. Introduction

Andean forests represent the greatest hotspot of diversity on Earth [1,2], as well as
one of the regions most threatened by deforestation and climate change [3–6]. To assure
effective forest conservation in this endangered ecosystem, an improved understanding of
the mechanisms determining species assembly along elevational gradients is needed [7].
One meaningful approach, which has helped to identify the underlying mechanisms
shaping forest structure and function along environmental gradients, is the use of functional
traits [8–10]. In particular, functional traits can circumvent challenges associated with high
taxonomic complexity, such as is present in tropical Andean forests, thereby shedding new
insights into the main drivers of species coexistence [1,11].

Leaf traits have been previously used to identify plant adaptation across the functional
economic spectrum along elevational gradients [12–16]. Along elevational gradients, a
handful of studies conducted in tropical forests have found that species at lower elevations
tend to have acquisitive characteristics mainly due to greater temperature as well as higher
availability of light and nutrients [12,15,17]. On the contrary, species at high elevation tend
to have conservative characteristics due to constraints in resources availability [12,14,15,17].
Other factors, such as vapor pressure deficit and solar radiation, are also known to be
important drivers of leaf trait variation among plant communities [18,19].
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Additionally, wood-specific gravity (g cm−3), hereafter called wood density, has
shown to be an efficient trait to characterize the tradeoff between hydraulic safety and effi-
ciency, which determines plant resistance to embolisms [20–23]. This trait has also shown
to be a good proxy for the life history of tropical tree species [24,25]. In general, acquisitive
species have lower wood densities, due to lower investment in tissue construction and
hydraulic safety, while conservative species have high wood densities to protect from
hydraulic or biomechanical damage [20,26–31].

The functional composition of tropical forests also changes across strata due to a
systematic reduction in light availability from canopy to understory [32,33]. For example,
in the presence of low light availability, plant species favor conservative water and nu-
trient use and high light capture [34,35]. In contrast, in the light-exposed canopy, plant
species typically have a positive correlation between photosynthetic rate and resource
allocation [35,36]. Another important yet often overlooked determinant of tree fitness and
community assembly at a local scale are symbiotic root associations (e.g., mycorrhizae
and nitrogen-fixing bacteria) [37]. These associations can enhance plant nutrient avail-
ability as well as modify plant responses to environmental constraints such as water or
light limitation [38–42].

In this study, we aimed to assess the main drivers of plant trait assembly along el-
evational gradients in the northwestern Andean forests of Colombia. We evaluated the
relative roles played by climate, soil fertility, and symbiotic root associations on shaping
the assembly of six functional traits (leaf area, specific leaf area, dry leaf matter content,
leaf thickness, leaf toughness, and wood density) in nine one-hectare plots along an el-
evational gradient spanning 2850 m. Furthermore, we evaluated the local effect caused
by differences in resource availability (e.g., light) between large trees (diameter at breast
height-DBH ≥ 10 cm) and small trees (1 ≤ DBH < 10 cm). We hypothesized that: (i) Func-
tional assembly gradually changes from acquisitive to conservative strategies along the
elevation gradient in the northwestern Andean forests of Colombia. (ii) Climate variability
overrides soil fertility and symbiotic root associations as a determinant of plant trait as-
sembly, and iii) plant trait assembly between large and small trees has a differential local
response to changes in light availability.

2. Materials and Methods
2.1. Study Area

The study area is located in the northwest region of Colombia between 5◦50′ and 7◦78′

North and 74◦61′ and 77◦67′ West. This region encompasses an elevational gradient highly
variable in terms of climate, and soils. We established nine permanent monitoring 1 ha
(100 m × 100 m) plots between 50 and 2900 m asl (Figure 1). The distance between plots
ranged from 22.1 to 271.7 km. In Colombia, the Andean region contains only approximately
20% of its original natural cover, primarily due to historical deforestation [43]. Plots were
randomly located within protected forest fragments without considering previous criteria in
terms of floristic composition, structure, climate, or soils. We did, however, ensure that the
location of plots was at least 100 m away from any forest edge (see supporting information).

