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Abstract: Because of the high correlation between random variables of drought duration and severity,
their joint distribution is difficult to obtain by traditional mathematical methods. However, the copula
method has proved to be a useful tool for analyzing the frequency of drought duration and severity.
Most studies have used different marginal distribution functions to fit the drought duration and
severity distributions. This requires a great deal of contrast analysis, and sometimes two or more
distributions fit the data well. Based on entropy theory, however, a unified probability distribution
function is derived which reduces complex contrast analysis and improves the filtering distribution
function. Based on monthly precipitation data at 162 stations in China for 1961–2015, the monthly
standardized precipitation index was calculated and used to extract drought duration and severity.
Then the entropy distribution was used to fit the distributions of drought duration and severity,
and to establish the correspondence between them. The probabilities of the interval and return
periods were then determined using the copula method. An analysis of the discrepancy between the
conventional and entropy-based methods indicated that the entropy distribution showed a better fit
than conventional methods for drought duration distribution, although no obvious difference was
found in drought severity distribution. The entropy-based results were more consistent with the
empirical data, whereas conventional methods showed apparent deviation in some drought types.
Hence, the entropy-based method is proposed as an alternative method of deriving the marginal
distributions of drought duration and severity, and for analyzing the interval probability and return
period in China.
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1. Introduction

Of the many natural hazards, droughts are a common and major hazard, not only for their
devastating impact on regional agriculture, but also for their far-reaching impact in an increasingly
globalized world [1,2]. The large spatial coverage and long duration of droughts are their main
characteristics. According to Wilhite [3], droughts cause global damage costing tens of billions of
dollars. Overall, they affect more people than any other form of devastating climate-related hazard.
Drought is a serious problem in China, as demonstrated by the annual proportion of crop-damaged
area due to drought. According to data from the National Bureau of Statistics in China, in the period
2004–2013 the average annual area of crop damage due to drought accounted for 50% of all areas
affected by meteorological disasters (http://data.stats.gov.cn/easyquery.htm?cn=C01).
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To date, many drought indices have been proposed for quantifying, monitoring and analyzing
droughts [4,5], but the drought problem is a complex one involving a great many factors [6–12].
There is no unified index because of the complexity of the physical processes involved; however,
many studies have shown that the intensity, duration and spatial extent are the main characteristics of
droughts [13,14]. Although the combined probability of these characteristics is important in drought
analysis, drought variables display different marginal distributions. Despite a certain degree of
correlation, it is difficult to calculate their joint function. For this reason, only limited analyses of the
combined duration and severity of droughts have so far been conducted.

The copula method was introduced in recent years to analyze droughts. A copula function is
a multivariate descriptive model used in probability analysis, originally applied in economics, then in
hydrology and meteorology. The detailed theoretical background and descriptions for the use of
copulas can be acquired from the books of Joe [15] and Nelsen [16]. Some recent works include,
for example, Shiau [17] who constructed a joint drought duration and severity distribution using
bivariate copulas in southern Taiwan; Zhang [18] employed a copula function to analyze drought risk,
indicating a high risk in central and north-western Yunnan Province; and Tosunoglu and Can [19] used
a two-dimensional copula function to analyze meteorological droughts in Turkey. Similar analyses can
be found in [20–23].

However, most of these studies used different marginal distribution functions to fit the drought
duration and severity distributions. For instance, Reddy and Singh [24] used gamma, lognormal,
Weibull and exponential distributions to fit drought duration and severity, and showed that a lognormal
distribution produced the best fit for drought severity, and an exponential distribution produced the
best fit for drought duration. Ganguli and Reddy [25] used a bivariate copula to assess the drought
risk in Gujarat, India, adopting a normal kernel, quadratic kernel, gamma, lognormal, exponential,
Gumbel and Weibull distributions to fit the drought duration and severity; these indicated that the
exponential and normal kernel distributions respectively produced the best fit for drought duration
and severity. Similar analyses can be found in [19] and [23]. Hence, a large amount of contrast analysis
must be conducted to select an optimal distribution and, in some cases, two or more distributions fit
the data well. Selecting the most appropriate marginal distribution is a tedious process but, based on
the principle of maximum entropy [26,27] developed from Shannon entropy [28], a unified distribution
formulation was derived and the results produced a good fit in practice [29–33]. Since this method
has been more often applied in the analysis of hydrological drought than meteorological drought,
a discussion of the results of entropy-based and conventional methods is necessary and meaningful.

The major object of this study is to analyze meteorological drought in China adopting entropy
methods, and to discuss the discrepancy between these and conventional methods. This paper is
organized as follows. Section 2 describes the data used in this study. Section 3 defines drought
characteristics and distributions, drought classification, entropy distribution and the copula method.
The results are given in Section 4. Finally, discussion and main conclusions of this study are
summarized in Section 5.

2. Data

Monthly precipitation data from 194 national meteorological observation stations throughout
mainland China was obtained from the China meteorological data service center (http://data.cma.cn/en).
However, for various reasons (missing data, differences in start times, and to ensure that more historical
observations were included), 162 stations were selected for the period from 1961 to 2015 (Figure 1).

