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Abstract: Norris Reservoir is the oldest and largest reservoir maintained and operated by the
Tennessee Valley Authority (TVA). Norris Dam received a new operating guide in 2004; however,
this new guide did not consider projected climate change. In an aging infrastructure, the necessity
to assess the potential impacts of climate change on water resources planning and management
is increasing. This study used a combined monthly hydrologic model and a general circulation
model’s (GCM) outcome to project inflows for three future time spans: 2030s, 2050s, and 2070s.
The current operating guide was then assessed and optimized using penalty-function-driven genetic
algorithms to gain insight for how the current guide will respond to climate change, and if it can be
further optimized. The results showed that the current operating guide could sufficiently handle
the increased projected runoff without major risk of dam failure or inundation, but the optimized
operating guides decreased operational penalties ranging from 22 to 37 percent. These findings show
that the framework used here provides water resources planning and management a methodology
for assessing and optimizing current systems, and emphasizes the need to consider projected climate
change as an assessment tool for reservoir operations.
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1. Introduction

Mid-19th century U.S. dams were constructed with a limited historical record of measured data,
and by 2020 over 81 percent of these dams will have reached the average life-span of 50 years [1].
As hydro-climatic databases have expanded and the confidence in climate-model projections increased,
climatological research results have continued to conclude that climate change will have various
impacts on water-resource infrastructure [2,3]. The Intergovernmental Panel on Climate Change’s
(IPCC) Fifth Assessment Report states that the period from 1983 to 2012 has likely been the warmest
30-year period in the past 1400 years, and that the globally averaged land and ocean temperature has
linearly increased 0.85 ◦C since 1880 [3]. Studies focused on the implications of climate change show
an increase in the probability of occurrence of extreme climatic events [3–7]. The southeastern United
States has experienced increases in moderate to extreme summer droughts by 14 percent since the
1970s, and a 30 percent increase in annual average autumn precipitation since 1901 [8]. These increases
have led to major infrastructure concerns regarding water supply and reservoir proficiency (inundation
prevention, dam failure prevention, hydroelectric power generation, transportation, etc.) [9–12].

Developing new reservoir management strategies and modeling tools necessary for maintaining
water-resource objectives and hydro-power generation, while considering the potential implications
of projected climate change have become research topics of high demand [13–16]. Hamlet and
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Lettenmaier [17] used two global climate models and the Variable Infiltration Capacity (VIC) model
to show that a temperature increase of 4.5 ◦C by 2095 led to earlier runoff, reducing flood control
effectiveness and a 75 to 90 percent reduction in runoff volumes from April-September, leading
to increased competition between energy production, irrigation, instream flow, and recreation for
the Columbia River Basin. Stone et al. [18] used a Regional Climate Model and the Soil Water
Assessment Tool to evaluate the temporal and spatial impacts of climate change on the water yield of
the Missouri River Basin under a doubled CO2 scenario. They suggested revised reservoir release rules
to supplement irrigation in the southern half of the Missouri River basin, where a reduced water yield
was expected under their scenario. Christensen et al. [10] used a Parallel Climate Model with a business
as usual greenhouse gas emissions scenario to drive the VIC model to assess the Colorado River Basin
for three future periods (2010–2039, 2040–2069, and 2070–2098). By coupling runoff time series and
reservoir-operation rules, they simulated that the mandated releases from Glen Canyon Dam to the
Lower basins were met 59 to 75 percent of the time in the projected scenarios, respectively, compared
to 92 percent in the historical climate simulation. Lee, Hamlet, Fitzgerald, & Burges [19] used the U.S.
Army Corps of Engineers Hydrologic Engineering Center’s Prescriptive Model to optimize the flood
rule curves for a suite of multi-objective reservoirs in the Columbia River Basin considering a warmer
climate. They used linear penalty functions based on flood control and reservoir refill. Their findings
showed that a warmer climate would reduce the effectiveness of the current reservoir operations,
and that their optimized operations significantly reduced system storage deficits while maintaining
current flood control reliability. These works have portrayed the need to assess reservoir operations
considering projected climate change, and although much attention has been given to many large river
basins in the United States, assessment of the Tennessee River Basin is limited [9].

