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Abstract: A number of severe ecological problems, and the altered structure of urban spaces, are
ascribed to rapid urbanisation. Hence, an analytical framework for urban spatial structure and
functional optimisation is highly beneficial to balance the contradiction between developing urban
areas and protecting their ecosystems. In this paper, the proposed analytical framework included
three parts. We first delineated the ecological suitability zones (ESZs) of Beijing City by applying the
minimum cumulative resistance (MCR) model. Subsequently, considering various socioeconomic
and natural environmental factors, the Markov chain model and future land-use simulation (FLUS)
model were utilised to predict the urban spatial structure of Beijing in 2031. Finally, taking the
ESZ results as a constraint, three scenarios were designed to optimise the extent of city sprawl:
the business as usual (BAU) scenario, ecological security (ES) scenario and ecological priority (EP)
scenario. We found that the ESZs contained three zones: an ecological control zone (63%), a restricted
development zone (22%), and a concentrated development zone (15%). After comparing the three
scenarios, we discovered that the ES scenarios ensured the bottom line in terms of Beijing’s ecological
security. Additionally, under the EP scenario, the urban spatial structure and function were further
optimised. Our study can provide new ideas and technical support for the reasonable layout of urban
spatial structure.

Keywords: urban expansion; ecological suitability zones (ESZs); MCR model; FLUS model; analytical
framework; Beijing

1. Introduction

Urban spatial structure refers to the spatial distribution of urban elements and the
interaction and formation mechanism of these elements [1]. From the perspective of three-
dimensional space, urban spatial structure can be divided into horizontal and vertical
structures [2,3]. Horizontal structure is usually characterised by the composition and spa-
tial pattern of land-use types [4,5], while vertical structure is characterised by building
and vegetation heights [6,7]. Urban function refers to the capability of urban space and
its respective functional zoning [8]. In general, urban areas have production, living and
ecological functions in any region [9–11]. Among these, the ecological function is founda-
tional, providing support for human production and living. The coordinated development
of urban spatial structure and function can promote sustainable urban development. Since
1978, China’s urbanisation has profoundly influenced its urban spatial structure at an
astonishing speed [12]. Under the background of ecological land occupation by develop-
ment activities, ecological space is continually crowded out, and urban ecosystem service
functions face severe tests and challenges. Moreover, China’s urbanisation rate is continu-
ously increasing, with predicted rates of 60% and 75% by 2020 and 2035, respectively [13].
Rapid urbanisation further aggravates the serious contradiction and conflict between the
various functions of urban space. As a result, the impact of urbanisation has attracted a
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great deal of attention, which has proposed an imbalance in urban spatial structure and a
decline in urban ecological functions, including reductions in carbon storage, biodiversity
and cropland [14–17]. Therefore, against the new background of promoting ecological
civil construction and building a beautiful China, exploring the collaborative optimisa-
tion of urban spatial structure and function is conducive to trading off the relationships
between ecological protection and economic development, as well as construction and
non-construction during rapid urbanisation. This has turned into an important topic con-
cerning regional sustainable development. Through a literature review, we established a
theoretical framework, as shown in Figure 1.
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Modelling methods have been widely used to optimise urban spatial structure; these
methods include the system dynamic (SD) model [18], geomod model [19] and the cel-
lular automata (CA) model [20]. Among various models, the CA model, because it can
dynamically reflect the complex structure of an urban system, and its extended version
models have been widely used in urban expansion simulation, such as the SLEUTH
model [21], CLUE-S model [22,23], CLUMondo model [24,25], and the multiagent system
(MAS) model [26,27]. However, most of the models simply set the conversion rules or train
each land type separately to obtain the transfer probability. In the conversion process,
each land type’s relationship is ignored, making it difficult to discern the competition
and mutual influence among all land types. The FLUS model, originating from the CA
model, proposes the self-adaptive inertia competition mechanism. The probability of the
occurrence of various landscape types and roulette selection is obtained through an artifi-
cial neural network (ANN) algorithm. As a result, the FLUS model can more effectively
cope with urban sprawl’s complexity and uncertainty under the joint influence of natural
and anthropogenic activities [28]. Therefore, the FLUS model has provided novel research
insight into urban expansion simulation, demarcating urban growth boundaries, resulting
from its improved stimulation accuracy [29–31]. It is worth noting that, compared with
human factors, the ecological and environmental constraints on urban expansion have
relatively little influence. Hence, from the perspective of urban function, we used the
MCR model to partition functional zones and to construct the ecological constraints to
urban expansion, which, based on geographic information system (GIS) and landscape
ecology theory (with fewer variables and simple operation), has been widely applied to
evaluate urban space ecological suitability, delimit different urban function zones and
construct ecological security patterns [32–34]. As far as we know, the previously reported
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optimisation of urban spatial structure and function has not put forward a complete an-
alytical framework. According to landscape ecology theory, urban spatial structure and
function are interdependent and interactive. In this paper, based on the new perspective of
structure and function coupling, we choose the MCR model and FLUS model to construct
an analytical framework for urban spatial structural and functional optimisation research.

