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Abstract: Identifying influencing factors of heavy metals is essential for soil evaluation and protection.
This study investigates the use of a geographical detector to identify influencing factors of agricultural
soil heavy metals from natural and anthropogenic aspects. We focused on six variables of soil heavy
metals, i.e., As, Cd, Hg, Cu, Pb, Zn, and four influencing factors, i.e., soil properties (soil type and soil
texture), digital elevation model (DEM), land use, and annual deposition fluxes. Experiments were
conducted in Shunyi District, China. We studied the spatial correlations between variables of soil
heavy metals and influencing factors at both single-object and multi-object levels. A geographical
detector was directly used at the single-object level, while principal component analysis (PCA) and
geographical detector were sequentially integrated at the multi-object level to identify influencing
factors of heavy metals. Results showed that the concentrations of Cd, Cu, and Zn were mainly
influenced by DEM (p = 0.008) and land use (p = 0.033) factors, while annual deposition fluxes were
the main factors of the concentrations of Hg, Cd, and Pb (p = 0.000). Moreover, the concentration of
As was primarily influenced by soil properties (p = 0.026), DEM (p = 0.000), and annual deposition
flux (p = 0.000). The multi-object identification results between heavy metals and influencing factors
included single object identification in this study. Compared with the results using the PCA and
correlation analysis (CA) methods, the identification method developed at different levels can identify
much more influencing factors of heavy metals. Due to its promising performance, identification at
different levels can be widely employed for soil protection and pollution restoration.

Keywords: soil sample; natural and anthropogenic factors; identification; multi-object; spatial
analysis; agricultural land; principal component analysis

1. Introduction

Heavy metals in agricultural soil can reduce the soil quality, affect the health of crops,
and even threaten human health [1,2]. Along with the progress of modern agriculture and
industry, soil environmental problems such as soil pollution, soil erosion, and degradation
gradually emerged in many areas [3,4]. To address these problems, it is essential to identify
the influencing factors of heavy metals in agricultural soil for soil evaluation and protec-
tion. The influencing factors of heavy metals are usually grouped into two main types,
corresponding to natural and anthropogenic factors. Natural factors mainly refer to soil
properties (e.g., soil type, soil texture) [5], digital elevation model (DEM) or terrain [6], and
distance from water body [7], while anthropogenic factors usually refer to land use [8,9],
water irrigation, traffic emission [10] and atmospheric deposition [11]. The concentrations
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of heavy metals in agricultural soil were attributed to the combination of natural and
anthropogenic factors [12–14]. Due to the different mobility and availability of heavy
metals, both natural and anthropogenic factors of each heavy metal concentration need to
be determined. It is thus essential to develop an effective method to identify influencing
factors for multiple heavy metals in agricultural soil.

Existing methods to identify influencing factors of heavy metals are generally based
upon multivariate analysis, geostatistical, and geographical detector methods. Multivariate
analysis methods such as principal component analysis (PCA) [15], correlation analysis
(CA), cluster analysis, and geographically weighted regression (GWR) [16] rely on the dis-
tribution characteristics of heavy metals elements and can estimate heavy metal enrichment
with multiple influencing factors. However, these methods neglect the spatial relationship
between influencing factors and heavy metal concentrations. PCA was a frequently used
method to identify natural and anthropogenic influencing factors of agricultural soil heavy
metals in the past [17]. PCA is a multivariate statistical technique used to reduce the
number of variables in a data set into a set of values of uncorrelated principal components
using an orthogonal transformation [18]. Each component is a linear weighted combination
of the initial variables, and the first component contains the most variance, followed by
subsequent components. Principal components loadings show the weights or influence of
individual elements in each component, where larger positive and negative values are of
equal importance. Geostatistical methods, e.g., spatial interpolation, spatial mapping, and
hot spots analysis [19,20], can analyze the contribution of different factors to the spatial
distribution characteristics. However, they fail to measure the influencing degree of each
specific factor quantitatively. Moreover, these methods require a relatively high number of
samples for statistical inference [21].

An alternative is to use a geographical detector [22,23], which indicates that heavy
metal exhibits a spatial distribution and spatial variability similar to that of the influencing
factor [24]. It can quantitatively examine the spatial relationship between heavy metals and
influencing factors. The geographical detector method was first applied to study neural
tube defects in 2010 [22]. It has been widely used in soil science [25,26], public health [27,28],
and other fields in recent years. Existing contributions to the topic of soil heavy metals and
geographical detectors are grouped into three main subjects—namely, source identifica-
tion [29,30], risk assessment [31,32], and spatial pattern analysis [33–35] of heavy metals.
Most of these studies were located in China, with agricultural soils, forestland, and urban
soils, and focused on analyzing multiple heavy metals, especially for Cd and Hg [29]. For
analytical and statistical methods, a geographical detector was directly used to analyze the
relationships between soil heavy metals and related factors, and corresponding significant
levels were customized as 0.001 [31], 0.01 [32], and 0.05 [35], respectively. The geographical
detector method was compared to other frequently used methods (e.g., PCA) to assess
the advantages and disadvantages of the geographical detector method to other methods.
Inspired by these studies, integrating PCA and geographical detectors may improve the
identification of influencing factors of heavy metals.

