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Abstract: A large number of local and global databases for soil, land use, crops, and climate are
now available from different sources, which often differ, even when addressing the same spatial
and temporal resolutions. As the correct database is unknown, their impact on estimating water
resource components (WRC) has mostly been ignored. Here, we study the uncertainty stemming
from the use of multiple databases and their impacts on WRC estimates such as blue water and soil
water for the Karkheh River Basin (KRB) in Iran. Four climate databases and two land use maps
were used to build multiple configurations of the KRB model using the soil and water assessment
tool (SWAT), which were similarly calibrated against monthly river discharges. We classified the
configurations based on their calibration performances and estimated WRC for each one. The results
showed significant differences in WRC estimates, even in models of the same class i.e., with similar
performance after calibration. We concluded that a non-negligible level of uncertainty stems from the
availability of different sources of input data. As the use of any one database among several produces
questionable outputs, it is prudent for modelers to pay more attention to the selection of input data.

Keywords: input data uncertainty; multiple data sets; calibration; modeling; SWAT; SUFI-2

1. Introduction

The successful application of hydrological models depends on their performance during
calibration/validation and the degree of model uncertainty. However, the process of calibration
is difficult and subjective [1]. This is partly as a result of modeling errors stemming from different
sources such as: correctness and adequacy of the input data [2,3], the model’s lack of accounting of
relevant physical processes in the watershed [4,5], and also the experience of the modeler in manual
calibration [6,7].

In the past decade, there has been a major push towards data collection on for example climate,
soil, and land use by different agencies such as government ministries (at the local and national levels),
educational institutions, local companies, aeronautic industries (e.g., NASA (National Aeronautics
and Space Administration) and the University of East Anglia, UK) as well as global organizations such
as the FAO (Food and Agriculture Organization). These data, from a hydrological point of interest,
include elevation, climate, soil, land use, and river water quantity and quality. A challenging trend that
could impact model uncertainty is the availability of multiple datasets of varying and mostly unknown
quality for a given region. Selection of only one dataset from among many could have a significant
impact on the model calibration and output results. In general, neglecting the uncertainty stemming
from different sources of input data during calibration might produce outputs that are not appropriate
or representative of real situations [8]. In other words, inappropriate input data (e.g., climate data with
errors or incomplete values) can result in unrealistic model parameters [9], which will in turn produce
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unrealistic model outputs. Therefore, no matter how the model is used, it is always good to know how
it performs based on different datasets [10].

Several studies have attempted to explore the sensitivity of hydrological models to land use [11,12],
climate [9,13,14], or digital elevation models (DEM) [12,15]. Some studies conducted initial tests on
the available data prior to calibration, then chose the data that appeared to perform the best based on
certain model efficiency criteria [16,17]. Others studied the sensitivity of model outputs to precipitation
ensembles [18,19], and their effects on water resource components of non-calibrated models [14,15,20].
Although all these schemes are important and necessary, in all of them, the prediction uncertainty was
based on only one dataset. However, in this work, we are concerned with the uncertainty arising from
multiple datasets, where each may have its own uncertainties.

In this work, using the soil and water assessment tool (SWAT), we built eight different models
based on four different climate databases and two different land use maps. These models were
calibrated using nine measured discharge stations (hereafter referred to as outlets) at the Karkhe
River Basin (KRB) in Iran. We then calibrated these models and (i) compare their performances
and parameters; and (ii) compare their outputs in terms of water yield (WY) (total amount of water
entering the main channel in each time step), blue water (BW) (water yield plus deep aquifer discharge),
evapotranspiration (ET), and soil water content (SW).

2. Materials and Methods

2.1. Study Area

The Karkheh River Basin (KRB) is the third largest river basin in Iran (Figure 1). The basin is
a benchmark watershed studied in the CGIAR (Consultative Group on International Agricultural
Research) challenge program on water and food [21]. It is located in the western part of Iran with
a total area of about 50,800 km? and stretches from the Zagros Mountains to the Hoor-Al-Azim
Swamp (a trans-boundary wetland located at the Iran-Iraq border). The amount of yearly precipitation
varies from 250 mm year~! in the southern part up to 750 mm year~! in the northern part of the
basin [22]. The elevation of KRB varies from 3 m a.s.l in the south to over 3000 m a.s.l in the north
(Figure 1). Nearly 60% of the basin is between 1000-2000 m a.s.I and 20% of the region is below 1000 m
a.s.1 [23,24]. The highest peak in the region is 3645 m a.s.l. In the northern regions with high elevation,
the temperature decreases to below 0 and therefore snowmelt contributes to runoff. A study performed
by Saghafian et al. [25] showed that the snow water equivalent is about 17% of long-term annual
precipitation in the region.

