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Abstract: Since the climatic features of South Korea are highly complex and time variable,  
spatio-temporal-based drought frequency analysis is a prerequisite for drought risk management. 
The spatial extent of drought risk analysis in a bivariate framework has scarcely been applied in 
South Korea before. In this study, the spatio-temporal changes in drought events are investigated 
at 55 stations across South Korea during 1980–2015. A variety of probability distributions and 
copulas are applied, and the best fitted is selected on the basis the goodness of fit. The spatial 
distributions of primary and secondary return periods showed a high risk of drought due to the 
unusual precipitation pattern in the western coast areas and at Uljin station and a relative low risk 
of drought in the northwestern portion and surrounding areas of Yeongju, Uiseong, Boeun and 
Daejeon stations. Overall, the spatial distribution patterns of primary and secondary (Kendall) 
return periods are similar. However, their applicability changes according to the type of drought 
risk to be considered. The spatio-temporal quantification of the return period can be used for 
establishing the proper water demand and supply system and helps to overcome the challenges 
faced in the hydrometeorological regulations of reservoirs in the southwest coast. 

Keywords: spatio-temporal; drought frequency analysis; drought variables; return period; drought 
risk; copulas 
 

1. Introduction 

Drought is a natural phenomenon in which the natural water availability for a region is 
unusually low over an extended period, and the whole precipitation cycle is affected. According to 
studies based on changes in rainfall patterns in South Korea, an abrupt increase in greenhouse gases 
is the major cause of heavy rain, severe drought and heavy snow in some regions [1,2]. The Palmer 
Drought Severity Index (PDSI) was calculated using the climate change scenario based on the 
regional climate change model for the period of 1971–2100 [3]. It was concluded that the drought risk 
is likely to increase in South Korea despite an increase in general precipitation during the 21st 
century. The Standardized Precipitation Index (SPI) and PDSI were also studied together to reflect 
the seasonal trends of drought across South Korea [4]. 

In probability methods, the complex phenomena of drought should not be identified by only 
one characteristic of drought. The stochastic nature of droughts should be expressed using different 
drought variables. Drought identification and characterization are primary requirements for drought 
frequency analysis. There are various indices that have been used to measure the drought 
characteristics, and their use depends on the type of results needed. Drought indices were also 
derived from other hydrological and ecological variables [5–7]. Drought indices based on different 
climatic and hydrological variables may depict different regional and temporal patterns [8]. These 
indices are mostly based on a deficit in precipitation or discharge [9] to identify the drought. The 
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precipitation deficit-based drought indices are more reliable and effective because they can directly 
reflect the deficit in rainfall based on a predetermined threshold. Secondly, despite orographic and 
land friction effects, precipitation is likely to perform more homogeneously than streamflow data. In 
addition, precipitation has often been recorded for a longer time period and tends to be less affected 
by human activities than streamflow data. Therefore, in this study, a drought event is defined using 
the truncation level approach applicable to precipitation time series and of direct relevance to the 
water industry and to the environmental demands of the river system. The truncation level approach 
defines droughts as periods during which the rainfall is below a certain truncation level [10]. 

Due to the complex nature of meteorological drought events, one drought variable is unable to 
provide a comprehensive evaluation. A bivariate distribution should be derived to express the 
correlated drought variables. In the case of flood studies, bivariate normal distributions [11], bivariate 
exponential distributions [12] and bivariate gamma distributions [13] or rainfall-runoff hydrological 
models [14,15] are often applied. The major drawbacks of these bivariate distributions are that the 
individual behavior of random variables must be characterized by the same parametric family of 
univariate distributions [16]. In the case of drought studies, the joint distributions are analytically 
acquired, by either assuming drought characteristics to be independent identically random  
variables [17] or assuming that they belong to the same marginal distribution function and have 
explicit bivariate forms (e.g., bivariate normal, bivariate exponential, bivariate gamma) [18]. 
However, the two above stated assumptions are not satisfied in most of the cases, because the drought 
variables (drought duration and severity) are highly correlated and may belong to different marginal 
distributions. Copula theory provides the solution of the above stated problems. The copula can 
preserve the dependence structure and different distribution characteristics of the drought variables. 
In addition, joint distributions of drought duration and severity can be derived using the 
nonparametric kernel estimator method [19] and the entropy-based method [20]. 

Copula theory, introduced by [21], has been used to join univariate distribution functions to 
form multivariate distribution functions based on the dependence structure among random 
variables. Therefore, during the last decade, copulas have emerged as a new multivariate modeling 
method in hydrology [22]. The commonly-used copulas in hydrology belong to two types: elliptical 
type (normal and Student t) and the Archimedean type (Clayton, Gumbel, Joe, Frank and  
Ali-Mikhail-Haq) [22,23]. For fitting of a copula, several marginal distributions have been used to fit 
drought duration and severity. Those marginal distributions include exponential (exp), gamma 
(gam), generalized extreme value (gev), generalized logistic (glo), generalized normal (gno), general 
Pareto (gpa), Gumbel (gum), lognormal (ln3), Pearson Type 3 (pe3) and Weibull (wei). The 
parameters of copulas are usually estimated using the maximum pseudo-likelihood or the inversion 
of Kendall’s method [23]. To select the appropriate marginal distribution of copulas, the goodness of 
fit is usually applied using the least root mean square error (RMSE), the Kolmogorov–Smirnov (KS) 
test, the Anderson–Darling (AD) test, the Akaike information criterion (AIC), ordinary least squares 
(OLS) and the Bayesian information criterion (BIC) [24]. 