In 2004, the Tennessee Valley Authority (TVA) performed a Reservoir Operation Study for
35 of the 49 reservoirs in their system to determine if modifications to their current operation
policies could increase reservoir efficiency and, “produce greater overall public value” [20,21].
From this study, TVA designed a new multi-objective operating guide considering reservoir stability,
hydropower generation, cooling requirements for downstream nuclear and fossil facilities, flood
control, and navigation [20]. The new operating guide was to meet these objectives through
maintaining reservoir water-surface elevations between two curves noted as the “flood guide” and
“balancing guide”. The flood guide represents the maximum amount of storage attainable without risk
of inundation or dam structural integrity, and the balancing guide ensures that all tributary reservoirs
are drawn from equally when meeting downstream requirements. More importantly, this operating
guide integrates the TVA reservoir system into a single network, providing the ability to systematically
and efficiently monitor all reservoirs to maximize benefits and minimize risk governed by a hierarchy
of operational demands. However, adaptability of this operating guide to climate change has yet to
be examined.

This study used a combined multi-model approach with historical and projected climate scenarios
to simulate inflow into one of the major Tennessee River Basin reservoirs to assess and optimize the
current operating policy using a penalty-function driven genetic algorithm. The two main questions
considered were: (1) Can Norris Reservoir sufficiently meet its requirements under its current operating
guide considering a projected climate scenario? (2) How much can the operating policy of Norris Dam
be improved if a projected climate scenario is considered?

2. Materials and Methods

This research developed a framework for assessing and optimizing a multi-purpose reservoir’s
operating guide considering a projected climate scenario. This was accomplished using: (1) a combined
multi-model approach, calibrated with historical inflow data and (2) 100 sets of inflow hydrograph
realizations from a general circulation model (GCM) product as inputs to the combined hydrologic
model. Then, the inflow hydrograph realizations were used to assess the current operating guide,
considering historical and projected time spans. Finally, the operating guide was stochastically
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optimized to minimize the overall expected operational penalty using a genetic algorithm. To isolate
the impacts of climate change on Norris Reservoir’s current policy, this study assesses these impacts as
current conditions, negating the need to account for the effects of changes in land use, water demand,
or socio-economics on this system.

2.1. Study Area

Completed in 1936, Norris Dam is the largest and oldest multi-purpose dam maintained and
operated by TVA in the Tennessee River Basin [20]. Norris Dam serves as the pour point for the
Upper Clinch and Powell Rivers which respectively drain 7542 and 2429 km2 southwesterly from the
Appalachian Mountains of southwest Virginia into northeastern Tennessee. The elevation of the study
area ranges from 268 to 1412 m above mean sea level (Figure 1) Norris Dam is located in northeastern
Tennessee (36◦13′27′′ N, 84◦05′29′′ W), providing 1373 million cubic meters (MCM) of flood storage,
cooling water for downstream power plants, generating a net of 110 megawatts of hydropower,
and providing flows for recreation and ecosystem sustainability. Its inflowing subwatersheds are
amongst the highest for supporting endangered aquatic species in North America [21], and offers
many recreational benefits [22]. Norris Dam was selected for this study provided no other reservoirs
supply inflow, allowing this study to isolate the effects of changes in climate, and remove the need to
consider the TVA reservoir system.

The climate for this region is described as humid subtropical, consisting of hot, humid summers
and mild winters [9,23]. Based on data obtained from the National Climatic Data Center (NCDC),
the study region has an average annual precipitation of about 1087 mm, where most precipitation
falls as rain, occasionally snow, with a slight increase in precipitation during late spring and early
summer, and a decrease during the fall and early winter. The average annual temperature is 13.1 ◦C
with monthly mean temperatures ranging from 5.7 to 26.0 ◦C.
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Figure 1. Study area showing Norris Reservoir, Clinch and Powers River Basins, and meteorological
stations used in this study.