2.2. Hydrological Simulation

SWAT [26] is a semi-distributed, time continuous watershed simulator operating on daily and
sub-daily time steps. The model has been developed to quantify the impact of land management
practices in large and complex watersheds coupling land- and routing-phases in the hydrological cycle.
Spatial parameterization of SWAT is performed through dividing the watershed into subbasins and
further into hydrological response units (HRU) by overlaying soil, landuse, and slope. Hydrological
processes include surface runoff, percolation, lateral flow, flow to shallow and deep aquifers, return
flow to streams, potential evapotranspiration, snow melt, and transmission loss. A more detailed
description of SWAT is given in Neitsch et al. [27]. In this study, we used ArcSWAT 2012.10.1 (Revision
591), where the ArcGIS version 10.3.1 environment was used for project development.
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Figure 1. Left: the Karkheh River Basin and its location on a map of Iran. Right: the figure shows
elevation, main river, and nine outlets (O1-09) used in calibration.

2.3. Model Calibration and Parameterization

The SWAT model was calibrated using the SUFI-2 algorithm in the SWAT-CUP (SWAT calibration
uncertainty procedures) software [28]. SWAT-CUP can be used for sensitivity analysis, multi-site
calibration, and uncertainty analysis. SUFI-2 is an iterative algorithm. It maps all model uncertainties
on the parameter ranges. The overall uncertainty in the output is quantified by the 95% predictive
uncertainty (95PPU) calculated at the 2.5% and 97.5% levels of cumulative distribution of an output
variable obtained through Latin hypercube sampling. In this study, we used bR? as the efficiency
criterion (g) for comparing the simulated and observed discharge values defined as [29]:

{ b|R? for |b] < 1
A (1)
|b|”"R* for |b| > 1
where R? is the coefficient of determination and b is the slope of the regression line between the
simulated and measured data. For multiple outlets, the objective function © is formulated as:

Z w;gi )

1w11

where 7 is the number of discharge outlets; and w; is the weight for station i which is set to 1 for all
stations. The goodness-of-fit and the degree to which the calibrated model accounts for the uncertainty
are assessed by r-factor and p-factor. The p-factor is a fraction of measured data bracketed by the 95PPU
band and varies from 0 to 1, and the r-factor is the average width of the 95PPU band divided by the
standard deviation of the measured variable. A value around 1 is targeted for this parameter [28].
These two indices can be used to judge the strength of the calibration and prediction uncertainty.
A larger p-factor can be achieved at the expense of a larger r-factor. Hence, often a balance must
be reached between the two. When acceptable values of r-factor and p-factor are reached, then the
parameter ranges are considered to be the calibrated parameter ranges. Abbaspour et al. [17] mentioned
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that p-factors larger than 0.7 and r-factors smaller than 1.5 are adequate. However, this also depends on
the scale of the project and the adequacy of the input. The literature shows that a p-factor larger than
0.5 is still acceptable [16,30].

2.4. Data and Model Setup

For the study area, a DEM map was obtained from the Shuttle Radar Topography Mission with
a spatial resolution of 90 m [23] (Figure 1). The soil map was obtained from the global soil map of
the Food and Agricultural Organization (FAO) of the United Nations, which provides data for 5000
soil types comprising two layers (0-30 cm and 30-100 cm depth) at the spatial resolution of 10 km.
Of these, 17 soil types were used in our study area. Other soil variables such as hydralic conductivity
and bulk density were obtained from the works of Schuol et al. [31]. Four sets of daily climate data
(C1, C2, C3, C4) and two landuse maps (L1, L2) were obtained from different sources as described in
Table 1.

Table 1. Description of climate and land use data for the Karkheh River Basin (KRB).

Data Sources Description

Iranian Ministry of Energy database; local observation

cl data based on ground level measurement [32]

Iranian Meteorological Organization database; local

8 C2  observation data based on ground level measurement

3 S (http:/ /www.irimo.ir/eng/index.php)

g (% Modeling grid cell centroids data obtained from Variables used are daily
% Rl GFDL-ESM2M (Geophysical Fluid Dynamics precipitation’ maximum
B % 3 Laboratory of national oceanic and atmospheric and minimum

‘g administration—Earth System Model) General temperature

Circulation Model (GCM) climate model with
0.5° x 0.5° resolution—Global level [33]

Merged from selected stations in C1 and C2 based on
C4  their performance in discharge simulation—Details
illustrated in Section 3.1 and Figure 2

