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Abstract: The frequency, duration, and magnitude of heatwaves and droughts are expected to
increase in a warming climate, which can have profound impacts on the environment, society, and
public health, and these may be severely affected specifically by compound droughts and heatwaves
(CDHWs). On the basis of daily maximum temperature data and the one-month standardized
precipitation evapotranspiration index (SPEI) from 1961 to 2018, the Gan River Basin (GRB) was
taken as a case here to construct CDHW identification indicators and quantify the population
exposure to CDHWs. We found that ERA5 reanalysis data performed well in overall simulating
temperature, precipitation, one-month SPEI, heatwaves, and CDHWs in the GRB from 1961 to 2018.
CDHWs during the period from 1997 to 2018 were slightly higher than that in 1961–1997. CDHWs
were more likely to occur in the southern parts of the basin due to the relatively high values of
drought–heatwave dependence indices. Atmospheric circulation analysis of the 2003 CDHW in the
GRB showed a relatively long-lasting anomalous high pressure and anticyclonic circulation system,
accompanied by the positive convective inhibition and surface net solar radiation anomalies. These
circulating background fields eventually led to the exceptional 2003 CDHW occurrence in the GRB.
The population exposure to CDHWs basically increased, especially for the moderate CDHWs in
ERA5. The change in total exposure was mainly due to climate change. Compared with the period
from 1989 to 1998, the contributions of the population change effect in 2009–2018 gradually increased
with the increase in the CDHW magnitude both in the observations and ERA5 reanalysis data.

Keywords: compound droughts and heatwaves; population exposure; ERA5; Gan River Basin; China

1. Introduction

A combination of climate extremes (e.g., low precipitation and high temperatures)
have received much attention due to their disproportionate and amplified impacts on the
ecosystems and societies across the world [1–8]. For example, the 2003 European heat-
waves, 2010 Russian heatwaves, 2013 Chinese heatwaves, and 2018 German heatwaves
were all accompanied by severe droughts, which caused a large number of casualties,
crop failure, wildfires, and infrastructural damages [9–12]. The special report by the
Intergovernmental Panel on Climate Change (IPCC) remarked that a combination of mul-
tiple climate events can be termed as a compound event [13], and recommended three
general definitions to describe it as such: (a) two or more extreme events occurring si-
multaneously or successively, (b) a combination of multiple extremes with underlying
conditions that amplify the impact of the individual extremes, and (c) a combination of
multiple events that are not extremes at their individual level but lead to an extreme
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event or impact when they combined. Subsequently, compound events were further di-
vided into four categories based on the weather/climate drivers and hazards/risks [2,5]:
(a) preconditioned events due to one or more hazards under particular pre-existing con-
ditions (e.g., floods may arise from a combination of extreme precipitation and “precon-
ditioned” saturated soils), (b) multivariate events occurring simultaneously in the same
region (e.g., concurrent droughts and heatwaves), (c) temporally compounding events, for
example, a succession of hazards (the same or different events) that affect a given region
(e.g., a flood followed by heatwaves), and (d) spatially compounding events occurring in
connected areas that are affected by the same or different hazards within a limited time
window (e.g., synchronous crop failures due to heatwaves and/or droughts). According
to the complexity of compound events, their eventual impacts in some cases inevitably
fall into more than one category due to the soft boundaries (i.e., flexibility of boundaries)
within the typology of compound events.

Compound droughts and heatwaves (CDHWs) are common natural disaster phenom-
ena considered compound events, and they have significant impacts on the environment,
social economy, and human health. High temperature lasts for a long time and is accom-
panied by a shortage of precipitation, which can induce the CDHW occurrence due to
the negative correlation between precipitation and temperature during summer in some
regions [3]. Droughts and heatwaves can intensify and expand via land–atmosphere feed-
backs [14]. Exploring the possible dependence of drought–heatwave events in different
regions is helpful to understand which areas have a high probability of CDHWs [3]. Re-
cently, the percentile threshold method was used to investigate CDHWs based on the
precipitation and temperature data [15–17]. The drought index (e.g., standardized precipi-
tation index and standardized precipitation evapotranspiration index) combined with the
daily maximum temperature data has been used to further identify CDHWs and for an
in-depth understanding of CDHWs [3,18–21]. Although there have been many studies
on the indices of droughts or heatwaves [22–26], the CDHW indices are few because the
definitions and dimensions of droughts and heatwaves are different. For the construction of
the CDHW index, the drought index and the heatwave index can be normalized separately
and then multiplied during the specific period [19]. Thus, exploring the changes in CDHWs
based on the severity (CDHW magnitude index) may prove to be useful for understanding
CDHW characteristics.

Reanalysis products are important datasets for estimating the hydroclimatic char-
acteristics, especially for the areas with sparse observation stations. ERA5 is the new
fifth-generation reanalysis dataset released by the European Centre for Medium Range
Weather Forecasts (ECMWF), which contains a large number of hydroclimatic variables
with a high spatio-temporal resolution. This dataset was established via the 4D-Var assimi-
lation method, which combines model data with observations from across the world into
a global dataset. As an upgraded version of ERA-Interim, ERA5 has a rigorous physical
process foundation and high quality with high spatio-temporal resolution for a long period,
and has been widely applied in hydrometeorological investigations and evaluations [27–33].
The ERA5 reanalysis dataset is divided into two parts by time span: 1950–1978 (preliminary
back extension) and from 1979 onwards (final release plus timely updates). At present,
there is a lack of evaluation of ERA5 in CDHWs, especially in humid subtropical basins.
Hence, evaluating the ability of ERA5 data for identifying CDHWs can allow scientific
measures to be taken to manage and handle compound events in a timely manner.