2.2. Data Sources

2.2.1. Climatic Data

Data from seven NCDC stations were collected providing a minimum of 31 years of continuous
precipitation (P) and temperature (T) records ranging from 1 January 1976 to 31 December 2006
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(Figure 1). Temperature data was not available at stations VA448547 and VA449215. The temperature
data was used to estimate potential evapotranspiration (PET), via the Thornthwaite method, for input
into a hydrologic model [24]. This method was selected given it only requires temperature and latitude,
and has been used in similar studies [24–28]. The calculated PET data was used in conjunction with
the precipitation data to simulate inflow into Norris Reservoir.

2.2.2. Climate Projection Data

The National Center for Atmospheric Research, Community Earth System Model (CESM) 1.0
was the GCM used to project climate through the year 2100 due to its use in similar studies [6,29].
This GCM has a latitudinal and longitudinal resolution of 0.94 and 1.25 degrees, respectively, leading
to six pixels needed to cover the study area. The Representative Concentration Pathway (RCP) 4.5
projection scenario was selected as it considers emission mitigation policies will be enacted during the
21st century [6,30–33]. CESM 1.0 precipitation and temperature data were subdivided into three time
spans, 2030s, 2050s, and 2070s by taking the mean of the 15 years prior and post to the year of the time
span name.

2.2.3. Dam Operations

The hierarchy of objectives of Norris Dam were obtained through direct discussion with TVA
River Operations personnel. These data included daily full natural flow measurements into Norris
Reservoir, outflow measurements from the dam, and the water elevations required for Norris Reservoir
to meet specific objectives. Outflow requirements included the minimum outflow to maintain the
downstream ecosystem, provide hydroelectric power generation, meet Bull Run fossil plant cooling
requirements, and the maximum outflow with the outflow gate fully opened before overtopping.
Water-surface elevation values included the historical maximum elevation, elevation compromising
dam structural integrity, and the minimum elevations needed for reservoir maintenance and navigation.
TVA stated the primary objective is to maintain Norris Reservoir’s water elevation between the flood
and balancing guides (Figure 2).
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Figure 2. Current Norris Reservoir Operating Guide. FG is the flood guide and BG is the balancing
guide [34]. The shaded area is the 80 percent probability.

Reservoir water elevation often exceeds the flood guide from January to March (Figure 2) [34].
TVA does not provide an explicit explanation but states that the primary operating objective is to
maintain water elevation at or below the flood guide, and that the elevation may rise above the flood
guide because of large inflows, but is subsequently lowered to the flood guide as soon as possible.
They also state that they attempt to maintain water elevation at the flood guide from 1 June through
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Labor Day, the first Monday in September, to maximize recreation [34]. It is inferred that they aim
to maintain elevation near the flood guide from January to mid-April to support summer recreation,
and high-flow winter and spring storms result in water elevation exceeding the flood guide. The 2016
curve supports this inference as it appears that efforts to lower the elevation after high inflow events
occurred (Figure 2).

2.3. Spatial Interpolation

Inverse distance weighting from the centroid of all GCM pixels was used to calculate
composite-projection values to the coordinates of the meteorological stations [35,36]. These composite
values were then spatially averaged to the study area using the Thiessen polygon values developed
from the meteorological stations.

2.4. Climatic Data Reproduction

The Conditional Generation Method (CGM) tested by Kim and Kaluarachchi [37] was used to
assimilate 100 instances of monthly temperature and precipitation for each time span. The 100 instances
representing the historical observations are referred to as Base, whereas the projection scenarios
maintain their respective names, 2030s, 2050s, and 2070s. The future projections were computed by
applying the monthly changes (◦C change for temperature and % change for precipitation) to the
100 sets of the Base scenario. CGM can capture both the temporal and inter-station correlation of
meteorological data. It also considers the randomness of occurrences characterized by the historical
climate data. This makes it preferable for hysteretic time series, because it preserves seasonality
by considering the conditional probability associated with the transition from successive months,
where uncorrelated random Monte Carlo simulations selects values evenly from the entire dataset
and therefore does not capture seasonality. The monthly mean and standard deviation of climate time
series generated by CGM (i.e., Base) are compared with the observed dataset to verify the performance
of CGM outputs (Figure 3).
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standard deviation, respectively.

2.5. Hydrologic Model

A combined multi-model approach was used to generate the hydrologic model in this study.
Methods used were multiple linear regression (MLR) [11,37–43], a conceptual-water-balance model
(TANK) [9,37,44–47], and an artificial neural network (ANN) [48–52]. The strength of each method was
assessed based on its ability to more accurately simulate specific characteristics of observed runoff.