United States Geological Survey (USGS) Global Land
L1 Cover Characterization (GLCC) database [34] with
90m resolution for year 1997

Classification according
to Figure 2e and Table 2

Created from Indian Remote Sensing-Linear P6
(IRS-P6) satellite with Linear Imaging and Self
Scanning (LISS-IV) sensor, IRS-P5 satellite with

L2 panchromatic cameras, Enhanced Thematic
Mapper+2001 (ETM+2001) Landsat, and 3300 field
sampling points [35] with 90m resolution for year
2009_ENREF_34

Landuse

Classification according
to Figure 2f and Table 2

C1, C2, and C4 are based on observation data and C3 is from a GCM (General Circulation Model)
model (Figure 2). For C3, the daily rainfall was bias corrected using the nearest locally measured
stations from C1 and C2. We used a simple ratio method, in which for each month, we divided the
average GCM data by the observed data and then divided the daily GCM data by this factor to obtain
the daily rainfall data.

The locations and the numbers of climate stations (or grids) within the study region differ from one
dataset to the other (Figure 2a—d). The seasonal precipitation depicts some spatial difference among the
four databases (Figure S1) mostly in the upper parts of KRB compared to the lower regions. C1 shows
the lowest amount of winter precipitation in the western KRB compared to the other databases where
the amount of precipitation inceases to above 80 mm month~!. The spring precipitation shows
approximately similar distribution in all databases except in C3, where slightly high precipitation
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occurs in northern KRB (Figure S1). Less differences are noticed in the summer and fall precipitations.
Despite approximately similar spatial distribution for the seasonal percipitation, the yearly temporal
variations are not the same for all four sources of climate data (Figure S2). For example, relatively high
precipitation is noticed during 2000-2004, as well as in year 1987 for C3. The average temperature
shows similar values in four sources in the southern KRB in all seasons with the exception of summer
temperatures in C3 (Figure S3). In the upper KRB, C3 shows slightly higher temperatures mostly in
the western side (Figure S3).

(INumber of grids:31
L

(H12

Crop land
[ Grassland
[ Shrubland
Il Savanna
I Forest
Waterbody
Irrigated cropland
Baren or sparsly vegetated
° Il Urban Residential medium density

(d) C4
number of stations: 15
@®  Stations from C2|

@  Stations from C1

Figure 2. (a—d) The location of climate station in the four sources of climate data C1, C2, C3, and C4.
(e,f) The land use classifications in the L1 and L2 maps.

L1 and L2 were produced with two different approaches in two different years, 2009 and 1997,
respectively. L2 was produced locally for the region of study, whereas L1 was obtained from the USGS
(United States Geological Survey) global land use map. Table 2 lists different classes of each map
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corresponding to the SWAT landuse database and the percentages of each land use type. For example,
L1 has 25.8% forest lands, while L2 has only 0.2%. On the other hand, L2 has 32.7% shrubland, which is
only 1.4% in L1. Both maps show approximately the same percentage of crop and irrigated crop lands,
but with different spatial distributions.

Table 2. Percentage of area in each category of two land use maps after being fed into Soil and Water

Assessment Tool (SWAT).
Land Use Categories L1 (%) L2 (%)

All forest types 25.8 0.2
Grassland 18.3 20.5

Crop land 19.2 224

Irrigated crop land 23.1 235

Barren and sparsely vegetated 0.0 0.5
Urban residential medium density 8.8 0.1
Shrub land 14 32.7

Savanna 2.0 0.1

Water bodies 14 0.0

The four climate databases and two land use maps were designated as C1L1, C2L1, C3L1,
C4L1, C1L2, C2L2, C3L2 and C4L2, from which eight SWAT models (i.e., eight configurations) were
constructed. Considering 8000 ha as the minimum drainage area, a total of 333 subbasins were created
for the study area. We used three slope classes (0-2%; 2—4%; and 4-99.99%). The threshold for land use,
soil, and slope were all set to 15%, which produced 1520 HRUs for L1 and 1450 HRUs for L2. Potential
evapotranspiration was calculated using the Hargreaves method.

For the calibration of all configurations, we used monthly values for the nine outlets (O1-O9
in Figure 1) recorded by IWPCO (Iran Water and Power Resources Development Company, Tehran,
Iran) [36]. We calibrated the models using parameters sensitive to discharge, selected based on the
initial model simulation, the guidelines suggested by Abbaspour et al. [17], and the experience gained
from previous work in the same river basin [37,38], as explained in Table 3. The snow parameter i.e.,
“maximum snow melt rate” was set to 5 mm C~! day~! based on the work of Vaghefi et al. [37] in all
eight configurations.