As an international capital, Beijing’s urbanisation in terms of its growth into a mega-
city with many functions has been remarkable. Over the past 40 years, it has encountered
mismatches between urban spatial patterns and functions. As such, a series of effective
measures have been promulgated to mitigate Beijing’s problems, such as the relocation of
noncapital functions, demarcation of urban ecological control lines, the definition of urban
development boundaries, and demarcation of strategic blank land. All policies are aimed
at optimising the city’s spatial structure. Thus, we took Beijing as the study area for this
research. The results will contribute to optimising spatial structure and enhancing urban
ecological function. The findings will also be potentially useful for the integrated spatial
structural optimisation of the Beijing-Tianjin-Hebei region.

2. Materials and Methods
2.1. Study Area

As the capital of China, Beijing (39◦26′–41◦03′ N, 115◦25′–117◦30′ E) is located on
the northwest edge of the North China Plain The total area is approximately 16,400 km2.
Mountains surround Beijing on three sides, and the elevation of the region decreases from
the northwest to the southeast, with altitudes ranging from 2258 m to 6 m (Figure 2).
Beijing has a warm temperate continental monsoon climate, and its annual precipitation
ranges from 600 mm to 700 mm on average. There are 16 municipal districts in Beijing.
As of 2019, 86.6% of Beijing’s population is from urban areas, comprising approximately
18.65 million people.
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2.2. Data Sources

Table A1 in Appendix A depicts the required natural and socioeconomic data for this
study. Beijing’s land-use data (2010–2017) were classified into: cropland, forest, grassland,
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shrubland, water, wetland, construction land and bare land. The same projection coordinate
system (WGS_1984_UTM_Zone_50N) and spatial resolution (30 m × 30 m) were utilised
for all data and all grid data, respectively.

2.3. Methods

Based on the future urban spatial structure’s simulation by the FLUS model, we
innovatively proposed to optimize the urban spatial structure and function by combining
the urban functional zoning, and taking the ecological control area, restricted construction
area and concentrated construction area divided by the MCR model as the ecological
conditions. The analytical framework for this paper is shown in Figure 3. There are three
steps in total. The first step was to delimit the ESZs based on the MCR model. The second
step was to combine the Markov chain model and FLUS model to imitate urban expansion
without ecological constraints. The last step embedded the ESZs into the simulation result
for future urban expansion optimisation simulation under three scenarios (Figure 3).
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2.3.1. MCR Model
Model Variables

(1) Source selection

Ecological sources i.e., landscape components promoting the development of processes
in the landscape, play essential roles in the dispersal and maintenance of species [35]. Their
three most important features are: providing key ecological service functions, maintaining
continuity and integrity of landscape patterns, and preventing ecosystem degradation and
subsequent ecological issues. Thus, land with an important ecosystem service function, or
fragile ecological environments with high ecological sensitivity, will be called an ‘ecological
source’. In this paper, we defined forest, grassland, shrubland, water and wetland as
ecological sources and construction land as an urban source.