2. Materials and Methods 

The precipitation in South Korea has a high spatial and time variability [25]. Furthermore, most 
of the precipitation in South Korea falls during the summer season; this is because of the coincident 
typhoon season in the western North Pacific. Due to the complex topographical and climatic features 
of South Korea, the absence of the ability to recognize spatial characteristics is one of the main 
obstacles of drought analysis. Since the effect of drought is slowly moving to adjacent areas and thus 
spatio-temporal analysis of drought is gaining more importance among engineers and hydrologists 
for the design, planning and management of the water resource structure, it is necessary to 
investigate the spatial and temporal characterization of drought across South Korea. In this paper, 
drought risk analysis using ten commonly-used univariate probability distributions and six copulas 
(elliptical and Archimedean) was employed to analyze the spatial and temporal changing properties 
of drought. In addition, the top twenty historical drought events were selected for temporal analysis 
and for analyzing the changes in different bivariate return periods. 
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2.1. Study Area and Data 

The Korean Meteorological Administration (KMA) manages climatological data at over 70 
rainfall stations throughout South Korea. This study collected monthly precipitation data over 55 
stations for more than 35 years (1980–2015). Only 55 rainfall stations were selected because of  
non-availability or missing precipitation data at a few rainfall stations. The Standardized 
Precipitation Index (SPI) proposed by [26] was used in this study for identifying the duration of 
drought events and to evaluate their severity. SPI was computed on the basis of fitting long-term 
rainfall data to the gamma distribution on any desired time scale, namely, 3 months, 6 months,  
12 months and 24 months. The parameters of the gamma distribution are computed through the 
maximum likelihood estimation method. This fitted gamma distribution was then transformed to a 
standard normal distribution with the mean of zero and standard deviation of one [26]. The 
advantage of the SPI approach is that it allows a reliable and relatively easy comparison of 
precipitation deficit in the desired period between different locations and climates. This is because, 
in SPI, the rainfall is already normalized and compares the current rainfall with the average. In this 
study, the SPI time scale was chosen as 6 months, just as the time scales of dry and wet alterations in 
South Korea. 

The characteristics of drought were extracted using the theory of run [10]. The theory of run 
method was proposed to identify drought duration and severity on the basis of the values that are 
below the selected truncation level. Therefore, run theory suggested a way to calculate the drought 
variables (drought duration and drought severity). The detailed description of the theory of run is 
provided by [10,27]. The duration of any drought was defined as the period of rainfall deficit, i.e., the 
cumulative time of negative  values preceded and followed by positive  values. The severity of 
any drought period starting at the -th month was defined as; S =  ∑ |− | . In other words, 
cumulated SPIs during the drought duration, defined by [26], are used to measure the magnitude of 
drought event and called the drought severity. In this study, −0.99 was selected as the truncation level 
in the run analysis. Therefore, the drought duration is the period when the SPI value was below −0.99, 
and the drought severity is the cumulative deficit during that drought event. 

2.2. Marginal Distributions and Copulas 

Copula distributions and cumulative distribution functions (CDFs) of probability distributions 
are shown in Tables 1 and 2, respectively. In this study, the L-moment method is used to estimate the 
parameters of these marginal CDFs for drought duration and severity. Candidate probability 
distributions considered for this study are exponential (exp, 2 parameters), gamma (gam, 2 
parameters), generalized extreme value (gev, 3 parameters), generalized logistic (glo, 3 parameters), 
generalized normal (gno, 3 parameters), general Pareto (gpa, 3 parameters), Gumbel (gum, 2 
parameters), lognormal (ln3, 3 parameters), Pearson Type 3 (pe3, 3 parameters) and Weibull (wei,  
3 parameters). 

The root mean square error (RMSE) and Kolmogorov–Smirnov (KS) test [28] were used to choose 
the best fitted marginal distribution. 

Let X = (X1, X2,..., Xn) be an n-dimensional random vector with a continuous marginal 
distribution function (CDF) F1, F2,…, Fn. [16] has the relationship between CDF H of X explained  
as follows: ( ) =  ( ), ( ), … ( ) ∈  (1) 

where unique function C: [0, 1] → [0, 1] is called the copula. The construction of a multivariate joint 
distribution model for H is accomplished in two parts: computation of the marginal CDF  
(F1, F2,…, Fn) and computation of the copula model (C). 

In this study, the parameters of copulas were estimated using the maximum  
pseudo-likelihood [23] method. Candidate copula families used for the analysis were the elliptical 
and Archimedean copulas. Elliptical copulas include normal (Gaussian) and Student’s t, and 
Archimedean copulas include Clayton, Gumbel, Joe and Frank (Table 1). The parametric  
bootstrap-based Cramér–von Mises test (Sn) [29] and Akaike information criterion (AIC) [30] were 
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used to assess the goodness of fit of all copulas. Bivariate joint distributions are estimated using the 
Copula package in R programming. 

Table 1. List of copulas used in this study. 