As shown in Figure 1, due to the lack of meteorological stations in Tibet, the results for Tibet
are masked. The mean annual precipitation distribution exhibits an obvious pattern, decreasing
from south-eastern to north-western China. The maximum mean annual precipitation was above
1800 mm and the minimum was less than 300 mm. This great difference is due to the complex
topography of China, with mountain ridges, river basins, plateaus, hills and plains, as well as major
climate differences.

http://data.cma.cn/en
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Figure 1. Locations of meteorological observation stations and contours of mean annual precipitation
in China. Stars represent selected stations: Changchun (station No. 54161) in Jilin; Shijiazhuang
(station No. 53698) in Hebei; Laohekou (station No. 57265) in Hubei; Maerkang (station No. 56172) in
Sichuan; Kunming (station No. 56778) in Yunnan; and Jianxian (station No. 57799) in Jiangxi.

3. Methodology

3.1. Standardized Precipitation Index (SPI)

The SPI is a simple and wildly used drought index which was developed by McKee [34].
The number of SPI denotes the standard deviations that the observed value would deviate from
the long-term mean, for a normally distributed random variable. Since precipitation is not normally
distributed, a transformation is first applied so that the transformed precipitation values follow
a normal distribution. The SPI expresses droughts on different time scales, such as 1, 3, 6 or 12 months,
and so on. A detailed description of the calculation steps may be found in Guttman [35]. The program
may be downloaded at http://drought.unl.edu/MonitoringTools/DownloadableSPIProgram.aspx.
The fact that the SPI is calculated from precipitation data makes it relatively easy to evaluate, and thus
it is ideal for areas where data has not been collected extensively. Because of these advantages, it is
widely used to investigate drought characteristics; see [36–39].

3.2. Definition of Drought Characteristics and Distributions

Duration and severity are the two main properties of drought event, which were extracted from
the SPI (1 month scale) in this artical, as shown in Figure 2. Drought is defined as a continuous period
when the SPI is below zero [17]; therefore, the drought duration is equal to the number of months
when the SPI is continuously below zero. Drought severity is defined as the cumulative values of the
SPI within the drought duration, expressed as

si = −
di

∑
i=1

SPIi (1)

where di is the drought duration and si is the drought severity.

http://drought.unl.edu/MonitoringTools/DownloadableSPIProgram.aspx
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Figure 2. Definitions of drought characteristics.

Previous studies [17,20,40] have suggested that drought duration and severity follow exponential
and gamma distributions, respectively. The cumulative probability functions of the exponential
distribution and gamma distribution are given by

FD(D ≤ d) = 1− e−λd (2)

where d is the drought duration and λ is a parameter, estimated by λ̂ = 1/d; FD(D ≤ d) is the
cumulative distribution function for duration which refers to the probability that drought duration is
equal to or less than d; and

FS(S ≤ s) =
∫ s

0

sα−1

βαΓ(α)
e−

s
β ds (3)

where s is the drought severity; Γ is the gamma function; and α and β are shape and scale parameters,

respectively, estimated by α̂ = 1
4A (1 +

√
1 + 4A

3 ), β̂ = s
α̂ , where A = ln s − ln s; FS(S ≤ s) is the

cumulative distribution function for severity which denotes to the probability that drought severity is
equal to or less than s.

In practice, the time is usually classified into a specific time scale (e.g., month, season, half-year,
one year etc.). In the present study, the drought duration (D) was divided into four classifications
(Table 1). Based on the empirical cumulative probability of drought severity (S), the percentage of
drought severity was calculated to have the same probability as the classification of drought duration
indicated. These percentages were also used to divide the severity into four types (Table 1).

Table 1. Classifications of drought duration and severity.

Duration (Month) Severity Probability Classification

0 < D ≤ 1 0 < S ≤ 0.85 0.39 1
1 < D ≤ 3 0.85 < S ≤ 2.27 0.39 2
3 < D ≤ 6 2.27 < S ≤ 4.29 0.17 3

6 < D 4.29 < S 0.05 4

The probability 0.05 is often used as the percentage point defining extreme event. As Table 1
shows, the probability of 6 < D and 4.29 < S is 0.05; therefore, D = 6 and S = 4.29 indicates the
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bounds of an extreme event. By combining the classifications of duration and severity in Table 1,
16 types of drought events are obtained: drought types where 0 < D ≤ 1 and 0 < S ≤ 0.85, 0 < D ≤ 1
and 0.85 < S ≤ 2.27, etc.