Heatwaves can cause heat stroke and can affect the elderly, infants, and persons with
pre-existing cardiovascular and respiratory conditions, and may further increase morbidity and
mortality rates [34–37]. If heatwaves occur during the drought period, then their destructive
power is greater than that of individual heatwaves on natural environments, society, economy,
and human health. For instance, strong heatwaves coincided with severe droughts in eastern
China during the summer of 2013, and caused severe damage to the local environment, society,
economy, and human health [11,38]. The damage was particularly severe in both eastern and
southern China, which are densely populated areas [11,39].
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Scenario population data (e.g., shared socioeconomic pathways) have been exam-
ined to explore the characteristics of population exposure to climate extremes [40], such
as extreme precipitation [41], heatwaves [36,42], and droughts [43,44]. Yet, research on
the exposure of the population to hydroclimatic extremes using long-term population
observation data is still relatively rare, especially for CDHWs. The population exposure to
climate extremes depends not only on climate change, but also on changes in the sizes and
distributions of human populations [42]. Analysis of the relative contributions of different
incorporated parameters (e.g., climate factor, population number, and the nonlinearity of
both factors) to changes in overall exposure can provide important information regarding
vulnerability to CDHW-related health problems.

In this study, we used the Gan River Basin (GRB) as a case to explore the characteristics
of population exposure to CDHWs. The primary goals of this study included (1) evaluating
the accuracy of ERA5 data in monitoring precipitation, temperature, heatwaves, droughts,
and CDHWs; (2) exploring the characteristics of CDHWs and drought–heatwave depen-
dence; (3) investigating population exposure to CDHWs, especially compound events
in different grades based on CDHW magnitudes; and (4) quantifying the contributions
of CDHW (climate change effect), population number (population change effect), and
the nonlinearity of the previous two factors (joint change effect) to the overall exposure
changes. The evaluation of population exposure to CDHWs was expected to provide a
workable basis for mitigating potential losses due to CDHWs in regions that share similar
climatic and socio-economic characteristics with the GRB.

2. Materials and Methods
2.1. Study Area

The GRB is located within the central and southern parts of the Poyang lake basin (the
largest freshwater lake in China), with an area of 80,948 km2 (approximately the size of
South Carolina in the U.S.), and is observed by the Waizhou hydrological station (outlet of
the GRB). The GRB represents the largest sub-basin both in area (51%) and runoff (50%)
of the Poyang lake basin. Mountains and foothills are most located in the southern parts
of the GRB and flat plain areas exist in the northern parts of the GRB. The GRB belongs
to a subtropical humid monsoon climate zone and has average annual precipitation of
1600.1 mm and an annual mean temperature of 18.2 ◦C [45]. The GRB mainly covers six
prefecture-level cities: Nanchang, Yichun, Xinyu, Pingxiang, Ji’an, and Ganzhou. The total
population of the GRB was approximately 27.87 million at the end of 2018. The GRB is
often affected by droughts and heatwaves in the summer months, and the number of these
two events is likely to increase in the future [46], which may have a great impact on the
natural environment, society, and economy.

2.2. Data

Meteorological observations included daily precipitation, maximum temperature
(Tmax), and mean temperature (Tmean) from 1961 to 2018. These observations were pro-
vided by the National Meteorological Information Centre of the China Meteorological
Administration (http://data.cma.cn/, accessed on 18 September 2021) and were subjected
to quality control and homogeneity assessments before release. To ensure the integrity
and continuity of the data series, a meteorological station was removed from the study
if the proportion of the missing values was more than 0.15% (i.e., 31 days) of the daily
values during 1961–2018. The missing value was interpolated using the average value of
10 neighboring stations on the same day. We ultimately selected 47 meteorological stations
(Figure 1) across the GRB spanning 1961–2018.

http://data.cma.cn/
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Figure 1. Location of 47 meteorological stations, one hydrological station (outlet), and 121 ERA5
grids in the GRB.

The ERA5 reanalysis datasets with 0.25◦ spatial resolution and hourly temporal
resolution were obtained from the fifth-generation ECMWF atmospheric reanalysis of
the global climate [47]. In order to be consistent with the year length of the observation
data, we selected the precipitation and temperature data from 1961 to 2018 in ERA5 for
evaluation. The number of ERA5 grids in the GRB is 121 grids (Figure 1). Because the
ERA5 are hourly datasets, we summed the 24 h of precipitation in a certain day as the
daily precipitation, and the monthly and annual precipitation could be calculated via a
similar approach. The maximum value of 24 h for a temperature value in a given day was
regarded as the Tmax of that day, and the mean value of 24 h for a temperature value in a
given day was regarded as the Tmean of that day.

We used ERA5 atmospheric reanalysis data including the 500 hPa geopotential height,
water vapor flux, convective inhibition, total cloud cover, and surface net solar radiation
to explore mechanisms of the 2003 CDHW. These atmospheric reanalysis data in ERA5
during 1961–2018 were also of 0.25◦ spatial resolution and hourly temporal resolution.

The GRB resident population data were obtained from China’s economic and social
big data research platform (http://data.cnki.net/, accessed on 18 September 2021). The
GRB consists of six prefecture-level cities (i.e., Nanchang, Yichun, Xinyu, Pingxiang, Ji’an,
and Ganzhou) in Jiangxi province. Because population statistics are generally based on
administrative regions, the administrative boundaries of the prefecture-level cities have

http://data.cnki.net/
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been relatively stable in the past three decades, so we used the total population of each
prefecture-level city as the statistical unit in the GRB from 1988 to 2018 for analysis.