Copulas Bivariate Copula ( , ) Parameters 
Archimedean copulas 

Clayton ( + − 1) /  ∈ [−1,∞)\{0}
Frank − 1  1 + ( − 1)( − 1)− 1  ∈ [−∞,∞)\{0} 

Gumbel exp −( + ) / ∈ [1,∞) 
Joe 1 − [(1 − ) + (1 − ) − (1 − ) (1 − ) ] / ∈ [1,∞) 

Elliptical copulas 

Student’s t 

12 (1 − )( )( ) 1 + − 2 +(1 − )  

where  ( ) =  Г(( + 1)/2)√ Г∞
(1 + / ) ( )⁄ , ≠ 0 

ϑ > 2, ∈ (0, 1] 
Gaussian Φ  (Φ ( ), Φ ( ), ) −1 ≤ ≤ 1 

Table 2. List of probability distributions used in this study. 

Distribution CDF Parameters 
Exponential (exp) ( ) = 1 − ( ) / : location, : scale 

Gamma (gam) ( ) = Г( )  : shape, : scale 

Generalized extreme 
value (gev) 

( )=  exp −exp ln − ( − )
 : shape, : scale, : location 

Generalized logistic 
(glo) 

( ) =  11 + exp ln 1 − ( )  : shape, : scale, : location 

generalized normal 
(gno) 

( ) =  − ln 1 − ( − )
 : shape, : scale, : location 

Generalized Pareto 
(gpa) 

( ) =  1 − exp ln 1 − ( − )
 : shape, : scale, : location 

Gumbel (gum) ( ) =  exp −exp − ( − )
 : scale, : location 

Lognormal (ln3) ( ) = (ln( − ) − μ)
 : lower bound, μ: mean, : standard deviation 

Pearson Type 3 (pe3) ( ) = exp(− )Г( )  
: scale, : shape, : lower bound 

Weibull (wei) ( ) =  1 − exp − ( − )
 : scale, : shape, : location  
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2.3. Return Period in a Bivariate Framework 

Estimation of the return period has special importance in the planning and management of water 
resources. Let D denote the drought duration and S denote drought severity, then the return period 
in univariate settings can be defined as [31,32]: = 1 − ( ) (2) = 1 − ( ) (3) 

 and  indicate the return period of the drought duration and severity, respectively. ( ) 
and ( ) indicate the cumulative distribution functions of drought duration and drought severity, 
respectively. For annual streamflow series, = 1. Here,   can be calculated using the theory of 
run and the Markov theorem [33]. = 1 + 1

 (4) 

where = ( ≤ −0.99| > −0.99)  and =  ( > −0.99| ≤ −0.99 . The 
unit of  is months. According to [18], there are two cases of the bivariate return period: (i) D ≥ d 
and S ≥ s (drought variables exceeding another specific value); (ii) D ≥ d or S ≥ s (one of the drought 
variable exceeding another specific value). 

, =  1 − ( ) −  ( ) + ( , ) = 1 − ( ) − ( ) + ( ( ), ( )) (5) 

, =  1 − ( , ) = 1 − ( ( ), ( )) (6) 

where (  ( ),  ( ))  indicates the copula-based joint distribution function of the drought 
characteristics. ∧ denotes “and”, and ∨ denotes “or”. 

2.4. Kendall Return Period 

The standard definition of the return period may lead to under- or over-estimation of the correct 
values, and another definition of the bivariate return period was introduced by [31]. The Kendall 
return period is the average time between the occurrences of two supercritical drought events [34,35]. 
The Kendall return period is also known as the secondary return period. The primary return period, 
the one usually adopted in the applications for the designing of drought, may only provide partial 
and vague information about the realization of the events of interest. In fact, it only predicts that a 
critical event is expected to appear once in a given time interval (i.e., an average forecast). However, 
it would be more important to be able to calculate (1) the probability that a supercritical (destructive) 
event will show up at any given realization of the process (e.g., for any storm) and (2) how long will 
it take, on average, for a supercritical event to appear. As a fundamental result, both questions can 
now easily be answered using Kendall’s return period: the first one by ( ) defined below and the 
second one by considering the secondary return period given by Equation (7). The secondary return 
period provided a precise indication for performing risk analysis and may also yield useful hints for 
doing numerical simulations [36]. In addition to this, the use of  and the secondary return period 
is more the appropriate approach to problems of (multivariate) risk assessment. In this study, we also 
adopted the secondary return period for the evaluation of drought risk within South Korea and 
compared with the joint return periods computed based on the routine computation procedure. To 
calculate Kendall’s return period, the occurrence probability should be computed first. Kendall’s 
distribution  can be defined as ( ) = ( (  ( , ) ≤ )). The related secondary return period 
was obtained via: 

,∗ =  1 − ( ) = 1 − ( ( ( , ) ≤ )) (7) 
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 indicates the critical probability level, and  denotes the Kendall distribution function. The 
 for copulas of Archimedean family is as follows: ( ) = − ( )́ ( ) (8) where ́ ( ) denotes the right derivative of the generating function ( ). For instance, this function 

for the Gumbel–Hougaard copula can be defined as; ( ) = − . ( ) ∈ (0, 1) (9) 

The critical probability levels (t) were computed as follows: 

= 1 − 1,  (10) 

Understanding Kendall’s return periods from a practical point of view is easier. Suppose ,∗  is 
the critical return period specified via the design requirements. In the case of water resource 
management, the engineers are always interested in designing a water-supply system that can deliver 
a suitable amount of water under a specified extreme drought event that (on average) occurs once 
every ,∗  years. Then, by inverting Equation (7), a critical probability level can be computed, and 
subcritical, non-threatening events can also be identified. 