3.3. Entropy-Based Distribution

3.3.1. Shannon Entropy

The term entropy [28] describes the uncertainty, disorder, dispersion or diversification of a system.
For a continuous random variable X with probability density function (PDF) f (x) defined on the
interval [a, b], Shannon entropy H is defined as

H = −
∫ b

a
f (x) ln f (x)dx (4)

3.3.2. Univariate Entropy

Univariate distribution was derived from the principle of maximum entropy proposed by
Jaynes [26,27] where the probability density function (PDF) maximizes the entropy, subject to given
constraints. The general constraints are given by

∫ b

a
f (x)dx = 1 (5)∫ b

a
gi(x) f (x)dx = gi(x), i = 1, 2, · · · , k (6)

where the constraint in Equation (5) ensures that the integration of the PDF over the interval [a, b]
is unity. Equation (6) describes the other constraints, which can be selected or specified functions
with respect to the properties of interest [32]; gi(x) is the expected value of the i-th function gi(x),
and k is the number of constraints. In this study the power function was selected as the gi(x) function,
taking the parameter estimation to be a gamma distribution; a logarithmic function was also used.
Hence Equation (6) may be rewritten as

∫ b

a
xi f (x)dx = xi, i = 1, 2, · · · , k (7)∫ b

a
ln x f (x)dx = ln x (8)

In accordance with the principle of maximum entropy, the entropy-based PDF for the univariate
case is derived by maximizing the entropy defined in Equation (4) using Lagrange multipliers.
The Lagrange function L is given by [41]:

L = −
∫ b

a
f (x) ln f (x)dx−

k

∑
i=0

λi[
∫ b

a
gi(x) f (x)dx− gi] (9)

where λi are the Lagrange multipliers.
Differentiating L with respect to f and setting the derivative to zero, the entropy-based PDF can

be obtained as [41,42]

f (x) = exp[−
m

∑
i=0

λigi(x)] (10)
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With the constraints in Equation (7) (the first to third powers of x), the entropy-based PDF of
drought duration is expressed by

f (d) = exp[−λ0 − λ1d− λ2d2 − λ3d3] (11)

Similarly, the entropy-based PDF of drought severity based on the constraints in Equation (7)
(the first and second powers of x) and Equation (8) is expressed by

f (s) = exp[−λ0 − λ1s− λ2s2 − λ3 ln s] (12)

The cumulative distributions for the random variables (drought duration and severity) are then
obtained by integrating each PDF.

The Lagrange multipliers are obtained by minimizing the convex function [41,43]

Υ = λ0 +
4

∑
i=0

λigi(x) = ln
∫ b

a
exp[−

4

∑
i=1

λigi(x)]dx +
4

∑
i=0

λigi(x) (13)

The Newton-Raphson method can be used to minimize the convex function and obtain the
Lagrange multiplier {λi, i = 0, 1, 2, 3} [29,31] but here the scipy.optimize.minimize function in Python
(https://www.python.org) software was used.

3.4. Copula

3.4.1. Definitions

Based only on the marginal distributions of the variables, a copula function gives the multivariate
distribution function [16]. Sklar [44] first introduced the theoretical basis of a copula: if random
variables x, y follow the arbitrary marginal distribution functions FX(x), FY(y), respectively,
then a copula C(•) exists that combines the marginal distribution functions to give the joint distribution
function FX,Y(x, y) [16]

FX,Y(x, y) = C(FX(x), FY(y)) (14)

3.4.2. Archimedean Copulas

There are many families of copulas, including elliptical (normal and t), Archimedean (Clayton,
Gumbel and Frank), extreme value (Gumbel, Husler-Reiss, Galambos, Tawn and t-EV) and others
(Plackett and Farlie-Gumbel-Morgenstern) [45]. Archimedean copulas are most commonly used for
drought applications, and were employed in this study, to establish the joint probability expressed as
follows [16].

Clayton copula:
Cθ(u, v) = (u−θ + v−θ − 1)−

1
θ (15)

where Cθ(u, v) is the joint distribution; u and v are marginal distributions; θ is a parameter of copula
function which can be estimated by the relationship between the Kendal coefficient and the parameter
θ expressed as τ = θ

θ+2 ,θ ∈ [0, ∞).
Frank copula:

Cθ(u, v) = −1
θ

ln(1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1
), θ 6= 0 (16)

where the relationship between the Kendal coefficient and the parameter θ is τ = 1− 4
θ (

1
θ

∫ θ
0

t
et−1 dt−

1), θ 6= 0.
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Gumbel-Hougaard copula:

Cθ(u, v) = e−((− ln u)θ+(− ln v)θ)
1
θ (17)

where the relationship between the Kendal coefficient and the parameter θ is τ = 1− θ−1,θ ∈ [0, ∞).

3.4.3. Empirical Copulas

When a sufficiently large sample size is available, empirical copulas can be used to construct
a non-parametric joint empirical probability distribution [16]. Unfortunately, the sample size is small
in many cases, so an analysis using empirical copulas is not realistic; however, they are often used for
copula selection. For the bivariate case, the empirical copula of the observed data (ui, vi) is

Ce(ui, vi) =
1
n

n

∑
i=1

I(
Di

n + 1
≤ ui,

Si
n + 1

≤ vi), (18)

where n is the sample size; I(A) is the indicator function, which is equal to 1 if A is true and 0 if A is
false; and Di and Si respectively represent the drought duration and severity rank statistics obtained
from the sample.