Inputs into the MLR and ANN were determined using stepwise regression with a p-value
threshold <0.05 for the variables PETt, PETt−1, Pt, and Pt−1, where t is the current time-step’s month
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and t − 1 is the previous time-step’s month. The TANK model only required PETt, and Pt due
to accounting for real-time soil moisture, thus inherently hysteretic. Although snowmelt was not
explicitly modeled, the relationship between precipitation and temperature were included in the MLR
and ANN models, while the TANK model only considered above freezing conditions. To overcome
the drawbacks of any individual model, the three models were individually calibrated (or trained) and
validated using historical climate-runoff dynamics (i.e., inflow hydrographs), and were then combined
using a numerical optimization technique to find global optimal weighting factors that minimize
the sum of square error between the modeled and observed data. Therefore, the objective function
(OBJHM) can be expressed as:

OBJHM = min
N

∑
t=1

{ln(OBSt)− ln(SIMt)}2

N
(1a)

SIMt = w1 ×MLRt + w2 × TANKt + w3 × ANNt for w1 + w2 + w3 = 1 (1b)

where ln is the natural logarithm, OBSt is the observed runoff at month t, SIMt is the weighted runoff
using the three simulated runoff values at month t, w is the weighting factor derived for each individual
rainfall-runoff model, and N is the total number of time steps.

2.6. Reservoir Routing Optimization

The operating guide for Norris Dam was optimized by minimizing the cumulative penalty
generated from a penalty function through altering the flood and balancing guidelines. Routing of
Norris Reservoir was simulated using the estimated runoff generated from the combined hydrologic
model, reservoir objectives and release requirements, and the current and optimized operating guides.
Reservoir elevation was determined using the Norris Reservoir elevation-storage chart provided by
TVA [53], and performing a mass balance of the reservoir at each time-step t, computed as:

St = St−1 + It −
(

m

∑
i=1

Oi

)
t

−Wt (2)

subject to Omin ≤ Ot ≤ Omax and Smin ≤ St ≤ Smax

where S is the available storage of the reservoir with a minimum of Smin and maximum of Smax, I is
the monthly inflow, Oi is the monthly required outflow for objective i from 1 to m (i.e., hydropower
generation, fossil power plant cooling water, instream flow, etc.), and W is the monthly withdrawal
directly from the reservoir. W was viewed as zero because no significant water withdrawals were
reported for Norris Reservoir. Outflow was set to be the minimum allowed flow (Omin) to meet all
requirements given the reservoir elevation, or the maximum (Omax or Smax) if dam structural integrity
was threatened. Maximum or minimum requirements of outflow or water elevation during reservoir
operation are provided in Table 1. The final outputs for any time-step are reservoir elevation, O,
and S. This study considered the deterioration of storage volume (S) by sediment deposition using a
nonlinear regression based on elevation-storage curves from 1936 to 1970 predicted by the TVA [53].
The exponential regression function showed an annual storage decrease about 0.02 percent with
R2 = 0.98.

At the end of each time step t, penalty values were added to the objective function
(Equation (3)) if the routing results (outflow and/or elevation) violated any individual operating
rule (Table 1). The penalty function generated for this study consisted of five inflow and three outflow
penalties. Provided reservoir operational monetary and non-monetary benefits or penalties lack a
standard or concrete method of quantification, this study assigned a weighted-sum aggregation of
conceptually-driven mathematical penalty functions and values based on operational priorities set
by TVA [54–56] (Table 1). Penalty functions and values were constant for the future simulation time
periods as the primary objective of this study is to assess the current operation policy with respect to
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potential climate change. Although this approach has been used in similar studies, it may increase
uncertainty in the results due to potential misrepresentation of any given penalty [19]. It should be
stated that the values do not represent any real penalty to incur, but aim to represent the degree of
violation for failing to meet a specific objective.