2.3. Evaluation Metrics

To quantitatively compare the ERA5 reanalysis data against ground observations, five
statistical indices including mean bias (Bias), relative bias (RB), the correlation coefficient
(r), root mean square error (RMSE), and the distance between the indices of simulation
and observation (DISO) [48,49] were employed in this study. These evaluation metrics are
expressed as follows:

Bias =
1
n

n

∑
i=1

(Si −Oi) (1)

RB =
∑n

i=1(Si −Oi)

∑n
i=1 Oi

× 100% (2)

r = ∑n
i=1(Oi −O)·(Si − S)√

∑n
i=1
(
Oi −O

)2·
√

∑n
i=1
(
Si − S

)2
(3)

RMSE =

√
1
n

n

∑
i=1

(Si −Oi)
2 (4)

DISO =

√
(r− 1)2 + NB2 + NRMSE2 (5)

where Si and Oi are the simulations (i.e., ERA5) and observations at each time step i
(e.g., daily and monthly temporal scales), n is the number of time steps, S and O are the
mean values of simulations and observations, NB is Bias divided by the O value, and
NRMSE is RMSE divided by the O value. The closer Bias, RB, and RMSE are to zero, the
closer the simulations are to the observations. DISO is a comprehensive index that combines
r, Bias, and RMSE according to the distance between the simulations and observations in
a three-dimensional space coordinate system [49]. When the DISO value is equal to zero,
the simulated value is equivalent to the observed value. It is worth noting that DISO is
invalid when O equals zero [48], and this is because a small difference in O can cause a
large difference in DISO when O is very close to zero.

2.4. Drought Definition

In this study, we defined “meteorological drought” as an event that leads to a 1-month
SPEI <−1 (approximately the 18th percentile of SPEI values in the GRB), which is similar
to the meteorological drought criteria defined in previous studies [4,6,21]. The calculation
of SPEI is mainly based on monthly precipitation and Tmean, and a detailed calculation of
the SPEI can be found in previous studies [6,26]. In this study, the Thornthwaite method
was used to calculate potential evapotranspiration (PET) because this method is feasible
and effective based on relatively few meteorological variables. The Thornthwaite method
has already been widely applied in SPEI calculations [6,21,26,50,51].

We defined the drought magnitude as the absolute value of the difference between the
drought indicator (DI, i.e., SPEI < –1) and the threshold (SPEI = –1) during a specific month
(denoted as |∆DI|). In order to facilitate the construction of the subsequent compound
event magnitude index, we respectively normalized the drought and heatwave magnitude
indices. The normalization formula is calculated as follows:

Ri = 0.9× xi − xmin
xmax − xmin

+ 0.1 (6)

where Ri and xi are the ith normalized result and input data, and xmin and xmax are the
minimum and maximum values of the input data series.

The normalization formula (Equation (6)) was used to normalize |∆DI| to [0.1 1]
(denoted as R|∆DI|). R|∆DI| was defined as the final drought magnitude index (DMI) in
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this study. If the minimum R|∆DI| is equal to 0, the drought event with a small magnitude
may be classified as 0, which is inappropriately regarded as a drought-free phenomenon [6].

2.5. Heatwave Definition

A hot event is generally defined as a Tmax in more than the 90th or 95th percentile
during the specific period [21,22,36]. Considering the climate characteristics of the GRB,
a hot event (hot day) here was defined by the daily Tmax > 90th percentile of the local
daily climatology from 1961 to 2018. A heatwave event (one event) was identified when
a hot event lasted for at least three consecutive days at a given station. The intensity of a
hot event (day) was defined as the temperature deviations exceeding the 90th percentile
thresholds (denoted as |∆T|=|Tmax−Tmax90th|). Then, the |∆T| was also normalized
with [0.1 1] via Equation (6) (denoted as R|∆T|). The heatwave magnitude index (HWMI)
can be written as follows:

HWMI =
n

∑
i=1

R|∆Ti| (7)

where R|∆Ti| denotes the magnitude of ith heatwave day and n ≥ 3.

2.6. Compound Drought and Heatwave Definition

CDHW was defined in this study as “simultaneous”, meeting the definition of a
meteorological drought and heatwave for the same month at a given station. When one or
more heatwaves occurred during a meteorological drought period (i.e., one month), we
counted it as a compound event. Heatwaves occurring across monthly boundaries were
allocated to the month in which they started [3]. We established the compound drought
and heatwave magnitude index (CDHMI), which can be compared across regions and over
time by incorporating both the magnitude (intensity per unit time) and the duration of the
compound events. For a given station, CDHMI can be calculated as follows:

CDHMI = (
Dn

∑
i=1

R|∆Ti|)· R|∆DIn| (8)

where Dn is the number of heatwave days for the nth month.
Dn
∑

i=1
R|∆Ti| is the HWMI for

the nth month and R|∆DIn| is the DMI for the nth month. The CDHMI is computed for
a single specific month (e.g., June) and the annual CDHMI reported here is the sum of
monthly CDHMI values during the specific year.

2.7. D-H Dependence Index

The drought–heatwave (D-H) dependence index reflects the degree of dependence
between droughts and heatwaves [3]. This index was constructed as the ratio of monthly
heatwave frequency (occurrence number), duration (days), and magnitude for the drought
months to the corresponding statistics for all months in the record, respectively denoted as
DHF, DHD, and DHM:

DHF =
HFD/DM
HF/TM

(9)

DHD =
HDD/DM
HD/TM

(10)

DHM =
HMD/DM
HM/TM

(11)

where HFD (HF), HDD (HD), and HMD (HM) respectively denote the heatwave frequency,
duration, and magnitude during drought (all) months in a specific period (e.g., 1961–2018);
DM and TM represent the number of drought months and all months in the record, re-
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spectively. The larger the value of the D-H dependence index, the stronger the dependence
between droughts and heatwaves.

2.8. Contribution Population Exposure to CDHWs

The population exposure index is measured by the number of citizens exposed to
the relevant indicators (i.e., CDHW frequency and CDHMI) of the compound event,
that is, the annual indices of compound events multiplied by the corresponding annual
number of people exposed to that outcome [36,42]. Therefore, the measurement units
of population exposure to CDHW frequency and CDHMI are person-events and person-
CDHMI, respectively. The population data extend from 1988 to 2018, so the GRB population
exposure was measured for 1988–2018 as well.

We applied the rate of change to analyze the changes in magnitude for exposure:

ERate =
Ej − Ei

Ei
× 100% (12)

where ERate denotes the change rate of the exposure. Ei and Ej represent the exposure in
the period i and j, respectively.