The Kendall distribution function related to the Clayton copula can be expressed as follows: ( ) = + − 1 ∈ (0, 1) (11) 

Similarly, the value of  can be extended to Frank copulas: 

( ) =  + − 1 ∈ (0, 1) (12) 

The detailed description of the  function for other copula families can be found in [23]. The 
coherent notation of the multivariate threshold and the total order in multidimensional Euclidean 
spaces was introduced by [31], used for the calculation of the secondary return period. They 
introduced notation for the multivariate quantile and purposed different methods to identify critical 
design events in the presence of several dependent variables. 

3. Results 

3.1. Drought Characteristics across South Korea during 1980–2015 

Based on the SPI truncation level approach, different drought characteristics were extracted at 
55 rainfall stations (Table 3). These characteristics include total number of drought events, mean 
drought duration, mean drought severity and drought event of longest duration at each rainfall 
station. The most severe drought lasted for 13 months at Jecheon rainfall station with the average 
drought duration and severity values of 3.43 months and 5.14, respectively. However, the total 
number of recorded drought events at Jecheon is 23 (relatively low). The maximum of 33 drought 
events was recorded at Tongyeong rainfall station. However, the average duration and severity 
values at Tongyeong are relatively low (1.97, 2.78, respectively), because most of the drought events 
have a duration of one or two months. 

The regional frequency analysis using the L-moment method is suitable for stationary data. 
Therefore, identifying the trends and significance of non-stationarity is important in drought 
frequency analysis. In this study, the Mann–Kendall (M-K) nonparametric trend detection method 
was used to analyze the trends in drought series on the basis of SPI values. The significance of the 
trends was evaluated using the 95% confidence interval. The M-K trend test results showed that most 
of the stations are characterized by non-significant changes in drought duration and severity. 
Therefore, the null hypothesis was accepted, and the p-value showed that there was no evidence to 
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reject the null hypothesis (there is no trend). Overall, the distributions of changes in drought duration 
and drought severity are spatially consistent across South Korea. 

Table 3. Characteristics of drought during 1980–2015 at 55 rainfall stations. 

Station Drought 
Events 

M.D M.S Mx Station Drought 
Events 

M.D M.S Mx 

Sokcho 29 2.31 3.37 9 Ganghwa 24 2.17 3.51 11 
Daegwallyeong 28 2.36 3.31 9 Yangpyeong 28 2.46 3.65 9 

Chuncheon 31 2.29 3.35 8 Icheon 21 2.90 4.66 7 
Gangneung 29 2.45 3.55 7 Inje 24 2.96 4.33 8 

Seoul 24 2.79 4.18 10 Jecheon 23 3.43 5.14 13 
Incheon 32 2.19 3.16 10 Boeun 29 2.31 3.43 8 
Wonju 24 2.50 4.08 8 Cheonan 28 2.32 3.50 7 
Suwon 26 2.38 3.63 7 Boryeong 29 2.69 4.12 7 

Chungju 27 2.59 3.90 7 Buyeo 30 2.37 3.46 8 
Seosan 28 2.61 3.82 6 Geumsan 30 2.77 4.11 8 
Uljin 25 2.92 4.16 6 Buan 30 2.70 3.98 10 

Cheongju 27 2.52 3.99 7 Imsil 26 2.85 4.54 9 
Daejeon 31 2.26 3.40 7 Jeongeup 30 2.63 3.83 9 

Chupungnyeong 28 2.57 3.90 9 Namwon 25 2.80 4.57 9 
Pohang 16 2.06 2.85 6 Jangheung 23 3.35 5.03 8 
Gunsan 25 2.68 4.14 9 Haenam 26 2.58 3.84 8 
Daegu 29 2.17 3.52 7 Goheung 21 3.29 5.12 9 
Jeonju 28 2.64 4.21 8 Yeongju 29 2.38 3.68 12 
Ulsan 27 2.52 3.80 8 Mungyeong 27 2.44 3.79 10 

Gwangju 26 2.58 4.06 8 Yeongdeok 24 2.83 4.20 9 
Busan 31 2.00 2.95 7 Uiseong 29 2.00 3.33 8 

Tongyeong 33 1.97 2.78 7 Gumi 24 3.17 4.74 9 
Mokpo 20 2.80 4.65 8 Yeongcheon 24 2.58 4.07 8 
Yeosu 30 2.53 3.73 8 Geochang 24 2.88 4.65 10 

Wando 21 3.05 4.69 9 Miryang 27 2.93 4.35 10 
Suncheon 27 2.56 3.92 10 Sancheong 21 3.00 4.97 9 

Jinju 28 2.61 4.01 9 Geoje 24 2.67 3.89 7 
     Namhae 24 2.63 4.19 8 

Average       2.60 3.96 8.40 
Note: “M.D” indicates mean drought duration, “M.S” indicates corresponding mean drought 
severity, “Mx” indicates drought event of longest duration in months. 