This study aims to identify influencing factors of agricultural soil heavy metals in
Shunyi District, China, using a geographical detector. We focused on identifying natural
factors (e.g., soil properties and DEM) and anthropogenic factors (e.g., land use and
annual deposition fluxes) of six heavy metals (including As, Cd, Hg, Cu, Pb, and Zn) at
single-object and multi-object levels, and compared with the frequently used PCA method.
Previous studies directly used a PCA or geographical detector to identify influencing
factors of heavy metals and lacked corresponding systematic and comprehensive solutions
at different levels. In this study, we directly used a geographical detector to identify
influencing factors of heavy metals at a single-object level, and then integrated PCA and
the geographical detector to identify these factors at the multi-object level.
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2. Materials and Methods
2.1. Study Area

The study area is located at Shunyi District, Beijing, China, at longitudes ranging from
116◦28′ E to 116◦58′ E and latitudes ranging from 40◦00′ N to 40◦18′ N (Figure 1). This area
covers 1020 km2 and has a warm, temperate semi-humid continental monsoon climate [36],
with an average annual temperature of 11.5 ◦C and average precipitation of 625 mm. The
DEM changes from 24 m to 637 m in the area, and the average elevation is about 35 m. The
primary agricultural lands in the area are irrigable land, orchard, vegetable field, grassland,
and wasteland. Heavy metal concentrations in Shunyi District were slightly higher than
the background values of Beijing topsoils except for Pb, suggesting slight contamination of
heavy metals in this area [17].
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2.2. Data Sources
2.2.1. Sample Collection and Analysis

To investigate the pollution status of heavy metals in Shunyi District, a large-scale
soil sampling project was conducted after the crop harvest in the autumn of 2007. A total
of 329 surface soil samples (0–20 cm depth) were collected from the agricultural areas, as
shown in Figure 1. For each sampling site, five sub-samples were collected from the four
vertexes and the center of a 10 m × 10 m grid. We then mixed these sub-samples to select
1 kg soil as the representative sample of this site. A global positioning system (GPS) was
used to precisely locate each sampling location and record the corresponding information
regarding vegetation and soil types.
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The collected soil samples were air-dried, crushed in an agate mortar, and then passed
through a 2.0 mm sieve. The concentrations of six heavy metals, i.e., Cd, Cu, Zn, Pb, As,
and Hg, were analyzed in the soil samples. The soil samples were digested in triplicate
with the mixture of HNO3, HCI, and H2O2 using the method 3050B recommended by the
United States Environmental Protection Agency [37]. Concentrations of Cd, Cu, Pb, and Zn
in the digestion solution were determined by inductively coupled plasma optical emission
spectroscopy (ICP-AES, Thermo iCAP 6300, Washington, USA). In contrast, concentrations
of As and Hg in the soils were determined by an atomic fluorescence spectrometry (Titan,
AFS 830, Beijing, China) after digestion of the soil samples. Standard reference materials
(GSS-1 and GSS-4) obtained from the Center of National Standard Reference Material of
China were used for quality assurance and quality control [17]. Figure 2 shows the spatial
distribution of each heavy metal of Shunyi District, China. In the distribution maps, the
concentrations of each heavy metal were divided into 3 classes using the quantile method,
which placed an equal number of units into each class [38] and seemed to be one of the
effective methods for facilitating comparison [39].

2.2.2. Influencing Factors and Factors Stratification

This study examined four factors, including two natural and two anthropogenic
factors. These factors were known to influence heavy metal concentrations in Shunyi
District, China. The natural factors referred to soil properties, i.e., soil type and soil texture,
and DEM. The two anthropogenic factors referred to land use and annual deposition fluxes
of dry and wet atmospheric deposition. Soil properties data at a scale of 1:1,000,000 and
DEM with a 30 m resolution were provided by the Institute of Geographic Sciences and
Natural Resources Research, Chinese Academy of Sciences. The land use data at a scale
of 1:50,000 were acquired from the National Administration of Surveying, Mapping, and
Geoinformation. Annual deposition fluxes data of Cd, Cu, Zn, Pb, As, and Hg came from
the inverse distance weight (IDW) [40] interpolation results of 39 samples of dry and wet
atmospheric deposition, which were collected in the plain area of Beijing from November
2005 to November 2006 [41].

Factors stratification for corresponding influencing factors of 329 soil samples was
used in this study. Factors stratification ensures that the spatial heterogeneity of soil
pollutants can be identified after stratification [42]. The principle of factors stratification
was that every stratum had sampling sites, and each area of different strata was similar. For
category variables, e.g., soil properties and land use types, each category can be considered
a stratum. For numerical variables, e.g., DEM and annual deposition fluxes, the variable
was divided into three grades referring to the high, medium, and low levels using the
quantile method, and each grade can be considered as a stratum. In this study, agricultural
lands in Shunyi District were divided into four strata, corresponding to four land use
types: irrigable land, orchard, vegetable field, and grassland and wasteland. Soil properties
(soil type and soil texture) were divided into six strata, i.e., cinnamon soils and light loam,
cinnamon soils and medium loam, cinnamon soils and sandy loam, fluvo-aquic soils and
light loam, fluvo-aquic soils and medium loam, and fluvo-aquic soils and sandy loam. DEM
and annual deposition fluxes were divided into three strata using the quantile method,
i.e., low, medium, and high grades, respectively, and the stratification results are shown in
Table 1.
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Table 1. The stratification of influencing factors for 329 soil samples.