2.2. Tree Species Abundance (L Matrix)

In each 1 ha plot (100 m × 100 m), all trees with a diameter at breast height
(DBH) ≥ 10 cm (hereafter referred to as large trees) were mapped and tagged. Like-
wise, shrubs and small trees with 1 cm ≤ DBH < 10 cm (hereafter referred to as small trees)
were tallied in a 0.16 ha subplot (40 m× 40 m) located near the center of each plot (Figure 1).
Voucher specimens were collected for each potentially unique species in each plot. We
collected vouchers in all cases in which there was any doubt as to whether an individual
plant was the same species as another individual that was already collected within the same
plot. Taxonomic identifications were made by comparing the specimens with herbarium
material and with the help of specialists in particular plant groups. All of the vouchers are
kept at the University of Antioquia’s Herbarium (HUA). The plants that were identified
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at the level of genus and family were classified as morphospecies based on differences
in vegetative character morphology. We used the function correctTaxo from BIOMASS R
package [44] to standardize the taxonomic name using the Taxonomic Name Resolution
Service (TNRS). We built a community matrix (n × p) with species abundance information,
where sites are in rows and species in columns (hereafter referred to as L matrix).
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2.3. Environmental Variables (R Matrix)

We used climatic and edaphic information to characterize each plot. Each environmen-
tal variable was included in an n × m matrix, where sites are in rows and environmental
values in columns (hereafter R matrix). Climatic data were downloaded from World-
clim version 2.1. (1970–2000) with a resolution of 30 arcsec–1 km (Table S1) [45]. The
climatic variables are mean annual temperature (MAT ◦C), temperature seasonality (T.s),
mean annual precipitation (PP mm), precipitation seasonality (P.s), solar radiation (Srad in
kJ m−2 day−1), wind speed (Wind in m s−1), vapor air pressure (VAP in Kpa), and vapor
pressure deficit (VPD in Kpa). VPD was calculated as the difference between saturated
vapor pressure and VAP. The soil variables assessed were pH, calcium (Ca in meq per
100 g soil), magnesium (Mg in meq per 100 g soil), potassium (K in meq per 100 g soil),
phosphorus (P in ppm), and organic matter (OM in %) (Table S2). We used the mean
concentration per plot calculated from 25 composite soil samples taken in each 20 × 20 m
quadrant in the 1 ha plot (Figure S1). Soil samples were analyzed in the Biogeochemical
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Analysis laboratory of the Department of Forest Sciences at the Universidad Nacional de
Colombia-Medellin.

To incorporate the potential contributions of symbiotic root association (SRA) in ex-
plaining plant trait assembly along the elevational gradient, individuals were assigned
an SRA status either as arbuscular mycorrhizal (AM), ectomycorrhizal fungi (EcM), or
nitrogen-fixing bacteria (Nfix) based on the genus- or family-level designations provided
in [46]. We chose these two taxonomic levels to increase the ability to provide SRA assign-
ments to the dataset; this choice is supported by the fact that SRA is largely conserved at
the genus and family level [47,48]. Here, we restricted matches for our genera and families
to only those present in North and South America in the compiled list of [46]. Any genus
or family lacking symbiotic root assignment was manually checked and, when possible,
assigned SRA based on primary literature searches. We used the above information and
L matrix (tree species abundance matrix) to calculate each SRA proportion as the ratio
between the abundance of individuals with EcM, AM, or Nfix associations and the total
number of individuals in each plot.

2.4. Trait Sampling (Q Matrix)

In the nine plots, we assessed six morphological traits: leaf area (LA), specific leaf area
(SLA), leaf dry matter content (LDMC), leaf thickness (LT), leaf toughness (Lth), and small
branches’ wood density (WD), following the methodology proposed in the “New handbook
for standardized measurement of plant functional traits worldwide” [49] (see supporting
information). LA is associated with plant fitness to compete for light and to regulate water
balance [50,51]. SLA and LDMC represent the tradeoff between resource acquisition, plant
productivity, and carbon storage [50,52]. LT and Lth are related to adaptations to harsh
climatic conditions and herbivory defenses [49,50]. Finally, WD primarily represents the
tradeoff between survival and growth [25] and hydraulic safety–efficiency [49,50].

We took samples of five mature leaves from five different individuals per plot. For rare
species, the samples were taken in as many individuals as possible, reaching a sampling
effort of 76% of the morphospecies registered in the study area. In total, we sampled
2765 individuals belonging to 1099 morphospecies. To assess WD, we took one sample
from one mature branch per individual. The size of the samples was around 2–3 cm in
diameter and 10 cm long. Since for some species within the plot, it was not possible to
measure directly the WD due to the small size of the individuals and the lack of mature
branches (approximately 18% of the individual sampled), the missing values were filled
hierarchically. First, the missing WD values per individual were assigned based on the
average value of the same species in other plots. If the value was not available at the species
level, the value by either genus or family was applied.