Based on SPI analysis, it was noticed that most of the short duration drought events lie between 
October and April. This is because of synoptic disturbances, typhoons or convective systems within 
the air mass, causing heavy rainfall during the summer season and low rainfall during the  
winter season. 

3.2. Marginal Probability Distributions of Drought Duration and Severity 

The first step to perform the bivariate frequency analysis of drought duration and severity is to 
choose the best fitted marginal distribution function for each rainfall station. To accomplish this task, 
ten candidate distributions as mentioned in Section 2.2, were considered for RMSE and the KS-test 
statistics. All of the distributions pass the KS test at the 99% (α = 0.01) significant level. The smaller 
the value of p in the KS-test, the stronger the evidence we have against the null hypothesis. 
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The results of the goodness of fit test and estimated parameters are shown only for the Jecheon 
rainfall station in Table 4. The top four best fitted marginal distributions of both drought duration 
and severity are marked with bold font in Table 4. In the case of duration, the top four best fitted 
marginal distributions are pe3, exp, gam and wei. In the case of severity, the top four best fitted 
marginal distributions are gam, gpa, pe3 and wei. Moreover, the visual comparison between 
empirical and theoretical cumulative distribution functions (CDFs) for the top four best fitted 
distributions of duration and severity are presented in Figure 1a,b, respectively. The estimated 
theoretical and empirical cumulative probabilities are quite close to each other, which indicates that 
these probability distributions perform fairly well. The final selected marginal distributions of 
drought duration and severity based on RMSE and the KS test for 55 rainfall stations are presented 
in Figure 2a,b. In the case of duration, most of the rainfall stations showed good agreement for four 
marginal distributions (exp, wei, gpa and pe3). However, in the case of severity, the selected marginal 
distributions are diverse (wei, ln3, gpa, gno, glo, exp and pe3). pe3 is the most common marginal 
distribution in the case of both drought duration and severity. 

Table 4. Parameters and goodness of fit of the marginal distribution at Jecheon rainfall station. 

Drought Duration Drought Severity 

Distribution Parameters RMSE 
KS Test 

Parameters RMSE 
KS Test 

Statistic p-Value Statistic p-Value
exp ξ = 0.04 0.173 0.247 0.121 ξ = −0.21 0.082 0.208 0.274 

 α = 3.40  α = 5.33    
gam α = 1.03 0.174 0.247 0.122 α = 0.90 0.079 0.205 0.287

 β = 3.34  β = 5.70  
gev ξ = 1.70 0.212 0.290 0.042 ξ = 2.49 0.098 0.192 0.367 

 α = 1.51    α = 2.72    
 κ = −0.37    κ = −0.29    

glo ξ = 2.33 0.215 0.292 0.040 ξ = 3.61 0.104 0.202 0.305 
 α = 1.22    α = 2.11    
 κ = −0.43    κ = −0.37    

gno ξ = 2.22 0.200 0.275 0.061 ξ = 3.45 0.090 0.176 0.407 
 α = 2.10    α = 3.66    
 κ = −0.93    κ = −0.08    

gpa ξ = 0.39 0.189  0.259 0.091 ξ = −0.01 0.080 0.195 0.346
 α = 2.42    α = 4.73  
 κ = −0.21    κ = −0.07  

gum ξ = 2.02 0.202 0.259 0.092 ξ = 2.90 0.110 0.205 0.289 
 α = 2.45    α = 3.84    

ln3 ζ = −0.05 0.200 0.275 0.061 ζ = −1.24 0.090  0.202 0.305 
 µ = 0.82    µ = 1.55    
 σ = 0.93    σ = 0.78    

pe3 ξ = 2.43 0.170 0.244 0.129 ξ = 5.12 0.077 0.176 0.472
 β = 3.67  β = 5.47  
 α = 2.61  α = 2.22  

wei ζ = −0.54 0.179 0.246 0.123 ζ = −0.11 0.078 0.199 0.324
 β = 2.52  β = 2.52  
 δ = 0.78  δ = 0.78  
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(a) (b)

Figure 1. Comparison between empirical and theoretical CDFs for the Jecheon rainfall station:  
(a) drought duration (months); (b) drought severity. 

 
(a)
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(b)

Figure 2. Selected best fitted marginal distributions of drought duration and severity for each rainfall 
station. (a) Drought duration; (b) drought severity. 

3.3. Application of Bivariate Copulas 

The maximum pseudo-likelihood method was used to estimate the parameters of the candidate 
bivariate copulas. As an example, the results of the goodness of fit test and estimated parameters at 
Jecheon rainfall station are shown in Table 5. It is important to examine the dependence structure 
between the drought duration and severity. Besides, dependence measures are needed to procure a 
quantitative value of the dependence relation between drought variables. 

To accomplish this task, Pearson’s correlation measure of dependence is used, and its associated 
p-values were estimated using the criterion that the independence between variables is rejected when 
the p-value is less than 0.05. Further details about the p-value are provided in [37]. The Pearson’s 
correlation between drought duration and severity for 55 rainfall stations is shown in Table 6. Results 
indicate that there is a significant positive dependence between drought variables for all rainfall 
stations. After the evaluation of dependence between drought variables and fitting of different 
marginal distributions, copula functions were employed to model the joint distribution. The six 
candidate bivariate copulas mentioned in Section 2.2 were passed through the process of the 
goodness of fit using Sn and AIC statistics, for all rainfall stations. In this study, Sn statistics were 
tested at a significance level of 99% (α = 0.01). The top four best fitted copulas (normal, Student’s t, 
Gumbel and Joe) are marked with bold font. Moreover, the top four best fitted copulas were also 
evaluated by using the visual comparison between empirical and theoretical cumulative probabilities 
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shown in Figure 3. The probability-probability (PP) plot indicates that the estimated cumulative 
probabilities agree well with the empirical ones. The final selected bivariate copulas of drought 
duration and severity based on the Sn and AIC statistics for 55 rainfall stations were presented in 
Figure 4. The goodness of fit indicates that the selection of bivariate copulas across South Korea is 
diverse. 

