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Abstract: Forecasting the industrial water demand accurately is crucial for sustainable water resource
management. This study investigates industrial water demand forecasting by case-based reasoning
(CBR) in an arid area, with a case study of Zhangye, China. We constructed a case base with
420 original cases of 28 cities in China, extracted six attributes of the industrial water demand,
and employed a back propagation neural network (BPN) to weight each attribute, as well as the
grey incidence analysis (GIA) to calculate the similarities between target case and original cases.
The forecasting values were calculated by weighted similarities. The results show that the industrial
water demand of Zhangye in 2030, which is the t arget case, will reach 11.9 million tons. There are
10 original cases which have relatively high similarities to the target case. Furthermore, the case of
Yinchuan, 2010, has the largest similarity, followed by Yinchuan, 2009, and Urumqi, 2009. We also
made a comparison experiment in which case-based reasoning is more accurate than the grey forecast
model and BPN in water demand forecasting. It is expected that the results of this study will provide
references to water resources management and planning.

Keywords: industrial water demand; forecast; case-based reasoning; water resources management;
Zhangye city

1. Introduction

Water scarcity is becoming increasingly severe in arid and semi-arid regions of the world [1–4],
whereby access is not only limited by water resources availability, but also by resource conservation,
environmental friendliness, appropriateness of technologies, economic viability, and social acceptable
of development issues [5]. Water resources have become a bottleneck economies all over the world [6].
If there is no further action, more than 40% of countries will face a water resources crisis in 2030; arid
regions will bear the brunt [7].

Industry plays a fundamental role in the national economy of China. Over the past decades, it has
been proved that the forecasting results by some departments of China are obviously greater than
actual water uses [8]. Industrial water demand forecasting is complicated due to various departments
and enormous differences in industries, which were unfavourable for analysis and calculation [9].
To forecast the industrial water demand accurately and scientifically is always the key point to water
resources planning and management in the current socio-economic development period. Time series
methods, such as regression analysis [10], quota method [11], constant rate model [12], principal
component analysis [13], etc., calculate and forecast water demand through constructing statistic
models of data series. However, the industrial water demand has many affection factors, such as zone,
infrastructure, industrial category, production, population, climate, etc., which interact with each other.
Past forecasting models cannot completely simulate this non-linear relationship, i.e., there are always
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large uncertainties in industrial water demand forecasting. To reduce these uncertainties, non-linear
theories, such as chaos [14], neural network [15–17], marginal analysis [18], scenario simulation [19,20],
and multi-model [21,22] have been introduced into water demand forecasting. To a certain extent,
these methods have improved the forecasting accuracy; nevertheless, they still have not considered
the internal mechanism of industrial water demand variations adequately. Furthermore, regardless of
time series methods or non-linear theories, they were driven by historic regulation of water demands.
However, the trend of the industrial water demand is not fixed in time. With the variation of natural
resources and the environment, and the adjustment of industrial policies, the simulation results of
past methods did not always agree with the facts. For different periods of economic development,
the evolving regulars of industrial water consumption are different. It is hard to define particular
models or restrained regulations to reflect the relationship between the industrial water demand and
other socio-economic factors.

To process the bottleneck, this study proposed an approach to forecast the industrial water
demand by case-based reasoning (CBR). CBR is an object-oriented method [23–25] of comprehensive
analysis, and is affiliated with artificial intelligence [26]. The most obvious feature of CBR is that
it does not need to define unambiguous rules, but uses the underlying expression of cases, which
would reduce the model construction time, and effectively solve the problems of fuzziness and
uncertainty when acquiring knowledge. CBR can use historic data and choose appropriate cases to
analyze and forecast accurately, without a clear internal mechanism of objects development [27].
CBR is advantageous in simplifying knowledge acquisition, improving efficiency and quality
of problem-solving, and accumulating knowledge [27–29], and is widely applied in fields that
have abundant experiences but weak theory models, such as fault diagnosis [30,31], business
administration [32–34], medical application [35–37], emergency management [38,39], land use
development [40,41] etc. In the long-term forecasting of the industrial water demand, the training
samples and target object are at different development stages; they may present uncertainties of internal
resources use level, technical transformation process and institutional evolution. Therefore, methods
constructed by paradigms may have difficulties to meet the demand of uncertain planning. Instead,
CBR can avoid uncertainties and regulations of complex forecasts without a linear hypothesis [27].