Influencing Factor Mean Minimum Maximum
Strata

Low Medium High

DEM (m) 45.444 25.304 100.000 <40.830 40.830–49.533 >49.533

Annual
deposition

fluxes
(g/hm2·a)

As 29.976 25.775 34.107 <28.630 28.630–31.089 >31.089
Cd 1.878 1.320 2.940 <1.658 1.658–1.967 >1.967
Hg 0.218 0.211 0.233 <0.213 0.213–0.220 >0.220
Cu 141.086 134.035 147.863 <140.794 140.794–142.290 >142.290
Pb 202.760 183.859 221.683 <199.871 199.871–206.722 >206.722
Zn 503.260 484.701 544.997 <493.103 493.103–506.092 >506.092

2.3. Identification Method

In this study, we developed a method based upon geographical detector and PCA to
identify natural and anthropogenic influencing factors of agricultural soil heavy metals,
i.e., As, Cd, Hg, Cu, Pb, and Zn, at both single-object and multi-object levels, as depicted
in Figure 3. We proposed a systematic and comprehensive solution at different levels to
identify natural and anthropogenic influencing factors of agricultural soil heavy metals.
At the single-object level, we directly used a geographical detector to identify natural
factors or anthropogenic factors of each heavy metal, i.e., As, Cd, Hg, Cu, Pb, or Zn. At
the multi-object level, we first used PCA to represent the concentrations of heavy metals
including As, Cd, Hg, Cu, Pb, and Zn in agricultural soils. After PCA processing of As,
Cd, Hg, Cu, Pb, and Zn, we selected principal components with eigenvalues greater than 1.
Then, we used a geographical detector to identify natural factors or anthropogenic factors
of each selected principal component. Furthermore, we obtained identification results at
single-object and multi-object levels by q values, with the significance at p < 0.05 level.
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The geographical detector is a spatial statistical method to test the relationships
between geographical phenomena and their potential influencing factors [22,23]. The



Land 2021, 10, 1010 7 of 15

geographical detector quantifies the relative importance of an influencing factor on the
heavy metal concentrations by power determinant (q). The q is defined as follows:

q = 1− 1
Nσ2

L

∑
h=1

Nhσ2
h (1)

where h = 1, 2, . . . , L indicates a stratum; N is the number of samples; Nh is the number
of strata. The parameter σ2 refers to the variance of a heavy metal concentration for the
whole study area, and σ2

h is the corresponding variance of a stratum. In this study, we
used the significance of q value (p) as the key index to identify natural and anthropogenic
influencing factors of heavy metals. The significance of the q value was defined at p < 0.05
level, and the corresponding q value indicated the influencing degree of this factor on
heavy metals. For each natural and anthropogenic influencing factor of heavy metals, the p
of the corresponding q value is less than the target significance (0.05), which indicates this
influencing factor can be identified; otherwise, it cannot be identified.

In this study, we implemented the geographical detector algorithm using the software
accessed from http://www.geodetector.cn/ (accessed on 15 October 2020). The CA, PCA,
and data processing were carried out by SPSS 16.0 software. The fuzzy clustering was
performed by MATLAB 7.0 software. The quantile method and spatial mapping were
performed by ArcGIS 10.5 software.

3. Results
3.1. The Identification of Influencing Factors of Heavy Metals at a Single-Object Level

We directly identified natural and anthropogenic factors of each heavy metal, i.e.,
As, Cd, Hg, Cu, Pb, or Zn, in Shunyi District, China. According to Equation (1), the
obtained q values and corresponding significance p of influencing factors on each heavy
metal concentration at a single-object level are shown in Table 2. The q values with the
significance at p < 0.05 level are illustrated in Figure 4. This figure showed that As, Cd,
and Cu concentrations were mainly derived from DEM, while annual deposition fluxes
primarily influenced Cd, Hg, and Pb concentrations in Shunyi District. Meanwhile, annual
deposition flux had a much higher association than DEM for Cd concentrations, and Zn
concentrations had no association with all influencing factors, as shown in Table 2 and
Figure 4.

Table 2. The influencing factors on heavy metal concentrations at the single-object level.

Metal Index Soil Properties DEM Land Use
Annual Deposition Fluxes

As Cd Hg Cu Pb Zn

As
q 0.073 0.093 0.024 0.008
p 0.418 0.000 0.457 0.282

Cd
q 0.025 0.044 0.022 0.100
p 0.660 0.000 0.328 0.000

Hg q 0.028 0.012 0.012 0.040
p 0.150 0.144 0.363 0.000

Cu
q 0.016 0.023 0.050 0.013
p 0.989 0.024 0.261 0.134

Pb
q 0.015 0.011 0.004 0.022
p 0.989 0.183 0.977 0.028

Zn
q 0.003 0.000 0.021 0.008
p 1.000 0.982 0.770 0.259

http://www.geodetector.cn/


Land 2021, 10, 1010 8 of 15
Land 2021, 10, x FOR PEER REVIEW 8 of 16 
 

 
Figure 4. The p values of influencing factors on heavy metal concentrations at the single-object 
level. 

3.2. The Identification of Influencing Factors of Heavy Metals at the Multi-Object Level 
At the multi-object level, we first used PCA to show the concentrations of six heavy 

metals, i.e., As, Cd, Hg, Cu, Pb, and Zn, in agricultural soils for Shunyi District, China, 
and the PCA results are presented in Table 3. The eigenvalues of the first three extracted 
components were all greater than 1. The heavy metals in the area can be represented by 
the first three primary components that account for 64.496% of all the data variation. The 
component matrix showed that Cd, Cu, and Zn were strongly associated with the first 
component because of selecting the maximum principal component for each heavy metal. 
Moreover, As was the only element represented in the second component, while Hg and 
Pb mainly dominated the third component. 

Table 3. PCA results for six heavy metals in Shunyi District. 

Component 
Eigenvalues Component Matrix 

Total Cumulative % As Cd Hg Cu Pb Zn 
1 1.747 29.124 0.385 0.609 0.345 0.801 0.337 0.595 
2 1.092 47.319 0.738 0.218 −0.069 −0.242 0.371 −0.546 
3 1.031 64.496 −0.141 0.444 0.647 −0.048 −0.482 −0.401 
4 0.954 80.397       
5 0.686 91.832       
6 0.490 100.000       

In the second stage, we identified influencing factors including soil properties, DEM, 
land use, and annual deposition fluxes of each of the first three principal components us-
ing geographical detector software, and the identification results are shown in Table 4. 
Through the q values with the significance at p < 0.05 level, the results in Table 4 and Figure 
5 suggested that the first component represented Cd, Cu, and Zn concentrations, which 
were mainly derived from DEM, land use, and annual deposition fluxes of As, Cd, Hg, 
and Pb. The second component represented As concentrations, which were primarily in-
fluenced by soil properties, DEM, and the annual deposition flux of Cd. The third compo-
nent represented Hg and Pb concentrations, which were mainly influenced by annual 
deposition fluxes of Cd and Hg. 