3.4.4. Copula Selection

The root mean squared error (RMSE), the Akaike information criterion (AIC) [46,47], and the
Kolmogorov-Smirnov (KS) Dn statistic [48] were used to select the copula function with the best fit.
These are expressed as

RMSE =

√
1
n

n

∑
i=1

(Cθ(ui, vi)− Ce(ui, vi))2 (19)

AIC = n ln MSE + 2m (20)

Dn = sup|Cθ(ui, vi)− Ce(ui, vi)| (21)

where n is the sample size; Cθ is the computed value of the copula parametric; Ce is the observed value
of the probability obtained from the empirical copula; MSE is the mean square error; m is the number
of independently adjusted parameters; and sup is the supremum of the set of distances. This model is
most efficient when RMSE, AIC and Dn take minimum values.

3.4.5. Interval Probability and Return Period

The occurring probability and return period of drought event are important information for
water resource management, where they can be obtained from the derived copula-based joint drought
duration and severity distribution. The joint probability and interval probability are given by

Pd,s = P(D ≤ d, S ≤ s) = C(FD(d), FS(s)) (22)

Pd1,d2,s1,s2 = P(d1 < D ≤ d2, s1 < S ≤ s2) = Pd2,s2 − Pd1,s2 − Pd2,s1 + Pd1,s1 (23)

where Pd,s is the cumulative joint probability which refers to the probability that both the drought
duration and severity are equal to or less than certain thresholds, and Pd1,d2,s1,s2 is the interval
probability which denotes the occurring probability of a type of drought event denoted in Table 1.
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The return period for droughts with a duration or severity equal to or greater than a certain value
can be found in Shiau and Shen [17,20], but here the focus was on the return period of drought type
indicated in Table 1 [49]. This is expressed as

T =
nyears

N × Pd1,d2,s1,s2

(24)

where nyears is the range of years; N is the number size of drought samples extracted from the SPI
sequence; and Pd1,d2,s1,s2 is the interval probability.

4. Results

4.1. Drought Characteristic and Distribution Test

As indicated in Figure 2, drought is defined as a continuous period when the SPI is below zero.
Hence, the drought events (containing two variables called drought duration and severity) were
extracted from the time sequence of 1-month SPI at each station, and the number of drought events
was counted which shows that the number of drought events is generally larger than 130. Taking
the selected stations (Changchun and Maerkang in Figure 1) for example, Figure 3 shows the time
sequences of drought duration and severity. The results of Kendall coefficient indicate that there
is an ordinal association between drought duration and severity (0.52 in Changchun and 0.57 in
Maerkang), and the Kendal coefficients pass the tau test at the 0.05 significance level. The Kendall
coefficient in other stations was also calculated, which ranges from 0.45 to 0.73.

Jan '65 Jan '70 Jan '75 Jan '80 Jan '85 Jan '90 Jan '95 Jan '00 Jan '05 Jan '10 Jan '15
Time
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( a ) Duration
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( b ) Duration
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Figure 3. The time sequences of drought duration and severity: (a) Changchun (station No. 54161);
(b) Maerkang (station No. 56172).

Based on the extracted drought duration and severity samples, the mean and standard deviation
of the two drought characteristics were obtained (Figure 4). Figure 4a shows that the mean duration
in most regions is close to two months, and the mean duration in southern, south-western and
northern China is relatively large. Figure 4b shows a similar distribution, but Figure 4c clearly differs
from Figure 4d, indicating greater variation of drought duration in south-western than in northern
China, whereas drought severity shows a larger variation in south-western and south-eastern China.
As indicated in other studies [50–56], droughts occur frequently in south-western, central and northern
China. An analysis of the standard deviation of the two drought characteristics indicates that variation
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in the duration of droughts is the main factor affecting northern China, but the south-west is affected
by the combined effects of both the duration and severity of droughts.

( a ) ( b )

( c ) ( d )

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Figure 4. Distribution of drought characteristics: (a) mean drought duration; (b) mean drought severity;
(c) standard deviation of drought duration; and (d) standard deviation of drought severity.

Generally, exponential distribution (Equation (2)) is used to model drought duration,
while gamma distribution (Equation (3)) fits drought severity. However, in this study the entropy-based
distribution was used to model the marginal distributions of both variables (see Equations (11) and
(12)), with the empirical distribution being used for comparison. For the evenly selected stations in
Figure 1, the theoretical cumulative distribution, entropy-based cumulative distribution and empirical
cumulative distribution are shown in Figures 5 and 6. Overall, the theoretical distribution fitted the
empirical distribution well, especially for drought severity, but discrepancies between the theoretical
and empirical distributions were still evident. Figure 5 shows that the entropy-based distribution was
more consistent with the data than the exponential distribution, which overestimated the probability
when D < 2 and underestimated it when D > 2. However, as Figure 6 shows, the discrepancy is
not distinct, and the distributions produced by both methods were reasonably consistent with the
empirical distribution. The results of a KS goodness-of-fit test at all stations are shown in Table 2.

The KS results for all stations (Table 2) illustrate that drought duration is distributed exponentially,
and drought severity obeys a gamma distribution. It is also interesting to note that these two variables
also conformed to the entropy-based distributions. The root mean squared error (RMSE) and KS
statistic Dn between theoretical (entropy) and empirical methods were calculated for each station.
The mean of these two variables in Table 2 indicates that the entropy-based method produced a closer
fit, especially for drought duration.