To forecast the industrial water demand of Zhangye City in 2030, the approach was divided into
three parts: First, we constructed an industrial water demand case base, which contains 420 original
cases of 28 cities in China from 2000 to 2014. Secondly, six attributes were extracted as case attributes
and weighted by back propagation neural network (BPN). Finally, we applied grey incidence analysis
to calculate the similarities between the target case and original cases, and used the similarity weighted
method to forecast the industrial water demand of the target case.

2. Study Area and Data Sources

2.1. Study Area

Zhangye city is the largest economic zone and the largest water consumption area of the Heihe
River Basin and is also a critical hub of “the Silk Road Economic Belt and the 21st-Century Maritime
Silk Road” (B&R) (Figure 1). The city covers 40,874 km2 containing six counties. Zhangye is a typical
arid area with a continental climate. From the perspective of added value in 2016, the dominant
industries of Zhangye are mining, manufacturing and electricity, gas, water production and supply.
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Figure 1. Location of Zhangye City in Heihe River Basin, China. 

In the future, industry will continue to play an important role in Zhangye’s economy. Figure 2 
shows the trend of industrial water consumption and industrial added value in Zhangye from 2000 
to 2014. In general, the trend of industrial water consumption can be considered as fluctuating 
growth. In the current period of industrial transportation, the industrial water consumption may be 
greatly affected by the breaking of the water balance in Zhangye City. Therefore, it is necessary to 
forecast the industrial water demand scientifically and accurately in the context of excessive use of 
the region’s water resources due to rapid economic growth and increasing population pressure, and 
the result will provide a reference for water management in Zhangye city, even in Heihe River basin.  

 
Figure 2. Gross industrial production and industrial water consumption in Zhangye during 2000–
2014. 

2.2. Data Sources 

The data of industrial population, per capita GDP, gross industrial production, industrial fixed 
assets investment and industrial electricity consumption from 2000 to 2014 were obtained from the 
Statistical Yearbook of each city (2001–2015). The data of industrial water consumption and gross 
amount of water resources from 2000 to 2014 were obtained from the Water Resources Bulletin of 
each city (2001–2015).  

3. Methodology 

3.1. CBR Forecasting Framework 

Case-based reasoning is a methodology that uses previous cases to solve new problems [42]. The 
basic assumptions of CBR are that similar problems have similar solutions [29]. The paradigm of CBR 
processing problems is inspired by the human decision-making process [43]. It collects a set of cases, 

Figure 1. Location of Zhangye City in Heihe River Basin, China.

In the future, industry will continue to play an important role in Zhangye’s economy. Figure 2
shows the trend of industrial water consumption and industrial added value in Zhangye from 2000 to
2014. In general, the trend of industrial water consumption can be considered as fluctuating growth.
In the current period of industrial transportation, the industrial water consumption may be greatly
affected by the breaking of the water balance in Zhangye City. Therefore, it is necessary to forecast the
industrial water demand scientifically and accurately in the context of excessive use of the region’s
water resources due to rapid economic growth and increasing population pressure, and the result will
provide a reference for water management in Zhangye city, even in Heihe River basin.

Water 2017, 9, 626  3 of 13 

 

 
Figure 1. Location of Zhangye City in Heihe River Basin, China. 