According to the relative contribution analysis method [41,42], we assessed the contri-
butions of the compound event, population number, and the nonlinearity of the previous
two factors (joint change effect) to the overall exposure changes. The decomposition for
the exposure change can be expressed as:

∆E = Cj × Pj − Ci × Pi

= (Ci + ∆C)× (Pi + ∆P)− Ci × Pi

= Ci × Pi + ∆C× Pi + Ci × ∆P + ∆C× ∆P− Ci × Pi

= ∆C× Pi + Ci × ∆P + ∆C× ∆P

(13)

where ∆E denotes the change in exposure. Ci and Pi represent the compound event index
(i.e., CDHW frequency or CDHMI) and population number in the period i, respectively.
Cj and Pj represent the compound event index and population number in the period j,
respectively. ∆C and ∆P denote the changes in compound event index and population
number from period i to period j, respectively. The final form of Equation (13) consists of
three terms that represent the different contributions of these factors to the overall exposure
changes. The first term, ∆C× Pi, denotes the contribution from the compound event index
to the overall exposure changes under the condition that the population is unchanged
(i.e., climate change effect). The second term, Ci ×∆P, represents the contribution from the
population change (i.e., population change effect). The third term, ∆C× ∆P, is a nonlinear
term (i.e., joint change effect or interaction effect) associated with changes in both the
compound event index and population number of the exposure.

The rate of contribution of each factor can be written as follows:

CRC =
|∆C× Pi|

|∆C× Pi|+|Ci × ∆P|+|∆C× ∆P| × 100% (14)

CRP =
|Ci × ∆P|

|∆C× Pi|+|Ci × ∆P|+|∆C× ∆P| × 100% (15)

CRJ =
|∆C× ∆P|

|∆C× Pi|+|Ci × ∆P|+|∆C× ∆P| × 100% (16)

where CRC, CRP, and CRJ denote the contributions of climate change effect, population
change effect, and joint change effect, respectively.
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3. Results
3.1. Individual Droughts and Heatwaves

Before evaluating ERA5 to simulate CDHWs, we need to evaluate precipitation and
temperature in ERA5. On the daily scale, the precipitation in ERA5 can reasonably reflect
the characteristics of the observed values, with high r (0.767) and low RB (14.18%, repre-
senting precipitation overestimation by 14.18%), Bias (0.63 mm), RMSE (5.28 mm), and
DISO (1.223) values (Figure 2a). The simulation effect of ERA5 precipitation on the monthly
scale was obviously improved compared to that on the daily scale, with r as high as 0.956
and DISO as low as 0.329 (Figure 2b).
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The daily-scale simulation effect of ERA5 Tmean performed better than that of the
precipitation (Figure 2c), with higher r (0.994) and lower RB (0.95%), Bias (0.174 °C), RMSE
(0.92 °C), and DISO (0.051). The simulation effect of the monthly-scale Tmean was slightly
better than that of the daily scale (Figure 2d). The simulation effects of ERA5 Tmax on the
daily (Figure 2e) and monthly (Figure 2f) scales were similar to those of the Tmean, but were
slightly underestimated. In general, ERA5 performed well in precipitation and temperature
in the GRB.

The one-month SPEI value fluctuated greatly above and below the zero line (Figure 3a),
which reflects the characteristics of the dry/wet conditions at short timescales. According
to the statistical evaluation results of r (0.927), Bias (0), RB (0.63%), and RMSE (0.333), ERA5
effectively represented the characteristics of the one-month SPEI in the GRB. As shown
in Figure 3b, a value of r as high as 0.865 indicates that ERA5 better reflected the annual
variations of DMI. Bias and RB were as low as –0.039 and –5.37%, respectively, indicating
that ERA5 overall slightly underestimated the DMI. The DMI simulation errors of ERA5
in 1963, 1971, and 1972 were relatively high. Overall, the DMI simulation performance of
ERA5 during 1997–2018 was better than that of 1961–1997. The average value of the DMI
in 1997–2018 was slightly higher than that in 1961–1997 both in the observations and ERA5,
which indicates that the severity of drought had increased in the GRB.
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Figure 3. Temporal variations of (a) the 1-month SPEI and (b) the DMI per-year averaged GRB from
1961 to 2018.

Except in 1965 and 1966, the annual variations of heatwave frequency in the obser-
vations (Figure 4a) were relatively consistent with those in the ERA5 (r of 0.854, RB of
−0.02%, and DISO of 0.227). The entire basin showed a significant upward trend at a rate
of 0.25 (0.27 in ERA5) events/decade from 1961 to 2018. The heatwave frequency showed a
downward trend from 1961 to 1997 and then a reversal (upward) trend from 1997 to 2018.
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The increasing rates of heatwave frequency (1.55 events/decade in the observation and
1.28 events/decade in the ERA5) during 1997–2018 were much greater than the decreasing
rates before the turning point in 1997. The average value of the heatwave frequency during
1997–2018 (5.214 events/year in the observations and 5.137 events/year in the ERA5) was
significantly higher than during 1961–1997 (4.122 events/year in the observations and 4.182
events/year in the ERA5).
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As shown in Figure 4b, the annual variations of heatwave days were similar to those
of the frequency from 1961 to 2018. Thus, ERA5 effectively simulated the changes in the
annual heatwave days, with an r-value of up to 0.895, an RB of 3.88%, and a DISO of 0.219.
There was also a clear turning point around 1997 for heatwave days, i.e., a downward
trend (–4.39 days/decade in the observations and –3.12 days/decade in the ERA5) from
1961 to 1997, and a significant upward trend (9.61 days/decade in the observations and
7.88 days/decade in the ERA5) from 1997 to 2018. The average number of heatwave
days during 1997–2018 was around seven days longer than that during 1961–1997 both
in the observations and in ERA5, indicating a robust increase in the heatwave days in the
GRB. The changes in the annual HWMI (Figure 4c) were similar to those of the heatwave
frequency and heatwave days, with a decreasing trend (–0.13/decade in the observations
and –0.08/decade in the ERA5) from 1961 to 1997 and an increasing trend (0.31/decade in
the observations and 0.23/decade in the ERA5) from 1997 to 2018. Both in the observations
and in ERA5, the average value of the HWMI was significantly higher from 1997 to 2018
than that from 1961 to 1997, indicating that the severity of the heatwave had increased in
the GRB.