Table 5. Parameters and goodness of fit of the copula at Jecheon rainfall station. 

Copula Sn p-Value AIC θ 
Student’s t 0.023 0.203 69.989 0.989

Normal 0.030 0.035 84.973 0.989
Clayton 0.033 0.124 86.223 11.024 
Gumbel 0.022 0.391 68.996 8.872

Frank 0.031 0.054 80.005 38.072 
Joe 0.024 0.104 79.259 11.493

Table 6. Pearson correlation for the drought duration and severity at 55 rainfall stations. 

Station Correlation p-Value Station Correlation p-Value 
Sokcho 0.984 9.5 × 10−22 Ganghwa 0.988 2.9 × 10−19 

Daegwallyeong 0.979 1.2 × 10−19 Yangpyeong 0.978 3.0 × 10−19 
Chuncheon 0.973 4.5 × 10−20 Icheon 0.968 6.5 × 10−13 
Gangneung 0.981 1.0 × 10−20 Inje 0.995 4.6 × 10−23 

Seoul 0.994 2.6 × 10−22 Jecheon 0.977 1.2 × 10−15 
Incheon 0.961 2.7 × 10−18 Boeun 0.983 1.4 × 10−21 
Wonju 0.987 7.2 × 10−19 Cheonan 0.966 8.3 × 10−17 
Suwon 0.946 2.9 × 10−13 Boryeong 0.970 4.6 × 10−18 

Chungju 0.983 4.8 × 10−20 Buyeo 0.975 6.5 × 10−20 
Seosan 0.971 1.0 × 10−17 Geumsan 0.977 2.4 × 10−20 
Uljin 0.976 1.0 × 10−16 Buan 0.987 6.2 × 10−24 

Cheongju 0.965 4.4 × 10−16 Imsil 0.974 4.8 × 10−17 
Daejeon 0.974 3.2 × 10−20 Jeongeup 0.988 3.1 × 10−24 

Chupungnyeong 0.972 5.9 × 10−18 Namwon 0.985 4.3 × 10−19 
Pohang 0.985 5.4 × 10−12 Jangheung 0.965 1.0 × 10−13 
Gunsan 0.985 6.3 × 10−19 Haenam 0.975 3.4 × 10−17 
Daegu 0.971 3.1 × 10−18 Goheung 0.966 1.3 × 10−12 
Jeonju 0.968 4.1 × 10−17 Yeongju 0.991 4.9 × 10−25 
Ulsan 0.972 3.2 × 10−17 Mungyeong 0.985 9.6 × 10−21 

Gwangju 0.976 2.6 × 10−17 Yeongdeok 0.989 7.5 × 10−20 
Busan 0.980 9.6 × 10−22 Uiseong 0.988 2.9 × 10−23 

Tongyeong 0.981 3.1 × 10−24 Gumi 0.990 2.6 × 10−20 
Mokpo 0.985 2.7 × 10−15 Yeongcheon 0.970 5.7 × 10−15 
Yeosu 0.971 7.3 × 10−19 Geochang 0.972 2.4 × 10−15 

Wando 0.982 3.4 × 10−15 Miryang 0.990 6.6 × 10−23 
Suncheon 0.988 1.3 × 10−21 Sancheong 0.968 7.6 × 10−13 

Jinju 0.977 6.1 × 10−19 Geoje 0.966 2.2 × 10−14 
   Namhae 0.986 1.4 × 10−18 
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Figure 3. Probability-probability (PP) plot of the bivariate copulas at Jecheon rainfall station. 

 
Figure 4. Best fitted bivariate copula for each rainfall station. 
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3.4. Spatial Distribution of the Bivariate Return Period 

The longer duration drought events are more concerned in frequency analysis because the effects 
of longer duration droughts are worse and have a high risk for water resource management. 
Therefore, only long enough drought duration and (or) large enough drought severity was selected 
for spatial frequency analysis of drought. In this study, long enough drought duration was six 
months, and large enough drought severity defined by SPI was 6.5. The spatial distribution of the 
“and” ( , ) return period was computed according to Equation (5) and then interpolated using the 
inverse distance weighted (IDW) technique, shown in Figure 5. 