We selected light-exposed leaves when possible. However, we excluded those species
that had either small individuals with few leaves/branches or were out of reach due to
height. Fresh weight, leaf thickness (LT), and leaf toughness (LTh) were measured in situ,
while the other traits were measured in the lab. The data were organized in a p × s trait
matrix, where the rows have the s trait’s mean value per species and the columns the
p species (hereafter referred to as the Q matrix). To build this matrix, we used the species
with information on all six traits, which correspond to 1086 morphospecies. LA, SLA, LT,
and Lth were log-transformed to reduce the bias on trait distributions [53].

2.5. Data Analysis

We used the Pearson correlation coefficient to assess the correlation between the
community weighted mean (CWM) of each trait weighted by species abundances in each
plot, as well as the environmental variables and elevation. Elevation was used here as a
valid surrogate for temperature (r = −0.99).

To assess plant trait assembly in the northwestern Andean forests of Colombia, we
used correspondence analysis RLQ and fourth corner analysis [54–56]. The correspondence
analysis RLQ and fourth corner analysis are two alternative methods that integrate informa-
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tion stored in the R matrix (sites × environmental characteristics), L matrix (sites × species
abundance), and Q matrix (functional traits × species). The RLQ is a multivariate method
that reduces the variability of the three matrices (RLQ) by applying ordination proce-
dures [54]. The RLQ enables visualization of the structure of the three matrices by assigning
scores to species, samples, traits, and environmental variables along orthogonal axes. The
RLQ analysis was performed using the RLQ function. The fourth corner analysis is a
multivariate permutation test that relates the R, L, and Q matrices to generate a matrix with
association scores [55]. This analysis was run employing the fourthcorner function. Both
analyses were performed using the ade4 R package [57]. The significance of the associations
obtained from both methods, RLQ and fourth corner analysis, was tested by applying
the permutation procedure in the matrix L by samples and species separately and then
combining those outputs (model 6: a combination of the outputs of models 2 and 4) [58].
We used this model since it allows determination of the influence of both traits and environ-
mental variables in the community assembly, as well as fixes the level of type I error [59].
Furthermore, we performed a high number of permutations (49,999 times) to minimize the
occurrence probability of a multitesting issue and reporting of a false correlation caused by
the large number of environmental variables [59].

To assess our first research hypothesis, which aimed to differentiate and identify
functional groups along the elevational gradient, we applied the k-means method using
the kmeans function available in the stats R package [60] to the two first trait orthogonal
axes derived from the RLQ analysis. The optimal number of clusters was estimated
with the elbow method, which minimizes the within-cluster sums of squares using the
fviz_nbclust function available in factoextra R package [61]. We compared the distribution
of each functional group per trait with the RLQ structure to determine the position of
each functional group along the conservative–acquisitive leaf/wood-density economic
spectrum. Significant differences between functional groups (FG) were calculated using the
Tukey Honestly Significant (Tukey HSD) test. To assess the second hypothesis, we used the
fourth corner analysis to test for the correlation between each trait and climatic (n = 11) and
edaphic variable (n = 11). Individual correlation between each trait and each environmental
variable was tested by permuting the n sites and the p species, using model 6. Finally, to
test the third hypothesis, we repeated the same analysis (fourth corner) using the two tree
cutoff sizes: only large trees (DBH ≥ 10 cm) and only small trees (1 cm ≤ DBH < 10 cm).
Thus, the fourth corner analysis was employed to analyze the influence of the climatic and
edaphic variables on determining trait functional assembly according to tree size cutoff
(large and small trees).