3.2. CDHW Characteristics

As shown in Figure 5a, ERA5 accurately reflected the annual variability of CDHW
in the GRB (r = 0.834, RB = –0.73%, and DISO = 0.527). The annual number of CDHW
did not explicitly exhibit significant linear trends in the GRB from 1961 to 2018, but
presented downward and upward trends during 1961–1997 and 1997–2018 (especially in
ERA5), respectively. The annual mean number of CDHWs of the latter period (1997–2018)
was larger than that of the earlier period (1961–1997), especially in ERA5, indicating
more CDHWs in 1997–2018 relative to 1961–1997. There were more CDHWs both in the
observations and ERA5 during the years 1962, 1963, 1964, 1991, 2003, 2007, 2009, and
2018. The variations of the annual CDHMI were similar to those of the CDHW frequencies,
with average values of the CDHMI during 1997–2018 higher than those during 1961–1997
(Figure 5b). The highest value of the CDHMI existed in 2003 during 1961–2018.

CDHW frequency was 32–36 events in total from 1961 to 2018 (Figure 6a,b). Both in the
observations and in ERA5, there were relatively high frequencies throughout the southern
parts of the GRB. The mean differences of the CDHW frequency both in the observations
and in ERA5 during 1997–2018 and 1961–1997 indicate that the values in the northern and
southern regions were relatively higher than in the central regions (Figure 6c,d). This implies
that there were increases in CDHWs in the northern and southern parts of the basin. Unlike the
mean frequency differences in the observations, the mean frequency differences in ERA5 were
basically positive in the entire basin, and approximately a quarter of the basin area showed
substantial increases during 1997–2018 relative to 1961–1997. This indicates that the increasing
trends of CDHWs in ERA5 were slightly greater than the observed value.

Figure 7 shows the spatial characteristics of D-H dependence. The higher the value of
the D-H dependence index, the stronger the dependence relationship between droughts
and heatwaves. Both in the observations and in ERA5, all the D-H dependence indices
(DHF, DHD, and DHM) showed higher values of the spatial patterns in the southern parts
of the basin than those in the northern parts of the basin, indicating that the interaction
between the droughts and heatwaves in the southern part of the basin was stronger. The
spatial characteristics of the three D-H dependence indices were similar but the overall
order of the specific value was DHF < DHD < DHM, which may have been caused by
the frequency (number), duration, and magnitude of the event. The spatial characteristic
of each D-H dependence index was roughly similar to the spatial characteristics of the
CDHW frequency, indicating that higher values of the D-H dependence indices are prone
to producing more compound events.
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We extracted the CDHMI values of all CDHWs for all the stations/grids in the GRB
from 1961 to 2018 to draw probability density curves via an empirical cumulative density
function (CDF). As shown in Figure 8, the CDF curves in the observations and ERA5
basically coincided. The cumulative probabilities corresponding to the CDHMI values
of 0.11, 0.22, and 0.4 were 0.5, 0.75, and 0.9, respectively, and represented conditions
of half, most, and almost all of the compound events, respectively. The occurrences
of moderate, severe, extreme, and exceptional CDHWs correspond to probabilities of
50–100%, 25–50%, 10–25%, and <10%, respectively. Thus, we divided the CDHWs into four
magnitude grades: moderate (0 < CDHMI ≤ 0.11), severe (0.11 < CDHMI ≤ 0.22), extreme
(0.22 < CDHMI ≤ 0.4), and exceptional (CDHMI > 0.4).
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In order to further explore the relationship between droughts and heatwaves, we
analyzed their characteristics under different grades (magnitudes) of CDHWs (Figure 9). In
the case of moderate CDHWs, the SPEI value was around –1.3 (Figure 9a) and the number
of heatwave days was around 8 days (Figure 9b) in the observations and ERA5. When the
SPEI value was as low as –1.5 (Figure 9a), the number of heatwave days increased to about
16 days (Figure 9b) under severe CDHWs. Under extreme CDHW conditions, the SPEI
value was further decreased to about –1.7 (Figure 9a) and the heatwave days increased to
about 21 days (Figure 9b).

Under moderate, severe, and extreme CDHWs, the SPEI values and the heatwave
days (box range and median) in the observations were basically the same as in ERA5.
Under exceptional CDHW conditions, the SPEI values (Figure 9a) in ERA5 (the box range
is –2 to –2.3) were lower than the observed values (the box range is –1.8 to –2.1), whereas
the heatwave days (Figure 9b) in ERA5 were only two days higher than in the observations
(the median value was around 30 days). As the CDHMI increased, the SPEI value gradually
decreased and the number of heatwave days gradually increased, indicating that the large
CDHMI could be attributed to the enhanced interaction between droughts (lower SPEI) and
heatwaves (longer duration) during the specific periods. In general, the drought severities
and the number of the heatwave days reflected by ERA5 were slightly greater than those
in the observations.