  

Figure 4. The p values of influencing factors on heavy metal concentrations at the single-object level.

3.2. The Identification of Influencing Factors of Heavy Metals at the Multi-Object Level

At the multi-object level, we first used PCA to show the concentrations of six heavy
metals, i.e., As, Cd, Hg, Cu, Pb, and Zn, in agricultural soils for Shunyi District, China,
and the PCA results are presented in Table 3. The eigenvalues of the first three extracted
components were all greater than 1. The heavy metals in the area can be represented by
the first three primary components that account for 64.496% of all the data variation. The
component matrix showed that Cd, Cu, and Zn were strongly associated with the first
component because of selecting the maximum principal component for each heavy metal.
Moreover, As was the only element represented in the second component, while Hg and
Pb mainly dominated the third component.

Table 3. PCA results for six heavy metals in Shunyi District.

Component
Eigenvalues Component Matrix

Total Cumulative % As Cd Hg Cu Pb Zn

1 1.747 29.124 0.385 0.609 0.345 0.801 0.337 0.595
2 1.092 47.319 0.738 0.218 −0.069 −0.242 0.371 −0.546
3 1.031 64.496 −0.141 0.444 0.647 −0.048 −0.482 −0.401
4 0.954 80.397
5 0.686 91.832
6 0.490 100.000

In the second stage, we identified influencing factors including soil properties, DEM,
land use, and annual deposition fluxes of each of the first three principal components
using geographical detector software, and the identification results are shown in Table 4.
Through the q values with the significance at p < 0.05 level, the results in Table 4 and
Figure 5 suggested that the first component represented Cd, Cu, and Zn concentrations,
which were mainly derived from DEM, land use, and annual deposition fluxes of As,
Cd, Hg, and Pb. The second component represented As concentrations, which were
primarily influenced by soil properties, DEM, and the annual deposition flux of Cd. The
third component represented Hg and Pb concentrations, which were mainly influenced by
annual deposition fluxes of Cd and Hg.
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Table 4. The influencing factors on heavy metal concentrations at the multi-object level.

Component Index
Soil

Properties DEM Land Use
Annual Deposition Fluxes

As Cd Hg Cu Pb Zn

1
q 0.025 0.031 0.028 0.038 0.041 0.025 0.002 0.033 0.014
p 0.170 0.008 0.033 0.003 0.000 0.018 0.709 0.005 0.106

2
q 0.045 0.064 0.025 0.003 0.055 0.013 0.006 0.000 0.003
p 0.026 0.000 0.053 0.571 0.000 0.131 0.381 0.924 0.590

3
q 0.016 0.013 0.012 0.002 0.051 0.070 0.004 0.008 0.005
p 0.424 0.126 0.294 0.722 0.000 0.000 0.490 0.286 0.441
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3.3. Comparative Analysis of Cluster Analysis and Correlation Analysis Methods

We performed a comparative analysis between the proposed method and existing
methods using cluster and correlation analysis. First, a fuzzy clustering method was used
to represent the concentrations of heavy metals including As, Cd, Hg, Cu, Pb, and Zn in
agricultural soils. Figure 6 shows the results of the fuzzy clustering for six heavy metals in
Shunyi District. Compared with the PCA results of heavy metals, we selected three strata
of the cluster results for comparison. Six heavy metals were divided into three strata: Cd,
Zn, and Cu (first stratum), Pb and As (second stratum), Hg (third stratum) using fuzzy
clustering, while three principal components represented Cd, Cu, and Zn (first component),
As (second component), Hg and Pb (third component) using PCA, respectively. The results
of the fuzzy clustering method and PCA method were generally consistent except for Pb.

Second, we also conducted a correlation analysis between heavy metal concentrations
and influencing factors (Table 5). DEM was correlated with As, Cd, Hg, and Cu, while
land use was correlated with Cd, Cu, and Zn. Moreover, annual deposition fluxes were
correlated with Cd and Hg. Figure 7 shows the identification results for multi-object
identification using the proposed method and the CA method. According to Figure 7, the
multi-object identification results between heavy metals and influencing factors derived
using the proposed method contained those derived from the CA method, except for the
variable of Hg.
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Table 5. The correlation analysis results of heavy metal concentrations and influencing factors.

Metal Soil Properties DEM Land Use
Annual Deposition Fluxes

As Cd Hg Cu Pb Zn

As 0.101 0.143 ** 0.031 0.046
Cd 0.079 −0.150 ** −0.109 * 0.282 **
Hg 0.064 −0.110 * 0.014 0.150 **
Cu 0.105 −0.153 ** −0.205 ** 0.069
Pb 0.099 −0.074 0.031 0.049
Zn 0.024 0.004 −0.142 * 0.019

** Correlation is significant at the 0.01 level (2-tailed); * correlation is significant at the 0.05 level (2-tailed).
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4. Discussion
4.1. Comparisons with Related Studies

For six kinds of heavy metals in agricultural soils, the influencing factors of their
concentrations were mainly related to land use, annual deposition flux, DEM, soil type,
and soil texture. This finding reflects that the concentrations of heavy metals in agricultural
soil were attributed to the combination of natural and anthropogenic factors. Based upon
existing research [17], local contamination from agricultural practices, particularly with the
application of fertilizer and manure, was the main source of Cd, Cu, and Zn entering the
agricultural soils. Their results support our finding that land use was the main influencing
factor for Cd, Cu, and Zn in this study. The concentration of As was primarily influenced
by soil properties, which was proved by the existing contributions [35,43]. Moreover, DEM
was the secondary influencing factor for Cd and As [42], and atmospheric deposition played
an important role in Cd, Hg, and Pb accumulations in the soils [17,32]. The identification
results of heavy metal sources in agricultural soils are essential for protecting soil quality
to promote the healthy development of agriculture.