Table 3. List of parameters included in the calibration of the eight different configurations and
their description.

Parameter Definition Initial Values
r_ CN2.mgt SCS (Soil Conservatl(.m Service) ?L}noff curve number for Spatially variable
moisture condition II
Soil available water storage capacity . .
r_SOL_AWC.sol (mm H,O/mm soil) Spatially variable
v_ESCO.hru Soil evaporation compensation factor 0.95
r_OV_N.hru Manning’s n value for overland flow Spatially variable
v_ALPHA_BFEgw Base flow alpha factor (days) 0.048
v_GW_DELAY.gw Groundwater delay time (days) 31
v_GW_REVAP.gw Capillary flow from groundwater into root zone 0.02
r_REVAPMN.gw Threshold depth of water in the shallow aquifer (mm) 750
v_GWQMN.gw Threshold depth of water in the shallow aquifer 1000

required for return flow to occur (mm)

All analyses were conducted for the years 1977-2004 considering the first three years as a warm-up
period, 1988-2004 as calibration, and 1980-1987 as validation periods. We calibrated each model
using five iterations with 480 simulations in each iteration. After an iteration, the objective function,
the 95PPU band for all nine outlets, and the new ranges of parameters were calculated [17]. The best
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parameter of the current iteration was used to calculate the new range of parameters and modify the
previous ranges. The procedure continued until satisfactory p-factor and r-factor values were reached
or no further improvements were seen in the objective function.

2.5. Statistical Analysis: Multiple Comparison Test

We used the non-parametric Kruskal-Wallis test to compare if the bR? values in the nine outlets
obtained by different models significantly differed from each other or not. The test is based on
an analysis of variance using the ranks of the data values, not the data values themselves. The p-value is
the criteria used to estimate probability of rejecting the null hypothesis (Hy: all models are statistically
similar) of a study when that hypothesis is true. The conventional value for the p-value is set at 0.05.
The threshold shows that any p-value lower than 0.05 results in a statistically significant difference,
while values above 0.05 present statistically insignificant differences. More detail is given in Zar [39].

2.6. Analytical Framework

To analyze the differences in the performances of the eight model configurations, we used the
following general approach:

(1) Run each configuration before calibration and calculate the model efficiency criterion, bR?, [28] for
the nine discharge outlets. Examining model performance based on default parameters (Table 3)
is important in determining how the model should be calibrated and which parameters should
be adjusted [17]. Harmel et al. [40] also defined “initial evaluation of model performance” as
the first step to make the best judgment to guide model refinement. If important processes
or key input information are neglected, then the model should not be calibrated, because
wrong and meaningless parameters will be obtained. Furthermore, comparison of the pre-
and post-calibrated parameter ranges (uncertainties) indicates the information content of the
variable(s) used to calibrate the model. If we achieve a large reduction in the parameter
uncertainties, then the variable(s) used to calibrate the model (as they appear in the objective
function) have high information content.

(2) Calibrate each configuration in the same way against the monthly observed river discharges.
Then compare the efficiency criteria from after calibration with those from before.

(3) Perform a multiple comparison significance test [39] on non-calibrated and calibrated
configurations to identify configurations that are significantly different or similar to each other in
terms of bR? efficiency criteria and classify them into three classes (Class1 with high performance,
Class2 with medium performance, Class3 with low performance). The selection of the number
of classes and the classification were based on the null hypothesis and pair-wise comparison of
the configurations. We started with C1L1 and made a pairwise comparison with the remaining
seven models. Those that were significantly different from C1L1 were taken out of this class.
Now;, all other members of C1L1 except C1L1 were compared with each other pairwise. The set
that was similar with C1L1, but was different from the others was also taken out of this class.
We continued this until all members of a group were not significantly different in a pair-wise
comparison. We repeated this process for the configurations that were not in the first class.

(4) Calculate and compare the annual WY, BW, SW, and ET for each model using calibrated parameter
ranges obtained in the 480 simulations at the sub-basin level. The components were then
aggregated to the entire watershed level using the weighted area average method.