This study assigned a quadratic-function flood-risk penalty for reservoir elevations between the
flood guide and the historical maximum, and between the balancing guide and minimum elevation
required for navigation (Table 1). The penalty for exceeding the flood guide (FG), received the value of
(EL-FG)2 up to the historical maximum water elevation (1030.38 ft), which has a maximum penalty
of 923, (1030.38 − 1000)2, during January, February, March, November, and December. Similarly,
the penalty for reservoir elevation between the balancing guide (BG) and minimum elevation for
navigation (NAV) received a penalty value equal to (BG-EL)2. By using a quadratic function, if reservoir
elevation deviates from the flood or balancing guide the penalty value exponentially increases, resulting
in a more aggressive penalty minimization by the optimization algorithm. However, when applying
the same quadratic penalty function from the historical maximum elevation to the top of gate (1034 ft),
the penalty only increases to 1156, (1034 − 1000)2, for winter and 196, (1034 − 1020)2, for summer,
resulting in frequent violations due to producing mild penalties relative to their importance. Therefore,
this study used a step function for reservoir objectives of greater importance (one order of magnitude
for each step) based on the maximum flood guide penalty of 1000 (approximate of 923), so that the
penalty for reservoir elevations between the historical maximum and top of gate is set to 103, and is
104 when exceeding the top of gate. The last flood related penalty, flooding downstream (FLD), which
counts the risk of inundation in downstream areas due to excessive discharge, received a penalty of
104. The COOL penalty was evaluated similarly to NAV considering its relative importance to dam
safety and functionality because the Bull Run Fossil Plant is located about 45 km downstream from
Norris Dam. Increasing penalties by an order of magnitude increases the optimization algorithm’s
ability to better represent the relative importance of specific objectives.

Table 1. Penalty functions in Norris Dam operation.

No. Notation Description
Violation

Note
Penalty Function (ft2)

0 FG-BG Elevation between the flood and balancing guides 0 Normal
operation

1 FG Elevation (EL) above the flood guide (EL-FG)2 Flood control

2 BG Elevation below the balancing guide (BG-EL)2 Basic operation

3 HM Elevation above the historical maximum 314.06 m (1030.38 ft) 1000 Flood control

4 NAV Elevation below 219.08 m (955 ft) 1000 Navigation

5 TG Elevation above 315.16 m (1034 ft) (top of gates) 10,000 Dam stability

6 COOL Failure to provide cooling requirement flows for Bull Run
Fossil Plant (seasonally 46 MCM~114 MCM per month) 1000 Service

7 ECOPOW Failure to provide requirements for ecosystem and
hydropower generation (19.96 MCM per month) 10,000 Ecology and

hydropower

8 FLD Flow exceeding maximum flow causing inundation
(1028 MCM per month) 10,000 Flood control

The numerical setting of these penalties was developed to avoid dam structural and operational
failure. Each set of inflow hydrographs yielded the cumulative individual penalty over the simulation
time span and the sum of penalties for each scenario (100 inflow realization sets of 360 months per
scenario). Therefore, the penalty objective function (OBJP) can be formulated as follows:

OBJP = min

{
E

[
360

∑
m=1

(
8

∑
i=1

Penaltyi

)
m

]}
(3)
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where E is the expectation operator used to compute the mean penalty value over the 100 monthly
CGM-generated hydrographs as input into the combined hydrologic model, Penalty is the penalty
value computed for each monthly requirement based on Table 1, and constraint conditions are set by
Equation (2) and Table 1. The goal is to find optimal flood and balancing guides for each month, while
minimizing the cumulative penalty averaged across the 100 realizations.

The optimized operating guides were generated using genetic algorithms to minimize the mean
of the 100 CGM realizations’ penalty values. Genetic algorithms have become an increasingly popular
method for optimizing reservoir operations in recent decades [57–59]. The settings for the genetic
algorithm used in this study were: (1) 100 for the number of generations; (2) 0.1 for termination
tolerance on objective function value; (3) 0.001 for termination tolerance on constraints; (4) 30 for
the population size; (5) 20 for the stall generations; (6) the adaptive feasible function for a mutation
function; and (7) the heuristic function for a crossover function. Initial population is assumed as the
current flood and balancing guide with the initial water level set to (January) of the 30-year average
from 1976 to 2005.