(2) The construction of the resistance plane

Landscape emphasises spatial heterogeneity, which distinguishes different urban
landscape units though different resistances. Urban landscape resistance refers to the
cost or work performed to overcome the resistance from an ecological source through
different landscapes, reflected by the resistance coefficient [36]. Combining the existing
research results and data availability, our study selected seven elements to form a nature–
society composite resistance factor evaluation system, which included landscape types,
normalized difference vegetation index (NDVI), digital elevation model (DEM), slope,
ecological barrier, distance to road and urban areas. Based on the evaluation of ecosystem
service function value by Costanza et al. [37], the resistance levels were divided into five,
using the integers between 10 (lowest) and 100 (highest). The assignment of the urban
source resistance coefficient created an inversion. The weight of the respective resistance
factor was obtained through an analytic hierarchy process. The judgement matrix was
then established, and the test coefficient of the matrix was 0.05, which was less than 0.1
and passed consistency validation. The weight of each resistance factor was obtained. The
resistance factor evaluation index system is listed in Table 1. Through weighed summation
operations, we constructed the resistance plane of ecological and urban sources.

Formula of the Model

The MCR model was originally denoted as the cost of species moving from source to
destination. It investigates urban ecological suitability by determining land connectivity,
which simulates horizontal land ecological processes. It was first proposed by Knaapen [38].
We used the following formula modified by Yu [39]:

MCR = fmin

i=m

∑
j=n

Dij × Ri (1)

where MCR refers to the minimum cumulative resistance value; Dij is the spatial distance
between source i and source j; Ri denotes the resistance coefficient of grid i to ecological
sources; fmin represents the positive correlation function between the minimum cumulative
resistance and the ecological process; and n is the total number of landscape units. The
cost-distance module in ArcGIS can be implemented by the model.
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Table 1. Evaluation factor system and resistance value of Beijing.

Resistance Coefficient
Landscape

Type

Digital
Elevation

Model
(DEM)/m

Slope/◦

Normalized
Difference
Vegetation

Index
(NDVI)/%

Distance to
Urban/m

Distance to Road Network/m

Ecological
BarriersEcological

Source
Urban
Source

Distance to
Express

Distance to
Primary

Road

Distance to
Second
Road

Distance to
Tertiary

Road

10 100 Forest 1760–2322 >60 >0.75 >3000 0–30, >4000 0–30, >3000 0–20, >3000 0–15, >2000
Ecological
protection

red line

30 70 Water/
Wetland 1290–1760 45–60 0.6–0.75 2000–3000 30–50,3000–4000 2000–3000 2000–3000 1500–2000 Basic

farmland

50 50 Grassland/
Shrubland 820–1290 30–45 0.45–0.6 1000–2000 2000–3000 1500–2000 1500–2000 1000–1500 -

70 30 Cropland 350–820 15–30 0.3–0.45 500–1000 1000–2000 1000–1500 1000–1500 500–1000 -

100 10
Construction

land/
Bare land

−121–350 <15 <0.3 <500 50–1000 30–1000 20–1000 15–500 Other areas

Weight 0.2449 0.0447 0.0283 0.0192 0.0725 0.0996 0.4908
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Urban is a socio–economic–natural compound ecosystem. The land suitable for eco-
logical protection has greater resistance to construction land, while the land suitable for
construction has greater resistance to ecological land. Therefore, we choose ecological
land and urban land as ecological sources and urban sources, respectively. The formula is
as follows:

MCRdi f f = MCReco −MCRcstr (2)

where MCReco and MCRcstr refer to the minimum cumulative resistance of ecological
sources and constructed sources, respectively. When MCRdi f f < 0, construction land ex-
pansion resistance is relatively large, hence the zone is suitable for ecological protection
land. When MCRdi f f > 0, it greatly resists ecological protection land, and the expansion of
construction land is suitable. When MCRdi f f = 0, the resistance for ecological protection
and construction land expansion are equal, thus the zone is suitable for both; this can be
regarded as the boundary. Accordingly, the natural break method of ArcGIS was employed
to refine the zoning results into three categories: restricted construction zones, ecological
control zones, and centralised construction zones.