Since most studies in the literature have shown [18,19,22,23] that the Archimedean copulas are
the most widely used for drought analysis, they were also used in this study to build a correspondence
between the drought variables. Due to the limited number of samples, however, Equation (18) was
used only to select the optimal copula function; it was not used to calculate the empirical interval
probability and return period. However, for the analysis of the conventional process, the empirical
marginal distribution and copula function were used to calculate the empirical interval probability
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and return period that were to be adopted as the reference object (called as semiempirical method in
our paper).
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Figure 5. Cumulative distribution of drought duration at selected stations: (a) Changchun (station
No. 54161); (b) Shijiazhuang (station No. 53698); (c) Laohekou (station No. 57265); (d) Maerkang
(station No. 56172); (e) Kunming (station No. 56778); and (f) Jianxian (station No. 57799).
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Figure 6. Cumulative distribution of drought severity at selected stations (a–f) as in Figure 5.

Table 2. Passing rate in KS test (α = 0.05) and mean RMSE and KS statistic Dn.

Variables Duration Severity

Exponential Entropy-Based Gamma Entropy-Based

Proportion 100% 100% 100% 100%
Dn 0.141 0.063 0.051 0.046

RMSE 0.058 0.029 0.021 0.018
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Figure 7 shows a theoretical estimation obtained using the Archimedean copula plotted versus
the empirical copula. The 45◦ line indicates the consistency between theoretical joint probability and
empirical joint probability. The results in Figure 7 shows that three copulas all show a good fit effect.
In order to select optimal copula function, the RMSE,AIC, and Dn methods were used to select the
copula function with the best fit (Table 3). As Table 3 indicates, the Gumbel copula was found to
produce the best fit to observed data for all methods. What is more, Figure 8 display the bivariate plot of
duration against severity for observed and simulated data generated from the estimated archimedean
copula distribution for six selected stations. Figure 8 indicates that the Gumbel method shows better
consistent with the observed data. Therefore, the Gumbel copula was adopted in this paper to calculate
the interval probability and return period.
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Figure 7. The fitted Archimedean copula versus the empirical copula for Changchun (station No. 54161)
and Maerkang (station No. 56172): (a) semiempirical copula for Changchun; (b) conventional copula
for Changchun; (c) entropy-based copula for Changchun; (d–f) with same meaning as in subfigures
(a–c) but for Maerkang.

Table 3. Percentages of stations in selecting optimal copula function based on RMSE, AIC, and KS
Dn statistic.

Copula Family Semiempirical Conventional Entropy-Based

RMSE AIC Dn RMSE AIC Dn RMSE AIC Dn

Clayton 0% 0% 0% 0% 0% 9.9% 0% 0% 1.2%
Frank 0.6% 0.6% 0% 0% 0% 0% 1.9% 1.9% 3.7%

Gumbel 99.4% 99.4% 100% 100% 100% 90.1% 98.1% 98.1% 95.1%
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Figure 8. Copula based joint distribution for six stations: (a0–f0) Observed; (a1–f1) Claython;
(a2–f2) Frank; (a3–f3) Gumbel; (a–f) as in Figure 5.

4.2. Interval Probability

Conventional processes of bivariate copula analysis usually adopt exponential and gamma
distributions to fit drought duration and severity, respectively. Then, from the copula function,
the correspondence between drought duration and severity is obtained and the joint probability and
return time is calculated. As shown in the literature [17–25], conventional probability analysis focuses
on joint cumulative probability and conditional probability. The interval probability was the main
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focus of the present study, since it provides a better understanding of drought details and is also
suitable for comparing conventional and entropy methods. Therefore the interval probability was
obtained as shown in Figures 9–11 for the semiempirical, conventional and entropy-based marginal
distributions of the two drought variables (Equations (2), (3), (11), (12), (22) and (23)).

As discussed in Section 3.2, drought events were divided into 16 types (e.g., Figure 9a shows
the drought type where 0 < D ≤ 1 and 0 < S ≤ 0.85, referred to as drought type (a), (b), etc. in the
following). To compare the probability of each drought type, the spatial probability mean (PM) for
each drought type was calculated (shown in the upper center of each subfigure). Because of the
small number of stations in western China (Figure 1), the PM was based on data from stations east of
longitude 100◦ E.

As Figures 9–11 show, the PMs of drought types (a), (e), (f) and (k) are obviously larger than the
others. The sum of the PMs for these drought types in Figure 9 is equal to 0.774 (0.724 in Figure 9
and 0.781 in Figure 11), indicating that these are the most common types of drought experienced in
China. Conversely, the PMs of drought types (c), (d), (h), (i), (m), (n) and (o) approach zero, indicating
improbable drought types. In Figures 9–11, types (a), (e) and (f) exhibit significantly different PMs
for the three methods. The semiempirical method gives a PM for type (f) which is obviously larger
than that of type (a), consistent with the entropy results in Figure 11, whereas Figure 10 shows the
opposite. Meanwhile, the PM values for these three drought types indicate that the entropy results
are closest to the semiempirical results. The conventional method overestimates the probability of
type (a) and underestimates the probability of types (e) and (f). For the extreme drought type (p),
the entropy method results match the semiempirical values more closely, but the conventional result is
obviously larger.
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Figure 9. Interval probability based on the semiempirical method: (a–p) represent different drought types.
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4.3. Return Period

As shown in Shiau [17], the joint return period of the bivariate drought event may be calculated
from the marginal distributions, the joint probability and the expected drought interarrival time E(L)
derivable from the SPI dataset. Calculation of the joint return period can be expressed by either (1)
assuming that the drought duration and severity are both larger than the set of values defining the
return period T(D ≥ d and S ≥ s); or (2) assuming that one of the drought variables exceeds the set of
values defining the return period T(D ≥ d or S ≥ s). However, since the major concern here is the type
of drought, the return period (recurrence time for drought type) was calculated from Equation (24).
As in the calculation of PM, the mean return period (MRP) was also calculated (Figures 12–14).