To demonstrate the performance of the identification method at different levels in this
study, we made two comparisons, i.e., between the single-object identification method and
multi-object identification method, and between the identification method developed in
this study and related studies [2,17,43–45]. The results of the comparative analysis of this
study and existing contributions are shown in Table 6. Table 6 shows that the identification
results of different studies were generally consistent in terms of the concentrations of heavy
metals influenced by the combination of natural and anthropogenic factors. In contrast, the
influencing factors of each heavy metal were different between different studies.

Table 6. The comparative results between this study and existing contributions.

Reference Time Location Type Samples Method Metals Influencing Factors Significant

Our study Autumn
2007

Shunyi
District

agricultural
soils 329

Geographical
Detector,

PCA

As, Cd, Cu,
Cd, Hg, Pb

land use, annual deposition
flux, DEM, soil type, and

soil texture
p < 0.05

[29] October
2018

Fengcheng,
Jiangxi,
China

farmland
soils 283 Geostatistics,

Geodetector Cd, Hg
soil pH, total phosphorous,
elevation, distance from a
river, distance from a road

p < 0.05

[30] July 2016,
April 2017 Guangxi karst soils 117 Geographical

Detector Cd soil type, geological age,
rock type, geomorphic type

p < 0.01,
p < 0.05

[31] May 2018 Northwest
China

agricultural
soils 62 Geo-detector

Cd, Cr, Cu,
Ni, Pb,
Ti, Zn

distance from industrial
enterprises, altitude, soil

pH, distance from
major roads

p < 0.001,
p < 0.01,
p < 0.05

[32] 2015 Zhejiang,
China

agricultural
soils 1928 GeogDetector As, Cd, Cr,

Pb, Hg

soil parent materials,
farmland type, industrial

production, number of cars
(1/1000), fertilizer use,

pesticide use

p < 0.01

[34] First half
of 2013

Hechi,
Guangxi

cropland,
forestland,
grassland,
construc-

tion
land

513

SOM
clustering,
Geographi-

cal
Detector

As, Cd, Cr,
Hg, Pb rivers, factories, ore zones p < 0.05

[35] November
2016

Shenzhen,
Guang-
dong

urban soils 221 Geographical
Detector As, Pb

original bedrock,
subsequent pedogenesis,
industrial wastes, vehicle

emissions, household
garbage

p < 0.05

Based on the same location, the examined studies included two aspects, named related
study I [17] and related study II [43], respectively. The results of the comparative analysis
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are shown in Table 7. Table 7 shows that the multi-object identification results between
heavy metals and influencing factors included that of single-object identification in this
study. Compared with related studies, the differences in identification results might be
caused by different sampling times, locations, and identification methods for this study
and related studies, as depicted in Table 7. Furthermore, we compared our study with the
related study I over the same study area and heavy metals, as shown in Figure 8. This figure
shows that the results derived at the single-object level using the geographical detector are
significantly different from that of the existing method using PCA. In general, the proposed
method at the multi-object level identified more influencing factors than the method based
on the single-object level and the PCA method. Another interesting finding is that the
derived results at the multi-object level refer to the combination of the results from the
single-object method and the PCA, except for the variable of Pb. More specifically, (1) for
variables of As and Zn, more influencing factors identified by the multi-object method than
either the single-object identification or the PCA method; (2) for variables of Cd, Hg, and
Cu, the influencing factors identified by the multi-object method were equal to the sum of
results of the single object method and the PCA method. According to PCA results for six
heavy metals in Table 3 and identification results in Table 4, the potential reason was that
Pb was secondarily represented in the second component, and the second component was
associated with soil properties, due to selecting only the maximum principal component
for each heavy metal in this study. Therefore, the identification method developed at
different levels in this study can identify much more influencing factors of heavy metals
than frequently used methods, particularly for the multi-object identification method.

Table 7. The comparative results between this study and related studies.

Studies Time Location Samples Methods Metals Influencing Factors

Our study
(single object) Autumn 2007 Shunyi District 329 Geographical

detector
As, Cd, Cu DEM
Cd, Hg, Pb Annual deposition flux

Our study
(multi-object) Autumn 2007 Shunyi District 329

PCA;
Geographical

detector

Cd, Cu, Zn DEM, land use, annual
deposition flux

As Soil type and soil
texture, DEM

Hg, Pb Annual deposition flux

Related study I
[17]

August to
November 2009

Shunyi District 412 PCA
Cd, Cu, Zn Agricultural practices

As, Pb Soil parent materials
Hg Atmospheric deposition

Related study II
[43] - Beijing 773 PCA; CA

As, Cr, Ni Pedogenic factors

Cd, Cu, Pb, Zn Anthropogenic and soil
parent factors

Pb, Zn, Cu Traffic and smelting
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4.2. Uncertainty and Proper Use of Identification Method Developed in This Study

Although the proposed method achieved satisfactory results, further improvement
can be conducted by interpolating the results of the atmospheric deposition samples and
the stratification number of influencing factors, particularly for numerical variables. More
specifically, the IDW interpolation results of dry and wet atmospheric deposition may lead
to additional uncertainty to some extent in this study. An ideal IDW interpolation result is
to obtain each point’s actual value, making it challenging to describe high concentration
when overall concentration is low [7]. Regarding influencing factors of heavy metals, the
number of stratifications was determined according to prior knowledge in this study. By
doing so, the number of stratifications should be determined in detail to express the spatial
variability of heavy metals when using a geographical detector [42]. Furthermore, to select
a geographical detector for identifying influencing factors, the significance level of q values
needs to be specified, e.g., the significance at p < 0.05 level was used in this study.