3. Results
3.1. Patterns of Change with Elevation

Eight out of the 17 variables evaluated showed a significant correlation with elevation.
OM and AM were positively associated, while MAT, VAP, VPD, Srad, Mg, and Nfix
were negatively associated (Figure S2). Regarding functional traits, when we included
all individuals (DBH ≥ 1 cm), we found a negative relationship between the community
weight mean of LA/SLA with elevation, and a positive one with LT (Figure 2 and Table S3).
The significant trait–elevation relationship differed when the analysis was carried out
separately by tree cutoff size categories. Overall, LTh significantly increased only for large
trees, while LA decreased for small trees. LT was also statistically significant, in both large
and small trees (Figure 2).
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specific leaf area (mm2 mg−1), LDMC: leaf dry matter content (mg g−1), LT: thickness (mm), Lth: toughness (N mm), and
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3.2. Definition of Functional Groups

According to the k-means and elbow methods applied on the RLQ scores, we found
five main functional groups (FG) along the elevational gradient in northwestern Andean
forest (RLQ permutation test: model 2, p-value: 0.00106 and model 4, p-value: 0.00002)
(Figure 3 and Table 1). The first functional group (FG1; red) was characterized by low
WD/LDCM and intermediate SLA. Some representative species were Miconia acanthocoryne,
Ladenbergia macrocarpa, and Miconia micropetala. The second functional group (FG2; orange)
was characterized by high SLA, but thin soft leaves with low dry matter content in their
leaf and woody tissues, with respect to the mean values within the study area. Some
representative species were Allomaieta pancurana, Allomaieta hirsuta, and Piper urabaensis.
The species of this group were primarily located in low elevations with warm weather
and relatively fertile soils (Figure S3). The third functional group (FG3; yellow) was
characterized by high WD and LDMC, and was located along the entire elevation gradient,
being more representative of areas with high MAT, VPD, and high presence of N-fixing
root associations (Figure S3). Some representative species were Palicourea angustifolia,
Matayba arborescens, and Tapirira guianensis. FG3 fell within the acquisitive second half of
the leaf/wood-density economic spectrum. The fourth functional group (FG4; purple),
as well as FG 3, had high WD and LDMC, but this latter group had more conservative
foliar traits (higher LT / Lth and low SLA), and was primarily located between middle
and high elevations. FG4 belonged to the conservative extreme of the leaf/wood-density
economic spectrum. Some representative species were Matudaea colombiana, Billia rosea, and
Eschweilera antioquensis. Finally, the fifth functional group (FG5; blue) was characterized
by high LDMC, LT, and Lth. FG5 was located at high elevations and at the conservative
extreme of the leaf economic spectrum, but lower WD (Figure 3). Some representative
species were Miconia multiplinervia, Schefflera trianae, and Tibouchina lepidota.
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Overall, the five main functional groups were placed along the first two RLQ orthog-
onal axes, which explained most of the trait–environment relationships (total explained
inertia 95.76%; see Table 1). The first axis was associated with the leaf economic spectrum,
while the second one with the tradeoff between growth and survival (hereafter referred
as to growth). However, the wood density did not follow any systematic trend along
elevation (Figure 2).
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Table 1. RLQ Statistics. Each Ax represents the first five orthogonal axes with their respective Eigenvalues (Eig), projected inertia
(Eig %), and cumulative projected inertia (%) (Accumulative). The two first orthogonal axes decomposition with their covariance
(covar), R matrix variance (sdR), Q matrix variance (sdQ), and Q-R correlation (corr). Outputs of the permutation test, which alternative
hypothesis is “greater” and p-value is estimated as: (number of random values equal to or greater than the observed one + 1)/(number
of permutations + 1).

Total Inertia: 4,16

A × 1 A × 2 A × 3 A × 4 A × 5

Eig 3.23 0.75 0.13 0.03 0.01
Eig % 77.66 18.10 3.04 0.84 0.27

Acumulative 77.66 95.76 98.81 99.65 99.92

Eigenvalues Decomposition

Eig covar sdR sdQ corr

1 3.23 1.80 2.48 1.22 0.59
2 0.75 0.87 1.44 1.39 0.43

Permutation Test (Randtest)

Test Obs Std. Obs Alter p value

1 Model 2 4.16 3.98 greater 0.00006
2 Model 4 4.16 15.26 greater 0.00002

3.3. Traits–Environment Relationship for Different Cutoff Tree Sizes

When all individuals (DBH≥ 1 cm) were included, the fourth corner analysis revealed
that other explanatory variables different from climate, such as abiotic (e.g., soils) and
biotic factors (e.g., SRA), were also important drivers of plant trait assembly. Water
vapor (VAP) and vapor pressure deficit (VPD), positively influenced traits associated with
photosynthetic rates (SLA and LA) and resistance to embolism (WD). However, MAT, VAP,
and VPD were negatively associated with leaf thickness (LT). Other relevant variables
were symbiotic root associations with both mycorrhizal types as well as nitrogen-fixing
bacteria. The results showed that greater EcM association enhanced leaf toughness (Lth),
while increased AM association decreased SLA. An increase in N-fixing association was
also positively associated with WD and LDMC, but negatively with LT. Finally, there was a
negative correlation between soil Mg concentration and LT (Figure 4).