2.3.2. Markov Chain Model

Premised on dynamic stochastic process theory, the Markov chain model assumes that
the change of state at time t + 1 is only related to time t and that the transition probability
matrix remains unchanged [40]. In addition, the model could predict land-use changes
without continuous historical data. The formula is calculated as follows:

Xt+1 = Xt × P (3)

where Xt and Xt+1 denote the state at time t and at time t + 1, respectively, and P refers to
the transition probability matrix at time t.

In our study, Beijing’s land-use demand in 2031 was obtained from the Markov chain
model in two steps. The land-use data (2010, 2017) were first extracted, and the initial
transition probability matrix was then obtained. Next, the land-use demand in 2031
(after two interval periods) was determined using the initial transition probability matrix,
referring to 2017 as the initial year.

2.3.3. FLUS Model

The FLUS model consists of two main parts: the ANN-based probability of occurrence
estimation and the self-adaptive inertia and competition mechanism CA. The ANN module
comprises three layers: the input layer, the hidden layer and the output layer. The formula
is calculated as follows:

p(p, t, k) = ∑
j

wj,k × sigmoid
(
netj(p, t)

)
= ∑

j
wj,k ×

[
1 + e−netj(p,t)

]−1
(4)

where p(p, t, k) represents the suitability probability of land-use type k on grid p and time t,
wj,k represents the weight value between the hidden layer and the output layer, sigmoid()
is the function between the hidden layer and the output layer, and netj(p, t) is the signal
received on grid p in hidden layer j at time t.

The self-adaptive inertia and competition mechanism CA is the key part of the FLUS
model. Based on the suitability probability distribution, it rationalises the spatial distribu-
tion of the total pixels of various land types in the future. The core is the adaptive inertia
coefficient, determined by the difference between the existing land quantity and the land
demand. The adaptive adjustment is carried out in the iterative process to make each
land type’s quantity develop towards the predetermined target. The formula is calculated
as follows:

TPt
p,k = Pp,k ×Ωt

p,k × Inertialt
k × (1− scc→k) (5)
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Ωt
p,k =

∑N×N con
(

ct−1
p = k

)
N × N − 1

× wk (6)

Inertialt
k =



Inertialt−1
k i f

∣∣∣Dt−1
k

∣∣∣ ≤ ∣∣∣Dt−2
k

∣∣∣
Inertialt−1

k × Dt−2
k

Dt−1
k

i f Dt−1
k < Dt−2

k < 0

Inertialt−1
k × Dt−1

k
Dt−2

k
i f 0 < Dt−2

k < Dt−1
k

(7)

where TPt
p,k represents the total probability that grid P is converted to land-use type k

at time t, Ωt
p,k denotes the neighbourhood effect, scc→k is the conversion cost of land-

use type c to land-use type k, denotes in the N × N neighbourhood window (the total
number of grids for the land-use type k at the last iteration time t− 1), wk is the weight
of neighbourhood function of each land-use type, Inertialt

k represents the adaptive inertia
coefficient of land-use type k at time t, and Dt−1

k and Dt−2
k are the differences between the

number of grids and the demand of the land-use type k at time t− 1 and t− 2, respectively,
In our study, we selected 14 driving factors (Figure 4) in the input layer, 12 neurons in

the hidden layers and 8 land-use types in the output layer. To train the ANN module and
obtain the suitability probability of 8 output layers, 1% of the total sample were randomly
chosen. In the self-adaptive inertia competition mechanism module, we set the Moore
neighbourhood at 3 × 3 for the simulation and the thread count at 8 in order to speed
up [28]. In addition, we took advantage of the land-use conversion matrix to estimate the
cost matrix. We estimated the neighbourhood weights accounting for the normalisation
of the land expansion intensity index. Combined with neighbourhood weights, land-use
demand, cost matrix, and the suitability probability of each land-use type, urban expansion
could be evaluated by stimulating the rational allocation of the spatial distribution of each
land type. This is essentially a process of making the output results constantly approach
the target value through cyclic iteration.
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The figure of merit (FoM) [41] is used to evaluate the simulation accuracy in this paper,
which precedes the common kappa coefficient [42–44].
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2.3.4. Design of Future Urban Expansion Scenarios

This study proposed three urban expansion scenarios to maintain urban ecological
security: the business as usual scenario (BAU), the ecological security scenario (ES), and
the ecological priority scenario (EP). The specific design principles of each scenario were as
follows:

(i) BAU scenario. This scenario was designed so that the historical rules of mutual
transfer among each land type remain unchanged; the land-use demand in 2031 can
be calculated on the basis of the initial transition probability matrix for the period
of 2010–2017. All land-use types can be transformed from one to another without
restrictions.