(5) Calculate and quantify the uncertainties of the water resource components WY, BW, SW, and ET
resulting from the different configurations using the coefficient of variation (%CV).
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3. Results and Discussion

3.1. Model Performance and Parameters

Initial evaluation of the different configurations based on the initial parameter values (Table 3)
showed significant differences in their performance compared to each other (Figure 3a). The efficiency
criteria (bR?) of all the configurations except C3L1 and C3L2 indicated that they could be improved by
calibration. Looking at the hydrographs and the bR? values of the nine outlets and also at the climate
stations that furnished the rainfall in their respective sub-basins, we noticed that C2L1 had higher bR?
in outlets O1-O3 (0.23, 0.11, and 0.31 respectively) than C1L1 (0.12, 0.08, and 0.15 respectively). We saw
the same patterns when we compared C1L2 with C2L2. We therefore constructed C4 (Figure 2d) by
combining the better performing climate stations from C1 and C2 (Figure 2d). To statistically compare
the eight configurations, a significance test was performed and the configurations were classified
into Class1, Class2, and Class3 based on the average bR? of nine outlets. For the pre-calibration runs,
C4L1 and C4L2 fell in Class1, C3L1 and C3L2 in Class3, and the other four in Class2 (Figure 3b).
While bR? was used to calculate the objective function and model classification, we also computed the
average Nash-Sutcliffe efficiency (NS) values of nine outlets [41] as a supplemental reference for the
evaluation of all configurations which also showed relatively low values (Table 4).

(a) ' —®— Classl|(b)
CILI -1 F -+ {1 CILI -~ —@— Class2|
—@— Class3
C2L1 L T F--+4 1 C2LI -
C3L1[{ [} A { C3L1}-e
C4L1 -] _FH { C4L1 -o-
CI1L2 -{ T F -1 1 CIL2 -
C2L2 -1 T F - -+ 1 C2L2 -
32 H { C3L2 e
C4L2 o I 1 c412 -
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
bR’ bR’

Figure 3. (a) The performance of the eight configurations in simulating discharge before calibration
(single model run). Red lines show the average bR* obtained from the nine outlets and the boxes
show the 25th and 75th percentiles and the whiskers show the maximum and minimum. (b) The three
performance classes obtained from the multiple comparison significance test before calibration. The dots
show the average bR? and the ranges indicate the standard error.

After calibration, the eight configurations showed significant improvement as indicated by bR?
(Figure 4a) compared to pre-calibration results (Figure 3a). Similar to pre-calibration, configurations
of the same climate datasets in the two different land use maps fell in the same class after calibration
(Figure 4b). This indicates the insensitivity of land use to discharge in our case, which also corroborates
the conclusion of Yen et al. [11] who found the same level of performance with different land uses after
calibration. In our region, it could also mean that the land use maps were not too different from each
other for most classes except shrub land and forest, which comprised about 30% of KRB, and urban
areas (with about 8.5%), and that their influence on discharge were not significant.

Overall, C1L1 and C1L2 showed the best performance. One can see that C1 with the fewest number
of climate stations (Figure 2a) performed better in combination with both land uses. SWAT assigns
to each sub-basin climate data from the nearest station. The C1 climate stations better represented
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the entire basin albeit with fewer stations (Figures S1 and S2). Hence, in this example, the number of
climate stations did not seem to have as important impact as the quality of the data in them.

C3L1 and C3L2 did not have satisfactory performance before and after calibration. This indicates
the poor quality of the C3 climate database, which was generated with the bias-corrected GFDL-ESM2M
(Geophysical Fluid Dynamics Laboratory of national oceanic and atmospheric administration—Earth
System Model) GCM model on 0.5° grid resolution for KRB. This suggests that the measured climate
data at a river basin level, which usually suffer from missing values and other quality problems,
still performed better for this region than the estimated global gridded data. Looking at the spatial
distribution of seasonal precipitation and temperature (Figures S1 and S3), one could see that there is
no significant difference among different climate datasets, however the temporal variability (yearly
precipitation) is noticeable (Figure S2). Many studies have assessed the impacts of gridded data for
simulating runoff [14,42,43]. The results showed that their quality vary significantly from one region
to the other. For example, Vu et al. [42] showed poor performance of the PERSIANN (precipitation
estimation from remotely sensed information using artificial neural networks) and TRMM (tropical
rainfall measuring mission) rainfall data compared to the station data.

(a) —— Classl ' ' (b)
CILI H [ =1 CILI{{—e— Class2 —-— 1
—&— Class3
C2L1 + (IrF - {1 C2L1¢ —o—
C3L1 H I} - {1 C3LI1} ==
C4L1 [T F -+ c4L1y —o=
cIL2 o I — P —o-
C2L2 F--C_H { C2L2} o
C3L2 T - | oL e
caL2 U NS -
0 012 0i4 OI.6 0.8 0 0.2 0.4 0.6 0.8
bR’ bR’

Figure 4. (a) The performance of the eight configurations in simulating discharge based on the best
simulation after calibration. The red lines show the average bR? obtained from the nine outlets,
the boxes show the 25th and 75th percentiles and the whiskers show the maximum and minimum.
(b) The three performance classes obtained by the multiple comparison significance test after calibration.
The dots show the average bR? values and the ranges indicate the standard error.