The fourth corner analysis on large (DBH≥ 10 cm) and small tree (1 cm ≤ DBH < 10 cm)
categories produced partially differentiated environment–trait correlations. The gradient
of MAT and VAP highlight the acquisitive/conservative leaf spectrum and a positive
relation with WD. However, increases in MAT differentiated between increases in SLA
for large trees and increases in LA for small trees. Large trees were influenced by other
climatic variables than MAT and VAP, such as Wind, Srad in SLA, and T.s in WD. An
increase in Mg was positively associated with SLA but negatively with LT in large trees.
On the contrary, an increase in OM, likely associated with a reduction in N availability,
was positively associated with an increase in LT in small trees. Finally, SLA was negatively
associated with AM association in large trees but with increased EcM association in small
trees. N-fixing association was mainly positively associated with LA and WD in small
trees (Figure 5a,b).
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(Ca, K, Mg, and P), OM (organic matter content), EcM (ectomycorrhizal fungi), AM (arbuscular
mycorrhizal fungi), and Nfix (Nitrogen-fixing bacteria).
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represent a positive correlation and blue a negative one (α ≤ 0.05). Traits: LA (leaf area), SLA (leaf
specific area), LDMC (leaf dry matter content), LT (leaf thickness), Lth (leaf toughness) and WD (wood
density). Environmental factors: MAT (mean annual temperature), MAP (mean annual precipitation),
T.s (temperature seasonality), P.s (precipitation seasonality), VAP (water vapor pressure), Wind (wind
speed), SRad (solar radiation), VPD (vapor pressure deficit). Edaphic variables: pH, soil nutrients
(Ca, K, Mg, and P), OM (organic matter content), EcM (ectomycorrhizal fungi), AM (arbuscular
mycorrhizal fungi), and Nfix (Nitrogen-fixing bacteria).

4. Discussion

In this study, we found environmental heterogeneity as a key driver of plant commu-
nity assembly in the wet tropical forests of the Northwest Andes. The climatic variation,
together with soil fertility and symbiotic root associations, shaped plant trait assembly
along the elevational gradient (Figure S2). Five main functional groups were distinguished
along the conservative/acquisitive spectrum. Furthermore, the environment–trait rela-
tionships partially differed according to plant size (small vs. large trees) as well as the
position across forest strata (understory vs. canopy, respectively). Taken together, our study
shows that a combination of local-scale factors, such as microclimatic variation, soil fertility,
and symbiotic root associations within forests, along with regional climatic heterogeneity,
drives plant adaptation and species coexistence along tropical elevational gradients.

4.1. Functional Groups

The distribution of functional groups shifted from an acquisitive strategy in lowlands,
characterized by thin leaves with low dry matter content per area (FG2), to a conservative
one in highlands, which was characterized by thick and resistant leaves with high dry mat-
ter content per area (FG4 and FG5) (Figure S3), in concordance with other studies [12,14,16].
Plant adaptation to environmental heterogeneity along the elevational gradient was mainly
associated with two functionally independent axes. On one hand, the first RLQ axis rep-
resented the aforementioned leaf economic spectrum, in which plants have developed
mechanisms of protection against physical/biological hazards by increasing LT and Lth at
lower temperature but increasing SLA and LA to improve their photosynthetic efficiency
in warmer lowlands [12,30,62,63]. On the other hand, the second RLQ axis represented a
growth tradeoff, which was positively correlated with LDMC and WD. The growth tradeoff
highlights the capability of plants to acquire and store resources, and thus, to accumulate
carbon [64–66]. Although the wood density did not show a clear pattern along elevation,
our results agree with other studies in tropical lowlands that have demonstrated a positive
correlation with low fertility [67]. However, our findings suggest a still unexplored relation-
ship between WD and the association with nitrogen-fixing bacteria, which could support
the positive correlation observed between WD and nitrogen accumulation in species with
low growth rates [68] in the understory.