2.7. Reservoir Assessment

Norris Reservoir’s operating guide was assessed using three scenarios. First, that TVA maintained
their current operating guide throughout all three time spans, denoted as Current. Second, that TVA
optimized their operating guide as a function of the historical inflow into the reservoir, denoted
as Base-Opt. Third, TVA optimized their operating guide for each time span as a function of the
GCM projected inflow into the reservoir, denoted individually as 2030-Opt, 2050-Opt and 2070-Opt,
or collectively as GCM-Opt. Scenario performance was determined by comparing the percent change
of cumulative penalty of Base-Opt and GCM-Opt with the Current scenario for each time span.

3. Results

3.1. Generation of Composite Climate Data

Projected temperature data showed mean annual changes of −0.42, 0.34, and 0.89 ◦C compared
to the historical mean for the 2030s, 2050s and 2070s, respectively. The 2030s showed increases in
mean monthly temperatures from January–April, and decreases from May–December. The 2050s
showed increases in temperature from January–May and September–December, with decreases from
June–August. The 2070s showed increases in temperature for all months except July. The most
significant variance was observed as increases during winter months (January–March) and a decrease
in July (historically the hottest month) for all three time spans.

Projected precipitation resulted in an increase for most months. Observed increases in mean
annual precipitation relative to the historical mean were approximately 14, 18 and 20 percent for
the 2030s, 2050s and 2070s, respectively. The largest increases were observed in July and August for
all time spans. The 2030s showed increases in precipitation for all months except January, February,
May and September, the 2050s showed increases for all months except February, May and September,
and the 2070s showed increases for all months except September.

3.2. Hydrologic Model Evaluation

The individual models were evaluated using various performance statistics to consider the overall
model strength (coefficient of determination), annual and seasonal predictions, and flow duration
similarity (Table 2). The TANK model performed worst overall, but performed best at simulating peak
flows. The MLR model performed best simulating annual runoff, the high flow season, and peak low
runoff. The ANN model performed best overall with an R2 of 0.81, and best at simulating the low flow
season and the inter-quartile range of the observed runoff distribution.

The combined hydrologic model had a coefficient of determination of 0.81, and adequately
compared to the historical runoff data in accounting for seasonality and peak high runoff (Figure 4).
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The combined hydrologic model did not always outperform the individual models, but performed at
least second best in all tests but two (underlined in Table 2). It was determined that under performance
in these tests were not a concern, given low flow season error was still small, and 90th percentile high
runoff was the result of extreme single events that was outside the scope of this study due to the coarse
temporal resolution (monthly time step) of the GCM data.
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Table 2. Performance comparison of the individual models and combined hydrologic models to
observed runoff.

Test Equation MLR TANK ANN Combined
Model

R2

(t = 1~m months)
1−

m
∑

t=1

(OBSt−Modelt)
2

(OBSt−OBS)
2 0.75 0.73 0.81 * 0.81

Mean Absolute Error (MAE) (mm)
(m = number of months)

1
m

m
∑

t=1
|OBSt −Modelt| 12.22 13.66 11.00 * 11.04

Annual Runoff MAE (mm)
(n = number of years)

1
n

n
∑

t=1
|OBSannual t −Modelannual t| 19.49 * 37.16 28.54 20.55

High Flow Season MAE (mm)
(i = November~April)

1
n

n
∑

t=1

Apr
∑

i=Nov
|OBSi −Modeli|t 3.44 * 4.93 4.91 3.67

Low Flow Season MAE (mm)
(i = May~October)

1
n

n
∑

t=1

Oct
∑

i=May
|OBSi −Modeli|t 0.19 1.25 0.15 * 0.25

Low Runoff MAE (mm)
(OBS < 10th percentile)

∑m
t=1|OBSt−Modelt |OBS<10%

mOBS<10%
4.47 * 5.05 5.33 4.21

High Runoff MAE (mm)
(OBS > 90th percentile)

∑m
t=1|OBSt−Modelt |OBS>90%

mOBS>90%
35.95 28.22 * 28.57 30.50

25–75th Quartile MAE (mm)
(OBS inside interquartile)

∑m
t=1|OBSt−Modelt |25%<OBS<75%

m25%<OBS<75%
10.38 13.91 8.93 * 9.22

Notes: Asterisks represent best performance among the three individual models. Bold values performed best by the
Combined Model. Underlined Combined-Model values did not outperform at least two individual models. MLR:
multiple linear regression; TANK: conceptual-water-balance model; ANN: artificial neural network; OBS: observed
runoff; Model: modeled runoff; NmOBS < 10%, mOBS > 90%, m25% < OBS < 75%: number of months for OBS values less
than 10th percentile, larger than 90th percentile, and inside the interquartile range, respectively.