As Figures 12–14 show, the return period of drought types (a), (e), (f) and (k) is clearly shorter
than for the other types. The MRP illustrates that these drought types would recur every 1–4 years.
The spatial variations for these types are also small. Spatial difference is obvious in drought types (l)
and (p). As shown for type (l), the return period is less in southern and north-eastern China than in
northern China. Drought type (p) in Figure 12 shows a significant spatial discrepancy: in particular,
the return period is longer than 1000 years east of 100◦E, the main reason being that these stations have
never experienced a type (p) drought, resulting in the semiempirical interval probability Pd1,d2,s1,s2

equal to 0. Hence the return period cannot be calculated from Equation (24). In practice, a constant
return period of 1500 years was allocated to these stations. Therefore, abnormal points merely indicate
a longer return period. Such stations were omitted from the calculation of MRP. Hence, based on
the MRP, type (p) based on the entropy method was closer to the semiempirical result, whereas the
conventional method undervalued the MRP.
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Figure 12. Return period based on semiempirical method (the unit of the colored bar is years).
(a–p) represent the different drought types.
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Figure 13. Return period based on conventional method (the unit of the colored bar is years).
(a–p) represent the different drought types.
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the different drought types.
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5. Discussion and Conclusions

The entropy distribution is an alternative way of deriving the marginal probability distribution.
When the probability distribution of a variable is not known beforehand, the variable with the
maximum entropy (subject to certain constraints) is selected to be the distribution function. Because
the entropy distribution is unique, it eliminates altogether the need to compare different theoretical
distributions. The entropy distribution also fits the data well, as discussed. Since the constraints
comprise specified functions with respect to the properties of interest [32], the entropy distribution
method is more flexible than conventional methods, which are fixed modeling processes. Thus,
we propose the entropy distribution method as an attractive way of obtaining the marginal distribution;
however the method has some weaknesses. Firstly, the number of constraints is not fixed. When the
number of constraints is small, the fit has a comparatively large deviation, and a large number of
constraints results in obvious overfitting—that is, the entropy distribution creates a perfect fit, but only
for this dataset. Secondly, both tails of the entropy distribution are unreasonable. Taking drought
duration (Equation (11)) as an example, in the left-hand tail of the distribution the probability does not
equal 0 when the drought duration is 0, whereas the theoretical distribution (Equation (2)) equals 0,
which is the rational value. At the right-hand tail, it is also unreasonable that the Lagrange multiplier
λ3 is negative at some stations, implying a probability greater than 1 when the drought duration
is sufficiently large; by contrast, the probability derived from the theoretical distribution is always
less than 1. Hence, outside the data range, the probability value given by the entropy distribution
is questionable.

This study used the monthly precipitation data recorded at 162 stations for 1961–2015 to compare
the conventional method and entropy method, along with the results based on the semiempirical
method as the standard of reference. Analysis indicated that the entropy distribution produced a better
fit to the data than the theoretical method for the drought duration distribution, although no obvious
difference was seen in fitting drought severity. The interval probability and return period analysis
showed that drought types (a), (e), (f) and (k) are obviously larger than the other types, and are
also the main drought types in China. The conventional and entropy methods gave very different
results for types (a) and (f). The entropy method results were closer to the semiempirical results;
the conventional method overestimated the probability of type (a) and underestimated the probability
of types (e) and (f). Analysis of the return period showed that drought types (a), (e), (f) and (k) would
recur every 1–4 years, and no spatial discrepancy was obvious. For the extreme drought types (l) and
(p), the entropy method results also agreed more closely with the semiempirical results, whereas the
conventional method underestimated the MRP.

In summary, the entropy distribution method may be adopted as an alternative way of deriving
the marginal distributions of drought duration and severity in China. The results indicate that the
entropy method was more effective than the conventional method for analysis of the probability of
drought intervals and return periods. In addition, the entropy distribution can be used for other
problems which need to solve the probability distribution expression.

Acknowledgments: The research is supported by the National Natural Science Foundation of China
(Grant Nos. 41675092, 41530531 and 41775078), and the Key Special Scientific Research Fund of the Meteorological
Public Welfare Profession of China (Grant No. GYHY201506001).

Author Contributions: Jingguo Hu, Wei Hou, and Dongdon Zuo designed research; Dongdong Zuo performed
research; Wei Hou, Jingguo Hu, and Dongdong Zuo analyzed the data; Dongdong Zuo and Wei Hou wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2017, 9, 632 18 of 20

References

1. Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am.
Meteorol. Soc. 2002, 83, 1167–1180.