We also provided suggestions for the proper use of the identification method devel-
oped in this study. Variation in data sources, study areas, and research targets should be
considered for future implementation when applying the proposed method at different lev-
els. For the cases with fewer variables, we recommend using the single-object method for
identifying influencing factors of heavy metals; otherwise, we suggest using the proposed
multi-object identification method.

5. Conclusions

This paper presented an identification method based on a geographical detector to
identify natural and anthropogenic factors of six heavy metals (i.e., As, Cd, Hg, Cu, Pb,
Zn) at single-object and multi-object levels in Shunyi District, China. The results suggested
that Cd, Cu, and Zn concentrations were mainly influenced by DEM and land use factors,
while annual deposition fluxes were the main factors of Hg, Cd, and Pb concentrations.
Moreover, the concentration of As was primarily influenced by soil properties, DEM, and
annual deposition flux. The multi-object identification results between heavy metals and
influencing factors included that of single-object identification in this study. Compared
with the frequently used PCA and CA methods, the identification method developed at
different levels can identify much more influencing factors of heavy metals, particularly
using the multi-object identification method. Due to its promising performance, the
method developed at different levels can be widely employed for soil protection and
pollution restoration.

Nevertheless, we expect that future work can be improved from the following two
aspects: (1) to analyze whether the influencing factors of agricultural soil heavy metals
operate independently or interconnect, and to quantify the interaction effect; (2) to identify
and monitor high pollution risk areas in combination with the background values of heavy
metals in agricultural soils.

Author Contributions: Conceptualization, S.D.; methodology, S.D. and B.G.; software, S.D. and
H.G.; validation, S.D., H.G., and M.L.; writing—original draft preparation, S.D.; writing—review and
editing, B.G., Y.P., and M.L.; funding acquisition, S.D. and Y.P. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Beijing Natural Science Foundation (Grant Number
8192015) and the National Natural Science Foundation of China (Grant Number 41801276).

Acknowledgments: We thank Yanan Wu and Dongyue Zhang from National Engineering Research
Center for Information Technology in Agriculture for data processing.

Conflicts of Interest: The authors declare no conflict of interest.



Land 2021, 10, 1010 14 of 15

References
1. Jiang, R.; Wang, M.; Chen, W.; Li, X. Ecological risk evaluation of combined pollution of herbicide siduron and heavy metals in

soils. Sci. Total Environ. 2018, 626, 1047–1056. [CrossRef] [PubMed]
2. Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wu, J.; Wang, J. Source apportionment and health risk assessment of trace metals in surface

soils of Beijing metropolitan, China. Chemosphere 2016, 144, 1002–1011. [CrossRef] [PubMed]
3. Duan, Q.; Lee, J.; Liu, Y.; Chen, H.; Hu, H. Distribution of heavy metal pollution in surface soil samples in China: A graphical

review. Bull. Environ. Contam. Toxicol. 2016, 97, 303–309. [CrossRef] [PubMed]
4. Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010,

8, 199–216. [CrossRef]
5. Fritsch, C.; Giraudoux, P.; Coeurdassier, M.; Douay, F.; Raoul, F.; Pruyot, C.; Waterlot, C.; de Vaufleury, A.; Scheifler, R. Spatial

distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife.
Chemosphere 2010, 81, 141–155. [CrossRef] [PubMed]

6. Chen, Y.; Liu, Y.; Liu, Y.; Lin, A.; Kong, X.; Liu, D.; Li, X.; Zhang, Y.; Gao, Y.; Wang, D. Mapping of Cu and Pb contaminations in
soil using combined geochemistry, topography, and remote sensing: A case study in the Le’an river floodplain, China. Int. J.
Environ. Res. Public Health 2012, 9, 1874–1886. [CrossRef]

7. Ding, Q.; Cheng, G.; Wang, Y.; Zhuang, D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding
mining regions. Sci. Total Environ. 2017, 578, 577–585. [CrossRef]

8. Kuusisto-Hjort, P.; Hjort, J. Land use impacts on trace metal concentrations of suburban stream sediments in the Helsinki region,
Finland. Sci. Total Environ. 2013, 456, 222–230. [CrossRef]

9. Xu, L.; Lu, A.; Wang, J.; Ma, Z.; Pan, L.; Feng, X. Effect of land use type on metals accumulation and risk assessment in soil in the
peri-urban area of Beijing, China. Hum. Ecol. Risk Assess. 2016, 22, 265–278. [CrossRef]

10. Rozanski, S.; Jaworska, H.; Matuszczak, K.; Nowak, J.; Hardy, A. Impact of highway traffic and the acoustic screen on the content
and spatial distribution of heavy metals in soils. Environ. Sci. Pollut. Res. 2017, 24, 12778–12786. [CrossRef]

11. Dragovic, R.; Gajic, B.; Dragovic, S.; Dordevic, M.; Dordevic, M.; Mihailovic, N.; Onjia, A. Assessment of the impact of
geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia).
J. Clean. Prod. 2014, 84, 550–562. [CrossRef]

12. Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water
and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [CrossRef]

13. Qiao, P.; Lei, M.; Guo, G.; Yang, J.; Zhou, X.; Chen, T. Quantitative analysis of the factors influencing soil heavy metal lateral
migration in rainfalls based on geographical detector software: A case study in Huanjiang county, China. Sustainability 2017,
9, 13. [CrossRef]