3.3. Projected Changes in Runoff

The modeled runoff resulted in approximately 20.5, 24.0, and 24.5 percent increases from the Base
runoff for the 2030s, 2050s, and 2070s respectively (Figure 5). When compared at a monthly time step,
it was observed that runoff increased in all months, except February. The 2030s had the highest runoff
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compared to all projected scenarios in March and November, the 2050s in January, July, August and
December, and the 2070s in April, May, June, September, and October.
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3.4. Reservoir Routing and Optimization

Cumulative penalties were calculated individually and aggregated over the entire simulation
(Table 3). Base-Opt showed decreases in cumulative penalty ranging from 22.2 to 24.4 percent compared
to the Current scenario, yet it was greatly outperformed by the GCM-Opt scenarios showing cumulative
penalty decreases of 35.4, 34.6 and 37.0 percent for the 2030s, 2050s and 2070s, respectively (Table 4).
HM, NAV, TG, and ECOPOW penalties were not triggered by any simulation. Other than the Base
time span, all other time spans and scenarios received FLD penalties. Penalties for COOL and FLD
increased incrementally for all scenarios from the Base to 2050s, but 2070s penalties were in between
the Base and 2030s for all scenarios.

The largest difference between the optimized balancing and historical guides occurred during the
first five months of the year (Figure 6). The flood guides from January through April were increased
for all scenarios, and most noticeable for 2050s-Opt and 2070s-Opt. All scenarios showed slight to
large decreases in May. The balancing guides only showed noticeable change in April and May, with
decreases from the historical values. This led to either a larger range between the flood and balancing
guides for January through May, or a smaller range from June through September for most scenarios.

Table 3. Comparison of individual cumulative penalties for different time spans.

Time
Span

Operating Guide
Scenarios

1 2 3 4 5 6 7 8
Sum

FG BG HM NAV TG COOL ECOPOW FLD

Base
Current 12,452 35,670 0 0 0 5460 0 0 53,582

Base-Opt 6497 29,610 0 0 0 5460 0 0 41,567
GCM-Opt 6497 29,610 0 0 0 5460 0 0 41,567

2030s
Current 10,512 22,120 0 0 0 6450 0 6700 45,782

Base-Opt 5047 16,940 0 0 0 6450 0 6700 35,137
2030-Opt 4349 12,060 0 0 0 6450 0 6700 29,559

2050s
Current 10,280 20,880 0 0 0 7150 0 7000 45,310

Base-Opt 4961 16,130 0 0 0 7150 0 7000 35,241
2050-Opt 3662 11,810 0 0 0 7150 0 7000 29,622

2070s
Current 10,095 19,770 0 0 0 6220 0 3400 39,485

Base-Opt 4863 15,350 0 0 0 6220 0 3400 29,833
2070-Opt 3757 11,500 0 0 0 6220 0 3400 24,877
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Table 4. Percent changes in penalty of optimized operating guides compared to the current operating guide.

Time Span ∆ Penalty from Current when Using Base-Opt (%) ∆ Penalty from Current When Using GCM-Opt (%)

Base −22.4 −22.4
2030s −23.3 −35.4
2050s −22.2 −34.6
2070s −24.4 −37.0
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4. Discussion

All three projected scenarios showed the least change, or decrease, in temperature during summer
months when compared to the historical data. The data suggests that increased precipitation during
summer months (June–August) led to increased cloud cover. Further explaining why all three time
spans showed decreases in temperature in July, as precipitation increased by a least 32 percent.
This observation has also been cited by a study focusing on shifts in land cover as a result of climate
change [60].