2. Sternberg, T. Regional drought has a global impact. Nature 2011, 472, 169–169.
3. Wilhite, D.A. Drought as a natural hazard: Concepts and definitions. Drought Glob. Assess. 2000, 1, 3–18.
4. Begueria, S.; Vicente-Serrano, S.M.; Angulo-Martinez, M. A multiscalar global drought dataset: The speibase

a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 2010,
91, 1351–1354.

5. Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A multiscalar drought index sensitive to global
warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718.

6. Huang, J.; Wang, S.W. The experiments of seasonal prediction using the analogy-dynamical model. Sci. China
1992, 35, 207–216.

7. Huang, J.; Yi, Y.; Wang, S.; Jifen, C. An analogue-dynamical long-range numerical weather prediction system
incorporating historical evolution. Q. J. R. Meteorol. Soc. 1993, 119, 547–565.

8. Feng, G.L.; Dai, X.G.; Wang, A.H.; Chou, J.F. On numerical predictability in the chaos system. Acta Phys. Sin.
2001, 50, 606–611.

9. Feng, G.L.; Dong, W.J.; Li. J.P. On temporal evolution of precipitation probability of the Yangtze River delta
in the last 50 years. Chin. Phys. 2004, 13, 1582–1587.

10. Zheng, Z.H.; Ren, H.L.; Huang, J.P. Analogue correction of errors based on seasonal climatic predictable
components and numerical experiments. Acta Phys. Sin. 2009, 10, 7359–7367. (In Chinese)

11. Li, J.P.; Ding, R.Q. Temporal-spatial distribution of the predictability limit of monthly sea surface temperature
in the global oceans. Int. J. Climatol. 2013, 33, 1936–1947.

12. Li, J.P.; Wang, S. Some mathematical and numerical issues in geophysical fluid dynamics and climate
dynamics. Commun. Comput. Phys. 2008, 3, 759–793.

13. Sheffield, J; Wood, E.F. Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture
data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res. 2007, 112, D17115.

14. Sheffield, J; Andreadis, K.M; Wood, E.F.; Lettenmaier, D.P. Global and continental drought in the second
half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events.
J. Clim. 2009, 22, 1962–1981.

15. Joe, H. Multivariate models and dependence concepts. In Monographs on Statistics and Applied Probability;
Chapman and Hall: New York, NY, USA, 1997.

16. Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 1999.
17. Shiau, J.T. Fitting drought duration and severity with two-dimensional copulas. Water Resour. Manag. 2006,

20, 795–815.
18. Zhang, D.D.; Yan, D.H.; Lu, F.; Wang, Y.C.; Feng, J. Copula-based risk assessment of drought in Yunnan

province, China. Nat. Hazards 2015, 75, 2199–2220.
19. Tosunoglu, F.; Can, I. Application of copulas for regional bivariate frequency analysis of meteorological

droughts in Turkey. Nat. Hazards 2016, 82, 1457–1447.
20. Shiau, J.T.; Shen, H.W. Recurrence analysis of hydrologic droughts of differing severity. J. Water Res.

Plan. Manag. 2001, 127, 30–40.
21. Salas, J.D.; Fu, C.J.; Cancelliere, A.; Dustin, D.; Bode, D.; Pineda, A.; Vencent, E. Characterizing the severity

and risk of drought in the Poudre River, Colorado. J. Water Res. Plan. Manag. 2005, 131, 383–393.
22. Zhang, Q.; Li, J.F.; Singh, V.P. Application of Archimedean copulas in the analysis of the precipitation

extremes: Effects of precipitation changes. Theor. Appl. Climatol. 2012, 107, 255–264.
23. Zhang, Q.; Xiao, M.Z.; Singh, V.P.; Chen, X.H. Copula-based risk evaluation of droughts across the Pearl

River basin, China. Theor. Appl. Climatol. 2013, 111, 119–131.
24. Reddy, M.J; Singh, V.P. Multivariate modeling of droughts using copulas and meta-heuristic methods.

Stoch. Environ. Res. Risk Assess. 2014, 28, 475–489.
25. Ganguli, P.; Reddy, M.J. Risk assessment of drought in Gujarat using bivariate copula. Water Resour. Manag.

2012, 26, 3301–3327.
26. Jaynes, E.T. Information theory and statistical mechanics, I. Phys. Rev. 1957, 106, 620–630.
27. Jaynes, E.T. Information theory and statistical mechanics, II. Phys. Rev. 1957, 108, 171–190.



Water 2017, 9, 632 19 of 20

28. Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423.
29. Hong, X.; Guo, S.; Xiong, L.; Liu, Zhang. Spatial and temporal analysis of drought using entropy-based

standardized precipitation index: A case study in Poyang Lake basin, China. Theor. Appl. Climatol. 2015,
122, 543–556.

30. Zhang, L.; Singh, V.P. Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy 2012,
14, 1784–1812.

31. Hao, Z.; Acse, M.; Singh, V.P.; Asce, F. Entropy-based method for bivariate drought analysis. J. Hydrol. Eng.
2013, 18, 780–786.