14. Luo, L.; Mei, K.; Qua, L.; Zhang, C.; Chen, H.; Wang, S.; Di, D.; Huang, H.; Wang, Z.; Xia, F.; et al. Assessment of the geographical
detector method for investigating heavy metal source apportionment in an urban watershed of eastern China. Sci. Total Environ.
2019, 653, 714–722. [CrossRef] [PubMed]

15. Bai, J.; Jia, J.; Zhang, G.; Zhao, Q.; Lu, Q.; Cui, B.; Liu, X. Spatial and temporal dynamics of heavy metal pollution and source
identification in sediment cores from the short-term flooding riparian wetlands in a Chinese delta. Environ. Pollut. 2016, 219,
379–388. [CrossRef]

16. Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis
of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [CrossRef]
[PubMed]

17. Lu, A.; Wang, J.; Qin, X.; Wang, K.; Han, P.; Zhang, S. Multivariate and geostatistical analyses of the spatial distribution and origin
of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci. Total Environ. 2012, 425, 66–74. [CrossRef] [PubMed]

18. Vyas, S.; Kumaranayake, L. Constructing socio-economic status indices: How to use principal components analysis. Health Policy
Plan. 2006, 21, 459–468. [CrossRef] [PubMed]

19. Huo, X.; Li, H.; Sun, D.; Zhou, L.; Li, B. Multi-scale spatial structure of heavy metals in agricultural soils in Beijing. Environ. Monit.
Assess. 2010, 164, 605–616.

20. Lv, J.; Liu, Y.; Zhang, Z.; Dai, J.; Dai, B.; Zhu, Y. Identifying the origins and spatial distributions of heavy metals in soils of Ju
country (Eastern China) using multivariate and geostatistical approach. J. Soil. Sediment. 2015, 15, 163–178. [CrossRef]

21. Webster, R.; Oliver, M.A. Sample adequately to estimate variograms of soil properties. J. Soil Sci. 1992, 43, 177–192. [CrossRef]
22. Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical detectors-based health risk assessment and its

application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [CrossRef]
23. Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [CrossRef]
24. Zhou, C.; Chen, J.; Wang, S. Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China’s

cities using spatial regression and the geographical detector technique. Sci. Total Environ. 2018, 619, 436–445. [CrossRef]
25. Su, Y.; Li, T.; Cheng, S.; Wang, X. Spatial distribution exploration and driving factor identification for soil salinisation based on

geodetector models in coastal area. Ecol. Eng. 2020, 156, 105961. [CrossRef]
26. Du, Z.; Gao, B.; Ou, C.; Du, Z.; Yang, J.; Batsaikhan, B.; Dorjgotov, B.; Yun, W.; Zhu, D. A quantitative analysis of factors

influencing organic matter concentration in the topsoil of black soil in northeast China based on spatial heterogeneous patterns.
ISPRS Int. J. Geo-Inf. 2021, 10, 348. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2018.01.135
http://www.ncbi.nlm.nih.gov/pubmed/29898513
http://doi.org/10.1016/j.chemosphere.2015.09.081
http://www.ncbi.nlm.nih.gov/pubmed/26439517
http://doi.org/10.1007/s00128-016-1857-9
http://www.ncbi.nlm.nih.gov/pubmed/27342589
http://doi.org/10.1007/s10311-010-0297-8
http://doi.org/10.1016/j.chemosphere.2010.06.075
http://www.ncbi.nlm.nih.gov/pubmed/20673957
http://doi.org/10.3390/ijerph9051874
http://doi.org/10.1016/j.scitotenv.2016.11.001
http://doi.org/10.1016/j.scitotenv.2013.03.086
http://doi.org/10.1080/10807039.2015.1060408
http://doi.org/10.1007/s11356-017-8910-z
http://doi.org/10.1016/j.jclepro.2014.03.060
http://doi.org/10.1016/j.ecolind.2014.08.016
http://doi.org/10.3390/su9071227
http://doi.org/10.1016/j.scitotenv.2018.10.424
http://www.ncbi.nlm.nih.gov/pubmed/30759597
http://doi.org/10.1016/j.envpol.2016.05.016
http://doi.org/10.1016/j.chemosphere.2018.05.090
http://www.ncbi.nlm.nih.gov/pubmed/29800822
http://doi.org/10.1016/j.scitotenv.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22459886
http://doi.org/10.1093/heapol/czl029
http://www.ncbi.nlm.nih.gov/pubmed/17030551
http://doi.org/10.1007/s11368-014-0937-x
http://doi.org/10.1111/j.1365-2389.1992.tb00128.x
http://doi.org/10.1080/13658810802443457
http://doi.org/10.1016/j.ecolind.2016.02.052
http://doi.org/10.1016/j.scitotenv.2017.11.124
http://doi.org/10.1016/j.ecoleng.2020.105961
http://doi.org/10.3390/ijgi10050348


Land 2021, 10, 1010 15 of 15

27. Fang, F.; Ma, L.; Fan, H.; Che, X.; Chen, M. The spatial differentiation of quality of rural life based on natural controlling factors:
A case study of Gansu Province, China. J. Environ. Manag. 2020, 264, 110439. [CrossRef]

28. Xu, C.; Zhang, X.; Xiao, G. Spatiotemporal decomposition and risk determinants of hand, foot and mouth disease in Henan,
China. Sci. Total Environ. 2019, 657, 509–516. [CrossRef] [PubMed]

29. Huang, X.; Yu, H.; Zhao, X.; Guo, X.; Ye, Y.; Xu, Z. Spatial variation in cadmium and mercury and factors influencing their
potential ecological risks in farmland soil in Poyang Lake Plain, China. Front. Environ. Sci. 2021, 9, 641497. [CrossRef]