(ii) ES scenario. According to the ESZs, this scenario took the ecological control zone
as the constraint condition and superimposed it on the BAU scenario result in 2031.
Additionally, the construction land and cropland in the region are converted into
forest, and the water and wetlands are kept stable, effectively guaranteeing ecological
security.

(iii) EP scenarios. This scenario integrated the ecological control zone and restricted
construction zone as the constraint conditions and superimposed them on the BAU
scenario results in 2031. This scenario focuses on protecting ecological security within
the ecological control zone; in addition, the new increase in construction land within
the restricted construction zones should be controlled.

3. Results
3.1. ESZs of Beijing
3.1.1. Comprehensive Resistance Planes of Beijing

As shown in Figure 5, the two source expansion processes’ comprehensive resistance
plane results indicate that the two resistance surfaces’ spatial patterns have opposite
distributions. The resistance planes of ecological sources present a trend of west-low
and east-high states (Figure 5A). In the western mountainous areas, the altitude is high,
the slope is steep, the surface vegetation coverage is high, and human activities are few.
While the resistance planes of urban sources generally present a higher trend in the west
(Figure 5B), the plain area in the east is low in elevation and gentle in slope, with little
resistance to urban expansion, and is conducive to urban land expansion. As shown in
Figure 5C, the region with a low difference in the minimum cumulative resistance is
distributed in the western mountains in a north-south zonal distribution and is suitable for
ecological land. The region with high difference in the minimum cumulative resistance is
distributed in the eastern plain region, radiating outwards from downtown and is suitable
for division into urban land.
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3.1.2. Distribution Characteristics of ESZs

The results of the ESZs are shown in Figure 6, and the details of each zone are listed in
Table 2.
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Table 2. Ecological suitability zone of Beijing.

Suitability Grade Expansion Difficulty
Threshold Area/km2 Proportion

Ecological Land Urban Land

Ecological Control Zone Easy Difficulty −1,319,737–0 10,038 63%
Restricted construction zone Less easy Less easy 0–146,277 3420 22%

Centralised construction zone Difficulty Easy 146,277–698,752 2364 15%

The ecological control zone has the largest area at 10,038 km2, and it accounts for 63%
of the city’s total area. It is mainly surrounded by ecological sources and is distributed in
the western mountainous area. The land type is mainly forest, and the scope is essentially
the same as that of Beijing’s ecological conservation area. The area covers many ecologically
fragile areas, hence all urban construction activities in this area should be banned. The
restricted construction zone’s total area is 3420 km2, accounting for 22% of the city’s area.
It is scattered throughout the whole city, and the main land-use type is cropland. The
ecological sensitivity of this region is relatively stable. Based on the concept of ecological
priority, urban construction activities in this region should focus on ecological environmen-
tal governance and ecological restoration. Additionally, cropland should be protected by a
strict and orderly development process. The centralised construction zone area accounts
for 15% of the whole city area, at 2364 km2. The major land-use type is construction
land. This area is far from forest, grassland and water and has weak ecosystem service
functions. Therefore, it is the main urban area and suitable for the development of urban
construction activities.
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3.2. Simulation of Urban Spatial Structure in Beijing from 2010 to 2017
3.2.1. Verification of the FLUS Model

The FLUS model has three accuracy verification models to evaluate its performance:
the validation of the Markov chain model, the estimation of the ANN probability-of-
occurrence, and the validation between the simulation land-use pattern and the actual
land-use pattern.