C4L1 and C4L2, which performed best before calibration, did not improve as significantly as C1L1
and CI1L2 after calibration and fell in Class2. This indicates that selection of the best performing
climate stations based on checking their performance prior to calibration might not work after
calibration. We noticed that the initial performance of O1-O3 was low in C1L1 and C1L2 compared
to C2L1 and C2L2. However, apparently this was related to the inaccuracy of the initial parameter
values. After parameter adjustment, they outperformed other configurations. The average NS values
of the nine outlets for calibrated configurations in Class1 are above 0.60, indicating good model
performance (Figure 4b). Configuration models in Class2 have slightly lower NS, especially in C2L2.
The reason is NS varies between —oo to 1, hence, one outlet with rather lower NS can lower the
average NS of the basin. Configurations C3L1 and C3L2 had negative NS values, indicating very poor
model performance.

The discharge hydrographs of the different configurations are shown in Figure 5 for the outlet O7
as an example, with the other outlets shown in the supplementary material (Figures S4-511). As shown,
more than 50% of the observed discharges are within the 95PPU bands depicted with green shades in
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all configurations, except C3L1 and C3L2, where significant overestimations can be noticed, especially
after 2000. A significant decrease is recorded in the observed values in the region at the end of the
period due to severe droughts occurring after 2000 [44]. This can also be noticed in the temporal
variation of rainfall for these datasets (Figure S2). All configurations except C3L1 and C3L2 could
capture such extreme situations.

The p-factor values for the calibration and validation periods were larger than 0.50 for
configurations of Class1 and Class2, indicating that more than 50% of the observed data were bracketed
by the 95PPU bands (Table 4). For these two classes, the r-factor was smaller than 1.5 during calibration
and validation, indicating reasonable prediction uncertainties.

|- 95PPU — Bestsimulation =~ —@— Observed dischargel

1500 07:CILI  Validation " Calibration
1000
500

1500 - 07:C2L1  Validation Calibration
1000 -
500

1500 07:C3L1 Validation Calibration
1000
500 (4

1500 07:C4L1 | Validation Calibration
1000
500

T
M: 1500 - 07:CIL2  Validation Calibration
= 1000 |
o
&
2 500
=
2
A 1s500f 07:C2L2  Validation Calibration
1000
500
1500
1000
500
1500 07:C4L2  Validation Calibration

1000
500

1980 1984 1988 1992 1996 2000 2004
Year

Figure 5. Comparison of simulated and observed discharge values in the O7 outlet (Figure 1) during
the calibration and validation periods. The green shaded region is the 95PPU band. The best simulation
(i-e., the simulation with the highest bR?) is shown by the blue line.

Table 4. The performance of the eight configurations during the calibration and validation periods.

Calibration Period 1988-2004 Validation Period 1980-1987
Configuration

NS p-factor r-factor NS p-factor r-factor
C1L1 (Class1) 0.60 0.68 1.19 0.61 0.59 1.32
C2L1 (Class2) 0.51 0.54 1.23 0.50 0.52 1.39
C3L1 (Class3) -3.5 0.41 1.77 -0.5 0.25 1.05
C4L1 (Class2) 0.49 0.64 1.12 0.51 0.58 1.36
C1L2 (Class1) 0.62 0.71 1.37 0.60 0.67 1.50
C2L2 (Class2) 0.46 0.54 1.47 0.48 0.50 127
C3L2 (Class3) -1.69 0.37 0.60 -1.75 0.38 1.32

CAL2 (Class2) 0.51 0.65 1.15 0.53 0.60 1.27




Water 2017, 9, 709 110f 16

After calibration, each parameter attained a different range (Figure 6). Yang et al. [45] showed
that different optimization algorithms lead to differently-calibrated parameter ranges. Here, it is seen
that different existing input datasets also lead to differently-calibrated parameter ranges for the same
region. This highlights the problem of the “conditionality” of calibrated models which is caused by
the multimodality of the response surface of the objective function as discussed by Abbaspour [46].
Overall, the ranges of CN2 are relatively similar in all configurations (except C1L2). Similar patterns
for CN2 were found in the study of Strauch et al. [19] in the Pipiripau River in Central Brazil where
the fitted values of CN2 were relatively similar for all rainfall input models.