32. Hao, Z.; Singh, V.P. Integrating entropy and copula theories for hydrologic modeling and analysis. Entropy
2015, 17, 2253–2280.

33. Li, F.; Zheng, Q. Probabilistic modelling of flood events using the entropy copula. Adv. Water Resour. 2016,
97, 233–240.

34. Mckee, T.B.; Doesken, N.J.; Kleist. J. The relationship of drought frequency and duration to time scales.
In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993;
American Meteor Society: Boston, MA, USA, 1993; pp. 179–184.

35. Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm. J. Am. Water Resour.
1999, 35, 311–322.

36. Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the
standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438.

37. Bordi, I.; Fraedrich, K.; Jiang, J.M.; Sutera, A. Spatio-temporal variability of dry and wet periods in eastern
China. Theor. Appl. Climatol. 2004, 79, 81–91.

38. Livada, I.; Assimakopoulos, V.D. Spatial and temporal analysis of drought in Greece using the Standardized
Precipitation Index (SPI). Theor. Appl. Climatol. 2007, 89, 143–153.

39. Zhang, Q.; Xu, C.Y.; Zhang, Z. Observed changes of drought/wetness episodes in the Pearl River basin,
China, using the standardized precipitation index and aridity index. Theor. Appl. Climatol. 2009, 98, 89–99.

40. Mathier, L.; Perreault L.; Bobée, B.; Ashkar, F. The use of geometric and gamma-related distributions for
frequency analysis of water deficit. Stoch. Hydrol. Hydraul. 1992, 6, 239–254.

41. Kapur, J.N. Maximum-Entropy Models in Science and Engineering; John Wiley & Sons INC.: New York, NY,
USA, 1989.

42. Kesvan, H.; Kapur, J. Entropy Optimization Principles with Applications; Academic Press: New York, NY, USA,
1992.

43. Mead, L.R.; Papanicolaou, N. Maximum entropy in the problem of moments. J. Math. Phys. 1984, 8, 2404–2417.
44. Sklar, M. Fonctions de repartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–231.
45. Mirabbasi, R.; Fakheri-Fard, A.; Dinpashoh, Y. Bivariate drought frequency analysis using the copula method.

Theor. Appl. Climatol. 2012, 108, 191–206.
46. Akaike, H. IEEE Xplore abstract-a new look at the statistical model identification. IEEE Trans. Autom. Control

1974, 19, 716–723.
47. Zhang, Q.; Singh, V.P. Bivariate flood frequency analysis using the copula method. J. Hydrol. Eng. 2006,

11, 150–164.
48. Rauf, U.F.A.; Zeephongsekul, P. Copula based analysis of rainfall severity and duration: A case study.

Theor. Appl. Climatol. 2014, 115, 153–166.
49. FruH, B.; Feldmann, H.; Panitz, H.J.; Schadler, G. Determination of Precipitation Return Values in Complex

Terrain and Their Evaluation. J. Clim. 2010, 23, 2257–2274.
50. Gao, H.; Yang, S. A severe drought event in northern China in winter 2008–2009 and the possible influences

of La Niña and Tibetan Plateau. J. Geophys. Res. 2009, 114, D24104.
51. Qian, W.; Shan, X.; Zhu, Y. Ranking regional drought events in China for 1960–2009. Adv. Atmos. Sci. 2011,

28, 310–321.
52. Xin, X.G.; Yu, R.C.; Zhou, T.J.; Wang, B. Drought in late spring of south China in recent decades. J. Clim.

2006, 19, 3197–3206.
53. Xin, X.G.; Yu, R.C.; Zhou, T.J. Southward movement of the decadal drought in southeastern China during

April–May and numerical simulation of the effect of the condensation heating. Chin. J. Atmos. Sci 2009, 33,
1165–1173. (In Chinese)



Water 2017, 9, 632 20 of 20

54. Yu, W.J.; Shao, M.Y.; Ren, M.L.; Zhou, H.J.; Jiang, Z.H.; Li, D.L. Analysis on spatial and temporal
characteristics drought of Yunnan Province. Acta Ecol. Sin. 2013, 33, 317–324.

55. Yang, J.; Gong, D.Y.; Wang, W.S.; Hu, M.; Mao, R. Extreme drought event of 2009/2010 over southwestern
China. Meteorol. Atmos. Phys. 2012, 115, 173–184.

56. Huang, R.H.; Liu, Y.; Wang, L.; Wang, L. Analyses of the causes of severe drought ccurring in southwest
China from the fall of 2009 to the spring of 2010. Chin. J. Atmos. Sci. 2012, 36, 443–457. (In Chinese)

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data
	Methodology
	Standardized Precipitation Index (SPI)
	Definition of Drought Characteristics and Distributions
	Entropy-Based Distribution
	Shannon Entropy
	Univariate Entropy

	Copula
	Definitions
	Archimedean Copulas
	Empirical Copulas
	Copula Selection
	Interval Probability and Return Period


	Results
	Drought Characteristic and Distribution Test
	Interval Probability
	Return Period

	Discussion and Conclusions