3.3. Population Exposure to CDHWs

The population of the six prefecture-level cities in the GRB showed significant in-
creasing trends (Figure 10), with a growth rate of 0.614 million/decade in Nanchang,
0.328 million/decade in Yichun, 0.074 million/decade in Xinyu, 0.107 million/decade
in Pingxiang, 0.214 million/decade in Ji’an, and 0.547 million/decade in Ganzhou. The
population of Ganzhou, Nanchang, and Yichun cities all exceeded 5 million at the end of
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2018, especially Ganzhou city (with a population of 8.68 million). From the perspective of
population and administrative area, Nanchang city had the highest population density (as
well as the highest growth rate) among these cities in the GRB.
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We investigated the annual variability of the overall population exposure to the CDHW
frequency and CDHMI in the GRB. Although the CDHW frequency exposure in ERA5 was
slightly overestimated, the annual changes of frequency exposure in ERA5 were basically
similar to the observations (Figure 11a). The annual CDHW frequency exposure showed
an increasing trend both in the observations and in ERA5 in the GRB from 1988 to 2018. For
example, the CDHW frequency exposure in the observations (ERA5) increased by about
1.67-fold (2.2-fold) from 18 (18) million person-days in 1988 to 30 (40) million person-days
in 2018, indicating a robust increase in the CDHW frequency exposure in the GRB during
1988–2018. The increasing rate of CDHW frequency exposure in ERA5 (7.03 million person-
events/decade) was approximately double than that in the observations (3.18 million
person-events/decade). Annual variation of the CDHMI exposure in ERA5 was consistent
with the observations (Figure 11b), both showing slight upward trends. The CDHMI
exposures in 2003 and 2007 were much higher than in other years, indicating that a large
number of people were exposed to severe compound events in these two years. In general,
annual population exposure to the CDHW frequency and CDHMI all showed increasing
trends, with higher values in the years 1991, 2003, 2007, and 2013.
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ERA5 reasonably reflected the characteristics of population exposure to the CDHW
frequencies at different grades (Figure 12). The ERA5 simulation effect (r = 0.85 and
DISO = 0.779) of population exposure to moderate CDHW events (Figure 12a) was better
than that of the other three grade levels. Moderate CDHW exposure showed a significant
increasing trend in observations and ERA5, and the upward trend in ERA5 was about
1.5 times the observation. The increasing trend of severe CDHW exposure in ERA5 was
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1.76 million person-events/decade, which was obviously higher than the observed value
of 0.383 million person-events/decade (Figure 12b). There was no obvious upward or
downward trend in the exposure of extreme and exceptional CDHWs, but the inter-annual
fluctuations were relatively large (Figure 12c,d). In general, ERA5 had a greater upward
trend than the observed value when it reflected the characteristics of population exposure
to the CDHW frequencies at different grades.
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In order to facilitate comparative analysis, we divided the exposure study period into
three decades, namely, 1989–1998 (T1), 1999–2008 (T2), and 2009–2018 (T3). T2-1 represents
the change in the T2 period relative to the T1 period. T3-2 and T3-1 follow the same rule. As
shown in Table 1, for the moderate CDHW frequency exposure, the exposure increased
by 26% (62% in ERA5) from T1 to T2, and increased by 79% (102% in ERA5) from T2 to
T3. The moderate CDHW frequency exposure increased by 6.39 million person-events
(10.67 million person-events in ERA5) from T1 to T3, with a rate of 127% (227% in ERA5).
Severe CDHW frequency exposure also presented an upward trend both in the observations
and in ERA5 during the past three decades, but its upward rate was less than the moderate
CDHW frequency exposure. The extreme and exceptional frequency CDHW exposures in
the observations had smaller changes of –0.05 million person-events (–3%) and 0.07 million
person-events (9%) from T1 to T3. However, the extreme and exceptional frequency CDHW
exposures in ERA5 showed a larger increase in T3 relative to T1, especially for extreme
grade, with a change of 2.2 million person-events (169%). The total exposure increased by
40% (89%) from T1 to T2, and by 25% (60%) from T2 to T3. The total exposure showed a
substantial increase from T1 to T3, with an increment of 8.09 (17.23) million person-events
and a rate of 76% (201%) in observation (ERA5).
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Table 1. Population exposure to CDHW frequency and the change rates.

CDHW Frequency Exposure
(Million Person-Events) Change Rate (%)

T1
Obs (ERA5)

T2
Obs (ERA5)

T3
Obs (ERA5)

T2-1
Obs (ERA5)

T3-2
Obs (ERA5)

T3-1
Obs (ERA5)

Moderate 5.05 (4.7) 6.38 (7.61) 11.44 (15.37) 26 (62) 79 (102) 127 (227)
Severe 3 (2.04) 3.52 (3.17) 4.68 (6.33) 17 (55) 33 (100) 56 (210)

Extreme 1.9 (1.3) 2.22 (1.16) 1.85 (3.5) 17 (−11) −17 (202) −3 (169)
Exceptional 0.8 (0.54) 2.98 (4.24) 0.87 (0.61) 273 (685) −71 (−86) 9 (13)

All 10.75 (8.58) 15.1 (16.18) 18.84 (25.81) 40 (89) 25 (60) 76 (201)

We decomposed the exposure change to evaluate the relative contributions of climate,
population, and joint change effects. As shown in Figure 13, we found that the contribution
of the climate change effect was the largest (over 68%), even reaching 73.87% in T2-1,
whereas the contribution of the joint change effect was the lowest (below 11%) in the
observed CDHW frequency exposure. The CDHW frequency contributions of ERA5 were
similar to those in the observations, but the contributions of the climate change effect
were larger (reaching about 80%) than in the observations, and the contributions of the
population change effect were about 10% lower than in the observations. For the CDHMI
exposure, the contributions of climate change both in the observations and ERA5 showed
straight downward trends during T2-1, T3-2, and T3-1. We found that population growth
was responsible for 52.88% of the CDHMI exposure in T3-1, which showed a large difference
in ERA5 (population change effect of 10.02%).
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We further analyzed the contributions of CDHW frequency exposures at different
grades in different periods (Figure 14). In general, the climate change effect was the main
contributor, followed by the population change effect, and finally the joint change effect.
In moderate CDHW frequency exposures, the contributions of climate change were more
than 60%, and even exceeded 80% in ERA5. In T3-1, the contribution of climate change for
moderate CDHW frequency exposure was 76% (81% in ERA5), and the population and
joint change effects were of similar magnitude (about 10%). In the observations of severe
CDHW frequency exposures, the contributions of climate change effect were still high,
but their magnitude was about 10% lower than that of moderate events. Compared to the
severe CDHW frequency exposures, the contributions of climate change and population
change effects for extreme CDHW frequency exposures were basically the same magnitude
(about 45%) in T3-1, but ERA5 did not capture those effects well. In the exceptional CDHW
frequency exposures, ERA5 and observations showed similar characteristics. In T2-1 and
T3-2, the contributions of climate change effects both in the observations and ERA5 were
much higher than the contributions of the population and joint change effects. In T3-1,
the population contributions (68% in the observations and 79% in ERA5) were much
higher than the contributions of the climate and joint change effects. Both the observations
and ERA5 in T3-1 showed that the contributions of population change effects gradually
increased with the increase in CDHMI, whereas the contributions of climate change and
joint change effects gradually decreased with the increase in CDHMI.