Initial range Initial range | Initial range |
CILI CIL1 CIL1
C2L1 C2LI C2L1
C3L1 C3L1 C3L1
C4L1 C4L1 C4L1
CIL2 CIL2 CIL2
C2L.2 C2L2 C21.2
C3L2 C3L2 C3L2
412 Cc4L2 C4L2
—0.40 0.0 0.40 -0.40 0.0 0.40 0.1 0.5 1.0
r CN2.mgt r SOL_AWC sol v_ESCO.hru
CILI CILI CIL1
C2L1 C2L1 C2L1
C3L1 C3L1 C3L1
C4L1 C4L1 C4L1
czfl e CiL2 ciL2
212 Cc2L2 C2L2
C3L2 C3L2 C3L2
C412 J c4L2 c4L2
=095 -0.50 0.0 0.50 0.95 0.02 0.50 1.00 50 250 500
r OV Nhru v_ALPHA BF.gw v GW DELAY gw
CILI CILI
C2L1 C2L1
C3L1 C3L1
C4L1 C4L1
CIL2 CIL2
C212 212
C3L2 C3L2
412 Cc4L2
0.02 0.10 0.20 -04 -02 0 02 04 006 50 2000 4000
v_GW _REVAP.gw r REVAPMN. gw v_.GWQMN.gw

Figure 6. The initial (vertical lines) and final ranges (grey bars) of the parameters considered in the
calibration. The dots show the best parameter sets based on the best value of the objective function.

“ ”

v_" indicates an absolute change where the initial parameter value is replaced by another value. “r_
indicates a relative change where the initial parameters are multiplied by (1 + a given value).

The C1L1 and C1L2 configurations have statistically the same calibration results. However, it is
important to note that the CN2 of these configurations have different ranges from each other, indicative
of different hydrological processes in the region which are explained by the parameters. For example,
while the “best” relative value of CN2 (e.g., the value of CN2 where the objective function is maximum)
for C1L2 was —0.25, it was 0.05 for C1L1. The actual CN2 values for sub-basin #35 (obtained from
average CN2 of all HRU in this sub-basin) as an example were 53 and 78, respectively. The latter
represents a surface-runoff-dominated system, while the former is an infiltration-dominated system.
Generally, non-uniqueness in the domain of parameters is an important problem in the calibration
of distributed models [47]. This can partly be resolved by better understanding of the watershed
hydrology leading to constraining ranges of parameters in the objective function.

Other parameters showed larger variations among different configurations in terms of both ranges
and best fitted values (Figure 6). For example, significant variability is found among the ranges and
best fitted values of GW_REVAP (groundwater parameters), indicating that different configurations
attempt to fit differently. Our objective function is based on comparing observed and simulated
discharge values and contains no measured variables that directly explain the status of groundwater
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processes. Therefore, a high degree of uncertainty remained in the model relative to groundwater
parameters. Overall, we found that there is a high degree of parameter uncertainty, which would not
be apparent if only a single dataset was used. Use of different data sources adds a new dimension
to the existing category of “input data uncertainty” which mostly stem from potential errors in data
collection or incomplete data.

3.2. Estimation of Water Resource Variables

The water resource components simulated with the calibrated model configurations show quite
different behaviors for WY, BW, SW, and ET (Figure 7a-d) due to differences in the parameters of each
configuration. Large ranges of values were obtained for different variables. For example, WY varies
between 80-270 mm year ! and SW varies between 30-58 mm year~!. We do not have observed
records for variables such as SW and ET to judge their reliability, but we can comment on their
differences in different configurations. For example, C1L1 from Class1 and C3L1 from Class3 have
approximately the same SW values, whereas SW based on C4L1 from Classl is more similar to the
models of Class2.

BW and WY had similar patterns of classification i.e., models with similar WY also showed similar
BW. This similarity between BW and WY is related to the “deep aquifer percolation fraction (DAP)”
parameter assumed to be 5% for arid regions like KRB. BW is obtained from the summation of WY and
DAP. In this paper, DAP was a constant fraction which was significantly smaller than WY. Therefore,
BW and WY showed similar patterns. ET is mostly influenced by temperature. Therefore, it shows
similar values in models of the same climate datasets.

Another observation is that in all models and for all water resource components except SW,
land use seems to have no significant impact e.g., C4L1 and C4L2 produced approximately the same
results for WY, BW, and ET. Likewise, WY and BW of C1L1 and C2L1 were slightly smaller than C1L2
and C2L2, respectively, and ET of C1L1 and C2L were slightly larger than C2L1 and C2L2. Models
of Class2 also showed similar results with respect to different land uses, indicating that in this work,
land use is not an important factor in water resource components, with the exception of the soil water.
This might be partially due to approximately similar percentage of areas allocated to each land use
class in the L1 and L2 maps for most classes, except shrub land and forest, which were less than 30%
different (Table 2), resulting in variability mostly in SW. Besides, while the spatial distribution of each
class indicates some differences (Figure 2e,f), the percentage remained similar.