4.2. Drivers of Plant Trait Assembly

In contradiction to our second hypothesis, we found that soil environmental hetero-
geneity and symbiotic root associations were both significant drivers of plant trait plasticity
and adaptation in wet tropical Andean forests along with climatic variation. The relevant
climatic variables in our study area were MAT, VAP, VPD, and Srad, which favored SLA
but reduced LT. A decrease in SLA but an increase in LT with the decline in temperature has
also been reported in similar studies on tropical elevational gradients [14,69], confirming
the expected tradeoff between increasing photosynthetic efficiency at low altitudes and an
increase in defenses against harsher climatic conditions in the highlands [62,63]. A decrease
in the evaporative demand at higher elevations may also regulate the foliar accumulation
of mobile nutrients [15], as was revealed in our study for N (here understood as an increase
in organic matter) and Mg. Although our study area did not present limitations due to
water since they are humid forests, our analysis highlighted that in environments with a
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high vapor pressure deficit (low altitudes), plants increased their WD, likely as a strategy
to avoid cavitation [70].

Soil fertility also played a major role in shaping trait assembly along elevational gra-
dients [71]. Both Mg and OM were negatively and positively correlated with elevation,
respectively. The negative correlation between magnesium in soils and leaf thickness em-
phasizes the importance of Mg concentration in leaves to enhance photosynthesis [72,73].
Alternatively, the negative correlation between leaf area and organic matter points to N lim-
itation in high/cold elevations [74–76], which has been associated with low decomposition
and soil mineralization rates [36,37,75]. Conversely, in our study area, phosphorus did not
correlate significantly with any functional trait, which indicates that, in this region, P was
not limiting for trait development [16]. This lack of correlation may be due to the high vari-
ability in P concentration along the elevation gradient (Figure S2 and Table S2) [77] or the
relative young age of the Andean soils that supposes a low limitation of phosphorus [74,77].

In the whole plant community (DBH ≥ 1 cm), our findings suggest contrasting roles
among symbiotic root associations in promoting plant growth. Nitrogen-fixing associations
were more prevalent at low altitudes, while mycorrhizal (AM and EcM) associations were
more abundant at high altitudes, with EcM associations largely constrained to higher
elevations (Figure S2). The positive relations between N-fix associations with WD and
LDMC suggests a primary role of this symbiosis in enhancing plant carbon assimilation in
areas that contain higher availability of nutrients. However, as shown below, this trend
was consistent only for small trees (Figure 5b), suggesting that N-fixing associations may
enhance carbon accumulation mainly in the earlier stages of development of shade-tolerant
species. In contrast, the higher abundance of AM and EcM associations in sites with lower
temperatures (Figure S2) was mainly associated with conservative traits (low SLA or high
Lth). This may reflect greater reliance of these plants on these symbiotic associations to
ensure sufficient nutrient acquisition under harsher environmental conditions [37,78–80].

4.3. Traits–Environment Relationship for Different Tree Size Cutoff

When we split the whole dataset into large (DBH ≥ 10 cm) and small trees
(1 cm ≤ DBH < 10 cm), our results showed only partial differences in the extent to which
the explanatory variables differentially determined plant trait assembly. MAT and VPD cor-
related positively with LA in small trees and SLA in large trees. Small trees need to increase
leaf area to increase light interception to out shade their neighbors [36]. Increases in specific
leaf area in large trees aim to enhance photosynthetic efficiency [51]. Only in large trees,
wind speed and solar radiation, which are promoters of boundary layer conductance [72],
were positively correlated with the SLA. Finally, temperature seasonality was significantly
associated with WD for large trees, while mean annual temperature was with small trees.
In large trees, a greater WD has been shown to be an effective strategy to resist droughts
and water shortage mainly triggered by the increase in temperature [67,81]. However, for
small trees, the increase in WD seems to respond to slow-growing shade-tolerant species
that tend to accumulate carbon [68].

Regarding soil fertility, K and Mg have been found to be associated with the harvest
of light and the photosynthetic efficiency of plants [63,72,73]. Mg had a more significant
influence on large trees (high SLA y low LT), while K influenced small trees, highlighting
the prevalence of carbon assimilation (high LDCM).

In conclusion, our study emphasizes the importance of considering small individuals
and local factors, such as soil fertility and symbiotic root associations, to better understand
the drivers of plant trait assembly along complex environmental gradients. Likewise, we
emphasize the utility of using leaf and woody traits to improve our understanding of the
main drivers of plant assembly in species-rich tropical forests along elevational gradients.
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