3.4. Case of 2003 CDHWs

The CDHMI exposure value in 2003 was much higher than in other years, so we
isolated a case analysis of the 2003 CDHWs. The heatwave days during the summer of 2003
in the GRB were the longest (44.5 days) in the observations (the summer heatwave days in
ERA5 ranked second, up to 44.2 days) since 1961 (Figure 15a,b). In the summer of 2003,
precipitation in the GRB was only 342.5 mm in the observations (386.1 mm in ERA5), which
was about 60% of its multi-year average summer precipitation (Figure 15c,d). The average
one-month SPEI values in the summer of 2003 were –0.96 in the observations and –1.11 in
ERA5 (Figure 15e,f). The July SPEI values in 2003 were as low as –1.97 in the observations
and –2.37 in ERA5 (Figure 15g,h), and these values indicate that the GRB experienced the
worst extreme droughts in the summer of 2003. The relatively long-term high temperatures
and the extreme precipitation deficits (extreme droughts) in the summer of 2003 led to
exceptional CDHWs, which caused economic losses directly tied to agricultural production
by several billion CNY at least [52,53], and also caused significant stress on the ecosystem
and human health.

We conducted the composite of the atmospheric circulation anomalies (Figure 16) for July
of 2003 due to the most serious CDHWs in the GRB during July of 2003. High positive values
in 500 hPa geopotential height anomalies driven by the strong subtropical high (5 880 gpm)
during July of 2003 over the GRB (Figure 16a) caused the air to sink and increase temperature,
which means that heatwaves were prone to occur. As shown in Figure 16b, the anticyclone
anomaly center near the GRB suppressed precipitation due to the relatively large positive
values of water vapor flux divergence anomalies, which likely made the basin prone to
droughts. It was extremely difficult to produce precipitation under the specific conditions
of large positive anomalies of convective inhibition (Figure 16c, negative anomalies of total
cloud cover over about half of the GRB) and surface net solar radiation (Figure 16d), which
eventually led to the exceptional CDHW in the summer of 2003.
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4. Discussion

CDHWs can amplify the damage of the individual droughts and heatwaves, ultimately
wreaking a catastrophic effect on the environment, society, economy, and human health [44,54].
The summer CDHWs in Europe in 2003 and China in 2013 caused a high increase in mortality,
especially in the elderly and infant populations as well as in persons with pre-existing
cardiovascular and respiratory conditions [9,11,34,36,55]. In this study, we used the GRB, a
subtropical region in southern China (heatwaves and droughts are prone to occur in summer
in this region), as an example to investigate characteristics of population exposure to CDHWs
based on observation and ERA5 data.

ERA5 had a slight overestimation for the precipitation in the GRB, which is similar to
the findings of previous studies [30,32]. This may be because ERA5 tends to overestimate
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the light precipitation events, which makes the proportion of light precipitation events in
the total precipitation events relatively high [56]. In most parts of China, light precipitation
days accounted for more than 60% of all precipitation days [56,57]. ERA5 slightly over-
estimated the Tmean, and slightly underestimated the Tmax in the GRB, which is similar
to the results of a previous study in Southeast Asia [58]. The ability of ERA5 to simulate
the Tmean was slightly better than its ability to simulate the Tmax. This may have been due
to the fact that we derived the daily Tmax that came from hourly data, which ignored the
information of the sub-hourly extreme temperatures. In short, ERA5 can better reflect the
characteristics of temperature and precipitation in the GRB.

ERA5 was more effective at simulating the one-month SPEI values and droughts in the
GRB. The average magnitude of the droughts during 1997–2018 was slightly higher than
that in 1961–1997. For the frequency, duration, and magnitude of heatwaves, ERA5 also
had good applicability in the GRB. Heatwaves showed significant increasing trends from
1997 to 2018 in the observations and ERA5, which may have been caused by the greater
warming after the 1990s than before the 1990s [22,36]. For the frequency and the magnitude
of CDHWs, ERA5 performed well in simulating their annual variation characteristics, with
r-values above 0.8 and an RB within 3%. The average frequency and magnitude of CDHWs
during 1997–2018 were relatively larger than during 1961–1997, especially in ERA5, which
may have been caused by the increase in the number of individual droughts and heatwaves
in the GRB.

The East Asian summer monsoon (EASM) is characterized by the northward move-
ment of the subtropical high frontal zone and the associated rain belt during the early
summer months through the late summertime in China, and it includes two abrupt jumps
associated with the Meiyu season [59]. The location and duration of the rain belt have
a significant impact on regional floods and droughts. If the EASM weakens, causing its
northward movement to be insufficient, southern China becomes prone to flood disasters
due to the rain belt remaining in this region for a long period. In contrast, if the rain belt
jumps to the north too early (i.e., a strong EASM) and remains in northern China for a long
period, floods are likely to occur in northern China and droughts are likely to occur in
southern China (e.g., the GRB). Global warming, multi-decade/multi-annual variability
(e.g., Pacific Decadal Oscillations or El Niño–Southern Oscillations), and intraseasonal
variability can also affect the location and duration of the rain belt [20,60–62], thereby
affecting the CDHW characteristics in the GRB.