The Markov chain model was validated in our findings, in which the largest error
(−0.11%) was registered from forest. In contrast, all other landscape types exhibited a
lower error rate than 0.02% (Table 3). These results indicate that the land-use change after
the simulation is highly precise when the Markov chain model is utilised.

Table 3. Simulated and actual values of landscape types in 2017.

Landscape Types Cropland Forest Shrub Land Grassland Water Wetland Construction Land Bare Land

Simulated values (km2) 4123 7613 278 1186 253 3 2870 55
Actual values (km2) 4124 7621 278 1187 253 3 2871 55

Error (%) −0.02 −0.11 0 −0.08 0 0 −0.03 0

The RMSE of the ANN model performance was 0.259744, indicating a high training
accuracy. The ROC curve and AUC value were combined to quantify the accuracy of
the individual land use type probability of occurrence [45]. Generally, an AUC value
greater than 0.7 indicates a perfectly fitting result. Figure A1 shows that the AUC values
of individual landscape types—cropland, forest, grassland, shrubland, water, wetland,
construction land and bare land—were 0.83, 0.88, 0.79, 0.77, 0.87, 0.93, 0.86, and 0.81,
respectively. Notably, all AUC values were larger than 0.75, demonstrating the good
explanatory ability of selected driving factors for each landscape type.

For the accuracy assessment result, the FoM has a relatively high value of 28.54%,
according to Pontius et al. [41], where most of the values are lower than 30%.

3.2.2. Simulation of Future Urban Expansion in Beijing in 2017

The actual landscape patterns and the simulation results in 2017 are shown in Figure 7.
In terms of spatial structure, a great deal of consistency was observed between the simulated
spatial pattern and the actual spatial pattern in 2017. The construction land is mainly
located in the southeast plain area, while it is scattered in the northwest mountainous
area. Cropland exhibited a spatial pattern around construction land. The forest presents
a north-south zonal distribution, which becomes Beijing’s ecological barrier. Grassland
and shrubland covered all counties. The water area is mainly distributed in the Guanting
Reservoir and Miyun Reservoir. Wetland areas and bare land were less well distributed,
most of which were found at certain points.

Compared with the actual values in 2017, forest expansion was evident, whereas other
land changes were subtle.

3.3. Optimisation of Urban Spatial Structure and Function in Beijing in 2031

The simulation of the FLUS model is ascertained to be relatively accurate, according
to the land-use simulation in 2017. Therefore, the FLUS model was adopted, with the same
parameter setting, to identify different scenarios of land-use patterns in 2031 (Figure 8,
Table 4). The land use structure comparison of Beijing in 2031 under the different scenarios
is shown in Figure 9.
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Figure 8. The spatial patterns of land use in 2031 under different scenarios.

Table 4. The area of landscape types in 2031 under different scenarios (km2).

LANDSCAPE TYPES Cropland Forest Shrub Land Grassland Water Wetland Construction Land Bare Land

Business as usual (BAU) 3020 9094 763 214 147 2 3112 41
Ecological security (ES) 2595 9803 763 214 147 2 2872 41
Ecological priority (EP) 2838 9581 767 215 169 2 2768 52
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Compared with the landscape pattern in 2017, cropland, grassland, water, wetland
and bare land decreased under all three scenarios, while forest, shrubland and construction
land areas (under the EP scenario) increased. Taking the land-use pattern under the three
scenarios into consideration, the forest had the largest area of 9803 km2 under the ES
scenario, accounting for 59.81%; construction land had the minimum area of 2768 km2

under the EP scenario and the maximum area of 3112 km2 under the BAU scenario,
accounting for 16.89% and 18.99%, respectively. Compared with the ES scenario, the
cropland area increased by 343 km2 under the EP scenario due to cropland conservation
measures. Notably, the other land-use types exhibited stability within the three scenarios.
Under the ES scenario and EP scenario, the ecological control zone had no construction
land and cropland with productive functions in terms of spatial distribution. In contrast to
the BAU scenario and ES scenario, under the EP scenario, the proportion of construction
land decreased slightly with a more compact distribution, which prevented disorderly city
expansion. In this way, the spatial structure of the city was further optimised.