CILl} —eo— (@] CILI — . g}as% ®)
c2L1 — 1c€2L1 —*— |+ Classy |
C3L1 —e— 1 C3L1 —e—
C4L1 —e 4 caL1 ——
CI1L2 — 41 CI1L2 ——
C2L2 — 41 C2L2 ——
C3L2 —e— 1 C3L2 —o—
C4L2 —— . ) 1 C4L2 —_—— ) g
50 100 150 200 250 300 350 50 100 150 200 250 300 350
WY [mm yr lJ BW [mm yr 'J
CIL1 — (c)1 CIL1 —— (d)
C2L1 ¢ —_— 1 C2L1 ——
C3L1 — 41 C3L1 —o—
C4L1 — 1 C4L1 —e—
CI1L2 — 1 CIL2 ——
C2L2 | —e— 4 C2L2 ——
C3L2 —e— 1 C3L2 —e—
C4L.2 —_— 1 C4L2 —— 1
30 40 50 60 70 50 100 150 200 250 300 350
SW [mm yrﬁl] ET [mm yril]

Figure 7. Range of four water resources components; (a) WY = water yield; (b) BW = blue water;
(c) SW = soil water; (d) ET = evapotranspiration obtained from eight calibrated configurations during
the studied period. The three colors identify configurations with high (Class1: green), medium (Class2:
blue), and low (Class3: red) performance in simulating discharge values as displayed in Figure 4b.
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3.3. Uncertainty in Water Resource Variables

Next, we investigated the uncertainty in the water resource components by calculating the
coefficient of variation (%CV) using outputs from the eight calibrated configurations in 480 simulations.
As illustrated in Figure 8, the uncertainty due to multiple input datasets is larger for ET and SW than
for BW and WY. The median value of CV is 45% for SW and approximately 46% for ET. For WY and
BW, this is about 31.5% and 32%, respectively. WY is directly related to the river discharge used in
the objective function definition, but SW and ET are not directly adjusted based on observed data,
therefore their estimates contain larger uncertainties.

|
R _— |
60 ' ' [ 7
I I | T
| |
' ' —
> L 1 | i
g 40 ; |
X |
1
20+ : I .
' |
1
1 1 1 |
wY BW SW ET

Figure 8. Comparison of the uncertainty in the water resource components stemming from the use of
eight different input datasets. The boxplot shows the 25th and 75th percentiles of coefficient of variation
(%CV) obtained from 480 simulations and the whiskers show the maximum and minimum %CV.

4. Conclusions

Different input datasets usually exist for modeling the hydrology of a watershed. As analysts
usually consider only one database in their analysis, the uncertainty due to multiple existing databases
goes unnoticed. Our findings here are based on model configurations built with different climate data
and land use maps and calibrated against nine outlets using bR? as the objective function. All calibrated
models were compared to each other in terms of simulating different components of water resources.
The following points were highlighted in this research:

(i) Multiple model configurations built for a region with datasets coming from different sources produce
significantly different parameter sets after calibration, albeit with similar calibration results.

(ii) Subsequently, water resource components are significantly different for different configurations,
resulting in large model output uncertainties.

(iii) Discharge prediction seems to be less sensitive to different land uses, which is the same conclusion
made by Yen et al. [11]. Additionally, the present study pointed to the impact of both land use
and climate data on different components of water resources, such as SW and ET.

(iv) The uncertainty is larger for SW and ET compared to WY. Decreasing uncertainty for these
components relies on observed records data.

Our findings, therefore, highlight a significant level of uncertainty in modeling results stemming
from uncertain data inputs (used in models) for a region. Ajami et al. [8] state that neglecting
different aspects of uncertainty during the calibration of hydrological models may result in inconsistent
outputs. We hence emphasize that it may be prudent for modelers to pay more attention to the
existence of uncertainty from multiple sources of data (especially climate data) in combination with
other sources of uncertainty such as spatial data resolution [48], objective functions, or optimization
algorithms [38]. We also suggest that the calibration of models against more observed variables such
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as evapotranspiration or soil moisture may help to select better models. It is worthy to note that local
decision makers and engineers should compromise between the expected accuracy of the model and
the time and resources invested in data collection and assimilation.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/9/709/s1.
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