Analysis of the 2003 CDHWs in the GRB revealed that significantly positive 500 hPa
geopotential height anomalies and anticyclonic patterns over the GRB can reduce cloud
cover, thereby increasing the amount of incoming radiation and the resulting evapotran-
spiration. Soil moisture deficits reduce evapotranspiration (i.e., high evaporative capacity
with low evapotranspiration due to limited water), and a larger proportion of the incoming
radiation is employed to warm up the environment, which leads to an accumulation of
sensible heat in the surface atmosphere that can develop into a heatwave or exaggerate a
heatwave’s magnitude [14]. A very dry antecedent surface condition driven by chronic
precipitation deficits can create a positive feedback loop between atmospheric heating and
further drying of the soil [3,36,63], thereby providing conditions conducive to CDHWs.
In fact, the D-H dependence reflects the characteristics of the coupling between the land
and the atmosphere [3]. In general, the soil moisture deficit is influenced by enhanced
land–atmosphere coupling during summer, which appears to intensify surface warming
and anticyclonic circulation anomalies, eventually leading to CDHWs [64]. ERA5 could
better capture the spatial characteristics of the D-H dependence in the GRB, and a relatively
stronger D-H dependence in the southern parts of the basin produced a higher probability
of CDHWs. Previous studies also demonstrated that a high risk of CDHWs existed in
southern China [3,65]. On the basis that ERA5 can better reflect the characteristics of the
CDHMI cumulative probability density in the GRB, we found that higher the CDHMI
value, the greater the severity of drought and the duration of heatwaves.
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The total population of the GRB increased significantly from 1988 to 2018. An increase
in population can increase the risk of more population being exposed to CDHWs. ERA5
better reflected the annual variations of the exposure values for CDHW frequency and
CDHMI, with r-values above 0.8 and RB values within 15%. Regardless of the grades
(magnitude) of CDHWs, the increasing trend of the ERA5-simulated exposure of CDHW
frequency was more apparent than the observed frequency, which was related to the annual
frequency variations of CDHWs in the ERA5 and observations. CDHWs also presented an
upward trend on the global scale [54]. The moderate CDHW frequency exposure showed a
significant upward trend both in the observations and in ERA5. However, the population
exposure to severe, extreme, and exceptional CDHWs did not show clear upward trends.
As the CDHMI increased, the characteristics of the multi-annual variability also became
more apparent.

From T1 to T3, the population exposure to CDHWs basically increased in the ob-
servations and ERA5. This increase was particularly high for moderate CDHWs due to
increased population and hot extremes. The contributions of the climate change effect to
CDHW exposures were much greater than those of population and joint change effects.
This was different from the results of exposure characteristics related to extreme climate
events reported in previous studies [41,42,44], because the previous studies were based on
future climate and population outputs by the models. Under the characteristics of different
CDHW grades, the contribution rates of climate change effect were basically the main
cause for the change in the CDHW exposures. In T3-1, with the increased in the CDHMI,
the contributions of population change effects had gradually increased, especially under
the exceptional CDHW exposures.

According to the results of this study, the population exposed to CDHWs has in-
creased in the GRB (Figure 17). A comprehensive understanding of the mechanisms of
CDHWs plays a vital role in predicting CDHWs and thus providing adaptive responses
for different populations. The spatio-temporal characteristics of CDHWs were associated
with local and teleconnected land–atmosphere feedbacks [14,66], which may promote the
intensification and propagation (expansion and concatenation) of CDHWs. Elucidating
the relative contributions from local (i.e., self-intensification) and teleconnected (i.e., self-
propagation, such as the inflow of heat to other regions) land–atmosphere feedbacks in a
more comprehensive manner can advance our understanding of CDHW mechanisms, and
will be conducted in future work. Extreme heatwaves such as the 2010 Russian heatwave
can be intensified by the weakened soil moisture constraints [10]. Will the future equivalent
of the 2003 CDHW in the GRB increase in its severity due to the weakening soil moisture
constraints? This question will be investigated in future work based on the sixth phase of
the Coupled Model Intercomparison Project (CMIP6). Different age-related physiological
and thermoregulatory properties allow the body to adapt to CDHWs. People ≤14 and
≥65 years of age (i.e., younger and older individuals) are more vulnerable to hot extremes
and experience greater heat-related health impacts than others [67–70]. Future work will
explore the exposure of children and elderly people to CDHWs and investigate the extent
to which different groups or occupations are affected by CDHWs.
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5. Conclusions

CDHWs are more harmful to human health than individual extremes, especially in
areas with high population density. This study used the GRB as a case to explore CDHW
characteristics and quantify the population exposed to them both in the observations and
in ERA5. Our conclusions can be summarized as follows:

(1) ERA5 has high simulation accuracy for the temperature, precipitation, one-month
SPEI, heatwaves, and CDHWs in the GRB from 1961 to 2018. The CDHWs during 1997–2018
were slightly higher than during 1961–1997, especially due to significant increases in heatwaves
from 1997 to 2018. Relatively high values of D-H dependence indices existed in the southern
parts of the basin, indicating that CDHWs were more likely to occur in this region.

(2) The large CDHMI values were attributed to the enhanced interaction between
droughts and heatwaves during the specific periods. According to the case of the 2003
summer CDHW in the GRB, strongly positive 500 hPa geopotential height, anticyclonic cir-
culation (positive values of water vapor flux divergence anomalies), convective inhibition,
and surface net solar radiation anomalies over the GRB could have easily caused CDHWs.

(3) The population of the GRB increased significantly from 1988 to 2018, which in-
creased the risks of CDHW exposure, especially for moderate CDHWs. Population expo-
sure to CDHWs basically increased from T1 to T3, especially in ERA5. The contributions of
the climate change effect to CDHW exposure were much greater than the contributions
of the population and joint change effects. The contributions of population change effects
gradually increased with increasing CDHMI during T3-1 in the observations and ERA5.
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