4. Discussion
4.1. The Analytical Framework of Urban Spatial Structural and Functional Optimisation

This article proposed a comprehensive framework for urban spatial structural and
functional optimisation by integrating the MCR model with the FLUS model. The ana-
lytical framework simulates urban space expansion under ecological constraints based
on structure and function, preventing urban sprawl and maintaining urban ecological
security. It is generally desirable that urban construction land frequently overlaps with
the centralised construction area, while urban construction activities are far from the eco-
logical control area. Nevertheless, the BAU scenario simulation results show that a large
amount of ecological land will be occupied by construction land based on the current
developmental trend. As a result, it is critical to benchmark the mitigation of the ecological
pressure induced by urban expansion in the future. Based on this purpose, this paper
divides urban ecological suitability by evaluating the ecological suitability of urban space.
Additionally, the process of urban expansion is thoroughly evaluated and designed to
realise the combination of construction land expansion and ecological land protection. The
substance of this framework is to address the challenge of sustainable urban planning
through anti-planning thinking, that is, to define the future urban spatial structure and
functions under positive ecological constraints rather than making passive adjustments.

Compared with the research by Xiaoping Liu et al. [28], which only considers spa-
tial structure without combining urban functional zoning, this paper improved on its
performance. In addition, the establishment of the ESZs contains vertical and horizontal
ecological processes. The vertical ecological process originates from the comprehensive
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analysis of seven resistance factors, while the horizontal ecological process is premised
on the MCR model. This method allows for quantitative identification of ecologically
controlled zones in multi-scenario urban expansion simulations rather than qualitative
descriptions [46], representing objective and scientific research. In addition, in the study
simulating urban growth under ecological constraints, Deng Yu et al. [47] pointed out
that urban expansion should be combined with ecological function zoning to achieve
the coordinated development of urban spatial structure and function, demonstrating the
rationality of our paper’s analytical framework.

4.2. Differences between the Three Scenarios

Urban expansion is a complex process of natural, economic and social coupling.
Multi-scenario simulation can realise urban development direction under different policy
guidance. Different urban development schemes are conducive to future urban expansion,
and it is highly recommended to target land use according to existing land use. Our current
work established three scenarios, namely, the BAU scenario, EP scenario and ES scenario.
It then analysed the advantages and disadvantages of the optimal configuration of urban
spatial structure and function under the different scenarios.

In the BAU scenario, the areas of cropland and construction land in 2031 were the
largest. Construction land expanded significantly and far exceeds the planned area for
2035, encroaching substantially upon the forest because of the small change in shrubland,
water, grassland and wetland areas. As shown in Figure 8, the degree of landscape frag-
mentation is relatively high. Therefore, the expanded scope of construction land in the
future is extremely limited and the urban spatial structure seriously restricts the overall
and coordinated development of Beijing.

In the ES scenario, the ecological control zone was well maintained and ecological
security’s bottom line was ensured. Moreover, the forest area in 2031 was the largest, while
the cropland was the lowest under this scenario. This phenomenon is in line with the policy
requirements of the Green Program in Beijing. The overall land-use pattern tended to
be reasonable.

In the EP scenario, cropland was protected while preventing the disorderly expansion
of construction land. The expansion of construction land has been effectively controlled,
the cropland area has been increased, and the spatial structure of each land-use type has
been optimised. Hence, the EP scenario can better balance the relationship between the
developing economy and protecting the ecosystem than the BAU and ES scenarios.

Compared with Beijing’s urban master plan (2016–2035), the area of construction land
under the EP scenario is 2768 km2, which is in line with the master planning requirement
to reduce the construction land area to 2760 km2 by 2035. However, the proportion of
ecological control area in the three scenarios is approximately 65%, far lower than the
75% required by master planning. There may be two reasons for this. One is that the
land-use data sources are different, thus, the classification and accuracy of land uses are
different. The other is the different identification methods of ecological land, resulting
in the difference in the proportion of ecological control areas. Our results are essentially
consistent with the urban spatial structure’s requirements and functions in Beijing’s urban
master plan (2016–2035), which could provide new ideas and technical support for the
reasonable layout of urban spatial structure in a similar city.