The average “and” return period characterized by a drought duration of six months and a 
drought severity of 6.5 was approximately 35.28 years over South Korea. Meanwhile, the minimum 
and maximum of the return period was 13.65 years at Goheung station and 56.90 years at Ganghwa 
station. It can be observed from Figure 5 that the northwestern portion and surrounding areas of 
Yeongju, Uiseong, Boeun and Daejeon have a relatively low risk of drought. This is because most of 
the drought events that occurred at Yeongju, Uiseong, Boeun and Daejeon stations had a duration 
closer to six months (long enough duration criterion) and drought severities closer to 6.5 (large 
enough severity criterion). Besides, the overall number of recorded drought events at the four stations 
is also relatively less. However, the southwestern coast and surrounding areas of Uljin have a high 
risk of drought. This is because the southwest coastal areas around Mokpo (Jangheung and Goheung) 
have extremely unusual rainfall patterns. For example, there was a record-breaking rainfall event 
(548 mm) that occurred due to the influence of Typhoon Agnes during 30 August–4 September 1981. 
On the other side, it can be noticed from Table 3 that the average duration and severity values of 
Jangheung were 3.35 and 5.03 and of Goheung were 3.29 and 5.12, respectively. Average drought 
duration and severity values indicate that among 55 stations, Jangheung and Goheung faced the 
second and third longest droughts after Jecheon (Table 3). In addition, the mid-latitude inland of 
South Korea (around Daejeon) is a high return period area affected by less severe droughts. 

The spatial distribution of the “or” ( , ) return period was computed according to Equation (6) 
shown in Figure 6. The average “or” return period was characterized by a drought duration of six 
months and a drought severity of 6.5 was approximately 18.06 years, which is relatively lower than 
the “and” return period. Meanwhile, the minimum and maximum of the return period were 8.71 
years at Jangheung station and 27.40 years at Yeongju station. Overall, the spatial patterns of the 
“and” (D ≥ d ∧ S ≥ s) return period in Figure 5 and the “or” (D ≥ d ∨ S ≥ s) return period in Figure 6 
were the same, with the “and” return period showing higher severities and longer durations as 
compared to the “or” return period. This indicates that higher risk of droughts of longer durations 
mostly corresponded to the higher risk of droughts with a severe drought severity, which poses an 
increasing challenge for drought risk management and water resources management. 

To analyze the supercritical risk of drought characteristics, the Kendall ( ,∗ ) return period was 
computed using Equation (7), and the results are shown in Figure 7. The average of the Kendall return 
period was 27.84 years, which is lower than the average of the “and” return period (35.28 years) and 
higher than the average of the “or” return period (18.06 years). Meanwhile, the minimum and 
maximum of the Kendall return period was 10.91 years at Jangheung station and 44.7 years at 
Ganghwa station. The spatial distribution patterns of secondary (Kendall) return periods ( ,∗ ) 
(Figure 7) and primary return periods ( , , , ) (Figures 5 and 6) were the same. Overall, the Kendall 
return period showed droughts of longer duration and higher severities compared with the “or” 
return periods, and droughts of shorter duration and lower severities compared with the “and” 
return periods. 
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Figure 5. Spatial distribution of the bivariate return period under the condition D ≥ d ∧ S ≥ s across 
South Korea. 
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Figure 6. Spatial distribution of the bivariate return period under the condition of D ≥ d ∨ S ≥ s across 
South Korea. 
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Figure 7. Spatial distribution of the bivariate Kendall return period. 

3.5. Comparison of Return Periods Using Identified Drought Events 

In drought frequency analysis, the droughts of longer duration and higher severities have 
obtained more importance because they pose high risks for designing and planning of water resource 
structures. Therefore, based on the SPI (time scale of six months) analysis, 20 long-lasting historical 
drought events were selected, and their univariate and bivariate return periods were compared using 
the best fitted marginal distributions (Figure 2a,b) and best fitted copulas (Figure 4). The results are 
shown in Table 7. The droughts events across 55 rainfall stations are sorted according to their 
durations only. Drought events are not sorted according to severities because the droughts of longer 
durations mostly corresponded to the droughts of higher severities. This can be observed from the 
drought characteristics in Table 3. Besides, a strong correlation between drought duration and 
severity values also shows that the increase in duration also leads to the increase in the values of 
severity. Correlation between drought duration and severities can be observed from Table 6. The 
longest drought (#1) lasted for 13 months from April 2008–April 2009 at Jecheon rainfall station with 
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a drought severity of 16.04. This is because of the non-stationary precipitation pattern at Jecheon 
station [38]. The most severe drought (#2) occurred at Yeongju station and lasted for 12 months from 
March 1982–February 1983 with a drought severity of 22.30. In addition, from the results shown in 
Table 7, it is seen that the ,  is always longer than , . This is because the probability that two 
cases occur simultaneously is relatively smaller than that when one of the two cases occurs. 
Moreover, it can be noticed from Table 7 that the secondary return period ,∗  is always larger than 
the ,  and shorter than , . The analysis showed that the difference between Kendall’s return 
period ,∗  and the standard return period ,  increased with an increase in the critical probability 
level t. 

Table 7. Comparison of univariate and bivariate return periods using the top twenty  
drought events. 