30. Zhao, Y.; Deng, Q.; Lin, Q.; Zeng, C.; Zhong, C. Cadmium source identification in soils and high-risk regions predicted by
geographical detector method. Environ. Pollut. 2020, 263, 114338. [CrossRef] [PubMed]

31. Zhang, R.; Chen, T.; Zhang, Y.; Hou, Y.; Chang, Q. Health risk assessment of heavy metals in agricultural soils and identification
of main influencing factors in a typical industrial park in northwest China. Chemosphere 2020, 252, 126591. [CrossRef]

32. Ren, Z.; Xiao, R.; Zhang, Z.; Lv, X.; Fei, X. Risk assessment and source identification of heavy metals in agricultural soil: A case
study in the coastal city of Zhejiang Province, China. Stoch. Environ. Res. Risk Assess. 2019, 33, 2109–2118. [CrossRef]

33. Wu, Q.; Hu, W.; Wang, H.; Liu, P.; Wang, X.; Huang, B. Spatial distribution, ecological risk and sources of heavy metals in soils
from a typical economic development area, Southeastern China. Sci. Total Environ. 2021, 780, 146557. [CrossRef]

34. Liao, X.; Tao, H.; Gong, X.; Li, Y. Exploring the database of a soil environmental survey using a geo-self-organizing map: A pilot
study. J. Geogr. Sci. 2019, 29, 1610–1624. [CrossRef]

35. Shi, T.; Hu, Z.; Shi, Z.; Guo, L.; Chen, Y.; Li, Q.; Wu, G. Geo-detection of factors controlling spatial patterns of heavy metals in
urban topsoil using multi-source data. Sci. Total Environ. 2018, 643, 451–459. [CrossRef] [PubMed]

36. Dong, S.; Li, H.; Sun, D. Fractal feature analysis and information extraction of woodlands based on MODIS NDVI time series.
Sustainability 2017, 9, 1215. [CrossRef]

37. United States Environmental Protection Agency. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; Revision 2; United
States Environmental Protection Agency: Washington, DC, USA, 1996.

38. Cao, F.; Ge, Y.; Wang, J. Optimal discretization for geographical detectors-based risk assessment. GISci. Remote Sens. 2013, 50,
78–92. [CrossRef]

39. Brewer, C.A.; Pickle, L. Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann. Assoc. Am.
Geogr. 2002, 92, 662–681. [CrossRef]

40. Qiao, P.; Lei, M.; Yang, S.; Yang, J.; Guo, G.; Zhou, X. Comparing ordinary Kriging and inverse distance weighting for soil as
pollution in Beijing. Environ. Sci. Pollut. Res. 2018, 25, 15597–15608. [CrossRef]

41. Cong, Y.; Chen, Y.; Yang, Z.; Hou, Q.; Wang, H. Dry and wet atmospheric deposition fluxes of elements in the plain area of Beijing
Municipality, China. Geol. Bull. China 2008, 27, 257–264. (In Chinese)

42. Qiao, P.; Yang, S.; Lei, M.; Chen, T.; Dong, N. Quantitative analysis of the factors influencing spatial distribution of soil heavy
metals based on geographical detector. Sci. Total Environ. 2019, 664, 392–413. [CrossRef] [PubMed]

43. Zheng, Y.; Chen, T.; He, J. Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. J. Soil. Sediment.
2008, 8, 51–58. [CrossRef]

44. Qiao, M.; Cai, C.; Huang, Y.; Liu, Y.; Lin, A.; Zheng, Y. Characterization of soil heavy metal contamination and potential health
risk in metropolitan region of northern China. Environ. Monit. Assess. 2011, 172, 353–365. [CrossRef]

45. Hu, K.; Zhang, F.; Hong, L.; Feng, H.; Li, B. Spatial patterns of soil heavy metals in urban-rural transition zone of Beijing.
Pedosphere 2006, 16, 690–698. [CrossRef]

http://doi.org/10.1016/j.jenvman.2020.110439
http://doi.org/10.1016/j.scitotenv.2018.12.039
http://www.ncbi.nlm.nih.gov/pubmed/30550914
http://doi.org/10.3389/fenvs.2021.641497
http://doi.org/10.1016/j.envpol.2020.114338
http://www.ncbi.nlm.nih.gov/pubmed/32304950
http://doi.org/10.1016/j.chemosphere.2020.126591
http://doi.org/10.1007/s00477-019-01741-8
http://doi.org/10.1016/j.scitotenv.2021.146557
http://doi.org/10.1007/s11442-019-1644-8
http://doi.org/10.1016/j.scitotenv.2018.06.224
http://www.ncbi.nlm.nih.gov/pubmed/29945080
http://doi.org/10.3390/su9071215
http://doi.org/10.1080/15481603.2013.778562
http://doi.org/10.1111/1467-8306.00310
http://doi.org/10.1007/s11356-018-1552-y
http://doi.org/10.1016/j.scitotenv.2019.01.310
http://www.ncbi.nlm.nih.gov/pubmed/30754008
http://doi.org/10.1065/jss2007.08.245
http://doi.org/10.1007/s10661-010-1339-1
http://doi.org/10.1016/S1002-0160(06)60104-5

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources 
	Sample Collection and Analysis 
	Influencing Factors and Factors Stratification 

	Identification Method 

	Results 
	The Identification of Influencing Factors of Heavy Metals at a Single-Object Level 
	The Identification of Influencing Factors of Heavy Metals at the Multi-Object Level 
	Comparative Analysis of Cluster Analysis and Correlation Analysis Methods 

	Discussion 
	Comparisons with Related Studies 
	Uncertainty and Proper Use of Identification Method Developed in This Study 

	Conclusions 
	References