4.3. Limitations and Future Research Directions

Urban expansion is a natural and socioeconomic process. The Markov-FLUS model
assumes that transition rules such as the land-use transition probability matrix, transition
cost and probability-of-occurrence estimation remain unchanged during the simulation
process; however, this assumption does not always hold in practice, hence predicting
future land-use patterns accurately remains a challenge, and more effort is needed to
tackle this challenge in future work. Moreover, what calls for special attention is that the
simulation results rely heavily on the original land-use data, thus, the data’s precision is
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critical. In addition, although the proposed ESZs generated relatively ideal results, the
value of the resistance coefficient used by the MCR model has been provided by scholars
and is subjective to some extent. Therefore, it needs to be further modified.

5. Conclusions

Research on urban spatial structure and functional optimisation is a hot topic in aca-
demic circles. Taking Beijing as an example, an effective analytical framework is proposed
to optimise urban spatial structures and functions by making development trade-offs
between the urban economy and ecology. Rational zoning is dependent on ecological suit-
ability evaluation using the MCR model. The Markov-FLUS model was proven effective in
urban expansion research with a high FoM value upon comparing the simulated and actual
landscape patterns in 2017. It is also worthy to note that construction land has the smallest
area under the EP scenario because of the strict control of new construction land in the
restricted construction zone, which is consistent with the “reduced development” strategy
of construction land implemented in Beijing. Reduced development is the distinctive
characteristic of high-quality development in the capital. Promoting reduced quantity and
improved quality development for construction land can effectively protect the ecological
environment, helping Beijing grow into a world-class, harmonious, and liveable capital,
and conforms to the goal of Beijing’s urban master planning (2016–2035). Hence, Beijing’s
spatial structure and function under the EP scenario mostly confirm the actual changes
in future land use. In addition, the proposed analytical framework provides an effective
solution for the exploration of urban spatial structure and functional optimisation, reducing
construction land to make space for ecological land. This can be applied as a reference for
urban planners.
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Appendix A

Table A1. Details of data used in this study.

Category Data Year Data Type Resolution Data Resource

Landscape Land-use data 2010–2017 Raster 30 m http:
//data.ess.tsinghua.edu.cn/

Human influence Population 2010 Raster 1 km http://www.resdc.cn/
Gross Domestic
Product(GDP) 2010 Raster 1 km

Defence Meteorological
Satellite Program (DMPS) 2010 Raster 817 m

Terrain Digital Elevation
Model(DEM) 2013 Raster 30 m https://lpdaac.usgs.gov/

Slope 2013 Raster 30 m Calculated from DEM
Aspect 2013 Raster 30 m Calculated from DEM

Soil Percentage of sand 2009 Raster 817 m http://westdc.westgis.ac.cn/
Percentage of silt 2009 Raster 817 m

http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
http://www.resdc.cn/
https://lpdaac.usgs.gov/
http://westdc.westgis.ac.cn/
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Table A1. Cont.

Category Data Year Data Type Resolution Data Resource

Percentage of clay 2009 Raster 817 m
Climate Annual mean temperature 2010 Raster 1 km http://www.resdc.cn/

Annual mean
precipitation 2010 Raster 1 km

NDVI
Normalized Difference

Vegetation Index
(NDVI) data

2017 Raster 1 km http://www.resdc.cn/

Location Road network 2020 Vector — https:
//www.openstreetmap.org/

Road network 2010 Vector —
https://sedac.ciesin.columbia.
edu/data/set/groads-global-

roads-open-access-v1#

Basic map of
Beijing

Ecological protection red
line map 2017 Other data 1:5000

http://www.beijing.gov.cn/
zhengce/zhengcefagui/201905

/t20190522_61382.html
Basic farmland
conservation

planning map
2017 Other data 1:5000

http://www.beijing.gov.cn/
gongkai/guihua/wngh/cqgh/
201907/t20190701_100008.html

Historical and cultural
protection planning map 2017 Other data 1:5000
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