# 1 Station Date D 1 S 1  1  1 ,  1 ,  1 ,∗ 1

1 Jecheon April 2008~April 2009 13 16.04 33.53 19.79 34.81 19.39 22.22 
2 Yeongju March 1982~February 1983 12 22.30 62.65 68.10 78.27 55.96 69.51 
3 Ganghwa March 2014~January 2015 11 20.01 41.55 48.56 63.49 34.59 45.89 
4 Geochang July 2008~April 2009 10 21.50 44.58 57.40 165.38 29.58 86.51 
5 Suncheon April 1988~January 1989 10 16.98 21.41 17.41 23.18 16.39 18.79 
6 Miryang April 1988~January 1989 10 16.46 27.63 29.91 62.36 18.66 44.06 
7 Mungyeong March 1982~December 1982 10 16.15 35.96 35.99 44.37 30.25 39.46 
8 Buan April 1988~January 1989 10 16.00 60.95 44.97 370.57 27.82 194.56 
9 Seoul March 2014~December 2014 10 15.44 29.42 25.48 57.26 17.93 40.12 
10 Incheon March 2014~December 2014 10 12.94 51.67 31.50 149.37 22.52 79.45 
11 Namwon May 1994~January 1995 9 20.55 27.05 37.45 134.63 17.78 79.61 
12 Jinju June 1994~February 1995 9 17.61 31.02 39.77 96.66 21.26 63.71 
13 Imsil April 1995~December 1995 9 17.41 25.26 28.63 33.81 22.25 26.45 
14 Daegwallyeong April 2015~December 2015 9 16.16 35.70 46.99 54.69 32.25 45.52 
15 Chupungnyeong March 1982~November 1982 9 15.54 26.49 38.04 96.25 18.64 63.54 
16 Wando June 1995~February 1996 9 14.86 34.48 26.83 34.90 26.58 31.56 
17 Sokcho February 2015~October 2015 9 14.71 32.96 34.95 67.56 22.65 39.47 
18 Jeongeup April 1994~December 1994 9 14.58 31.99 31.82 56.82 22.18 42.01 
19 Yangpyeong April 2000~December 2000 9 13.88 31.44 26.94 121.26 16.48 61.29 
20 Gunsan May 1988~January 1989 9 13.25 28.99 23.06 29.60 22.69 25.91 

Notes: 1 “#” indicates the drought event number; “D” indicates the drought duration measured in 
months; “S” indicates the drought severity; , , , , ,  and ,∗  are measured in years. 

It should be noted that according to the method of computation, Kendall’s (secondary) return 
period ( ,∗ ) is totally different from the primary return periods ( , , , ) as they explain different 
situations. Therefore, it is hard to say which type of return period is able to perform consistently 
better than the other [39]. The preference of the return period changes based on which one better 
explains the assessment and management requirements of drought risk for the area under study. 

4. Conclusions 

This study has attempted to investigate the spatio-temporal changes in droughts in South Korea 
during 1980–2015, using the regional drought frequency analysis approach. Based on the SPI 
truncation level method, drought duration and severity were extracted at 55 rainfall stations. A 
Mann–Kendall trend test was used to identify the trends in drought characteristics. The ten most 
commonly-applied marginal distributions were considered and evaluated using the goodness of fit 
RMSE and KS test statistics. The best fitted marginal distributions were further evaluated using the 
visual comparison between empirical and theoretical cumulative probabilities. The dependence 
relation between two drought variables was tested using Pearson’s correlation measure. For the 
construction of joint distribution, six copulas were considered, and the best fitted copulas were 
chosen on the basis of goodness of fit test statistics (Sn, AIC) and the probability-probability plot. The 
spatial distribution of potential drought risk across South Korea was presented by the “and” and “or” 
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types of joint return periods. In addition, the new concept of Kendall’s return period was also 
employed and compared with primary return periods. The primary conclusions determined from 
this study are as follows: 

(1) Drought characteristics on the basis of SPI indicate that due to the unusual precipitation pattern 
in the southwest coastal areas, Jecheon station faced the drought of longest duration and greater 
severity among 55 stations across South Korea. 

(2) Based on the KS test, RMSE and graphical comparison applied to 55 stations, four models (exp, 
wei, gpa and pe3) were best fitted for drought duration and seven models (wei, ln3, gpa, gno, 
glo, exp, and pe3) for drought severity. Pe3 is the most common model existing in both drought 
duration and severity. Based on Sn, AIC and the probability-probability plot, the choice of 
copula varies from station to station. In addition, the Frank copula is the most common best 
fitted copula among 55 stations. It is concluded that several different measures are necessary to 
identify the best fit marginal distributions and copulas. Since different measures reflect different 
characteristics of marginal distributions and copulas, a single measure may lead to under- or 
over-estimation of the probability of drought. 

(3) The properties of the spatial distributions of , , ,  and ,∗  are the same. However, ,∗  
showed droughts of longer durations and higher severities compared to ,  and droughts of 
shorter durations and lower severities compared to , . The spatial distribution of the joint 
return period indicates that the southwestern coast of South Korea and surrounding areas of 
Uljin have a high risk of drought, while the northwestern portion and surrounding areas of 
Yeongju, Uiseong, Boeun and Daejeon stations have a relatively low risk of drought. The results 
indicate the serious challenge in the water resource management and human mitigation of 
drought hazards in the southwestern coast due to abrupt changes in the precipitation pattern. 
In order to cope with drought hazards, accurate hydrological regulations of reservoirs in the 
southwest coast is necessary. 

(4) The comparison of univariate and bivariate return periods using the top twenty drought events 
showed, as can be noticed from Table 7, that the secondary return period ,∗  is always larger 
than the ,  and shorter than , . It is also concluded that the Kendall return period and 
primary return periods cannot be interchanged, as their applicability changes according to the 
type of drought risk considered. 
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