The percent increases in runoff exceeded the percent increases in precipitation for all projected
scenarios. This is specifically counter intuitive for the 2050s and 2070s, where higher annual
temperatures are projected, leading to increased annual evaporative demand. The monthly data
showed that some of the more energy-limited months (March, April, and December) projected
significant increases in precipitation with slight increases in temperature. This suggests an increase
of rain versus snow events while evaporative demand is limited. During the summer months,
July and August show significant increases in precipitation with slight decreases in temperature
for all projected scenarios except for August in the 2070s, indicating lower evaporative demand with
increased precipitation resulted in increased runoff. The 2030s showed increases of nearly 100 MCM
for both February and September compared to the Base scenario. Further investigation showed that
precipitation was marginally higher, and temperature significantly lower in these months compared to
the other projected time spans, suggesting that the observed increase in runoff was due to the decrease
in temperature, limiting evapotranspiration.

The results showed that the decrease in cumulative penalty with incrementing time span and
scenario was almost all attributed to decreases in the FG and BG penalties. The data suggests that the
increased inflow maintained reservoir storage near the flood guide, minimizing BG penalties. A major
caveat for permitting reservoir storage to be maintained near the flood guide was the introduction of
flooding downstream (FLD) penalties (Table 3). Although the 2070s had the highest percent increase
in water-year precipitation, the FLD penalties for all scenarios under this time span were nearly or
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more than 50 percent less compared to the 2030s and 2050s. This can be explained in part by the
2070s having a lower inflow standard deviation and events exceeding the ninetieth and ninety-fifth
percentile compared to the 2030s and 2050s, suggesting less extreme inflow events and more evenly
distributed inflow throughout the water year in the 2070s.

The penalty for not meeting outflow requirements for Bull Run Fossil Plant cooling (COOL)
slightly increased for all three projected time spans relative to Base. The data suggests that these
increases in penalties were to rapidly return reservoir elevation above the balancing guide to
prevent cumulative penalties from COOL and NAV, or the more extreme ECOPOW penalty, from
being triggered.

All optimized flood guides were decreased during historically low flow months (Figure 6).
With the climate projections showing substantial percent increases in runoff during dry months (from
April to August) for all future time spans (Figure 5), having these guidelines lowered during dry
months provides an extra buffer to prevent extreme reservoir elevations. On the other hand, all future
time spans showed increases in the flood guide from January to March. These increases are caused
in part by the carryover from the substantial increase in runoff in December for all future time spans
(Figure 5). Increasing the flood guide during these months was the solution of the genetic algorithm to
minimize the FG penalty. Further, increasing the flood guides during the earlier months of the year
benefit managers, as it reduces the amount reservoir elevation needs to be raised to maintain objective
satisfaction during the low-flow season.

5. Conclusions

Studies such as these provide beneficial information and tools promoting more efficient and
effective water-resources planning and management. The results from this study concluded that
runoff in this region is anticipated to increase over the next century as the result of an increase in
precipitation with warmer winters leading to more rain versus snow events, and cooler summers
reducing evaporative demand. Such a significant increase in runoff emphasizes the need for water
resources management to reassess their systems considering projected climate change. This study
provides insight for how the impacts of climate change may affect the performance of a multi-purpose
reservoir if not considered, and that optimizing the current operating guide to consider a projected
climate scenario reduced operational penalties by a minimum of 22.2 percent, and as much as
37.0 percent.

Increases in the flooding downstream penalty were observed in the projected scenarios. This could
lead to dam structural integrity concerns, especially when considering individual storm hydrographs.
Although Norris Dam could sufficiently handle the increased inflows, it is one of the Northern most
dams and the increased flooding downstream may cause potential hazards for downstream dams.
Therefore, the next phase of this research is to extend the scope to encompass reservoirs downstream
of Norris, and eventually the entire TVA multi-dam network. It is also recommended that this analysis
be performed again once the temporal resolution of GCM models are able to capture individual
storm events.

This study provides a framework for assessing and optimizing reservoir routing. For the TVA,
this framework showed that the current operating policy can be further optimized, and suggests that
their current routing policies be reassessed considering climate change. Finally, this study shows the
benefits of using genetic algorithms for assessing and optimizing reservoir routing guides, regardless
of the objective or climatic regime.
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