In the future, industry will continue to play an important role in Zhangye’s economy. Figure 2 
shows the trend of industrial water consumption and industrial added value in Zhangye from 2000 
to 2014. In general, the trend of industrial water consumption can be considered as fluctuating 
growth. In the current period of industrial transportation, the industrial water consumption may be 
greatly affected by the breaking of the water balance in Zhangye City. Therefore, it is necessary to 
forecast the industrial water demand scientifically and accurately in the context of excessive use of 
the region’s water resources due to rapid economic growth and increasing population pressure, and 
the result will provide a reference for water management in Zhangye city, even in Heihe River basin.  

 
Figure 2. Gross industrial production and industrial water consumption in Zhangye during 2000–
2014. 

2.2. Data Sources 

The data of industrial population, per capita GDP, gross industrial production, industrial fixed 
assets investment and industrial electricity consumption from 2000 to 2014 were obtained from the 
Statistical Yearbook of each city (2001–2015). The data of industrial water consumption and gross 
amount of water resources from 2000 to 2014 were obtained from the Water Resources Bulletin of 
each city (2001–2015).  

3. Methodology 

3.1. CBR Forecasting Framework 

Case-based reasoning is a methodology that uses previous cases to solve new problems [42]. The 
basic assumptions of CBR are that similar problems have similar solutions [29]. The paradigm of CBR 
processing problems is inspired by the human decision-making process [43]. It collects a set of cases, 
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2.2. Data Sources

The data of industrial population, per capita GDP, gross industrial production, industrial fixed
assets investment and industrial electricity consumption from 2000 to 2014 were obtained from the
Statistical Yearbook of each city (2001–2015). The data of industrial water consumption and gross
amount of water resources from 2000 to 2014 were obtained from the Water Resources Bulletin of each
city (2001–2015).

3. Methodology

3.1. CBR Forecasting Framework

Case-based reasoning is a methodology that uses previous cases to solve new problems [42].
The basic assumptions of CBR are that similar problems have similar solutions [29]. The paradigm
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of CBR processing problems is inspired by the human decision-making process [43]. It collects a
set of cases, which are original cases, to form a case base. Each original case has a problem and a
solution. When a new problem appears, CBR can retrieve the most similar original case from the case
base according to the conditions, and apply its solution to the new problem through analysis and
modification. As a new original case, the solved target case and its solution will be kept to renew the
case base. Therefore, the CBR problem-solving architecture, as shown in Figure 3, typically consists of
four components: Retrieve, Reuse, Revise and Retain—commonly referred to as “4Rs” [44]. CBR has
the merits that it is easy to obtain knowledge, simple to express it and fast to reason it, especially in the
fields of fault diagnosis and decision support which have abundant experiential knowledge but lack
strong theoretical models and a complete domain knowledge system [27–29].
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Figure 3. Case-based reasoning (CBR) circle.

This paper used the core theory of CBR to forecast the industrial water demand in Zhangye City.
Specifically, the technique flow (Figure 4) of this paper contains four steps: Step 1 constructed the case
base by integrating the data of industrial water consumptions and its attributes of 28 cities evenly
distributed over China. Step 2 computed the weights of each influential factor by the BPN. Step 3
calculated the similarities between the target case and original cases by Grey Incidence Analysis. Step 4
screened out the cases with low similarities and kept the higher ones, then forecasted the industrial
water demand by weighted similarity.
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3.2. Extraction of Case Attributes

The attributes of industrial water can be categorized into environmental factors, economic factors
and social factors. Although environmental factors are critical to the industrial development of a city,
they are also relatively stable and will not have a noticeable impact on urban industry in the short
term. However, socio-economic factors, such as rapid economic development, population growth,
industrialization level and technological change, play a decisive role in urban industry. Accordingly,
combining with previous studies and availability of data, we chose per capita GDP to characterize
the regional economic development; industrial population and industrial electricity to characterize
the industrial scale; industrial production and industrial fixed assets investment to characterize the
regional industrial level; and gross amount of water resources to characterize the constraint of regional
natural environment. Hence, the above six indexes were selected as the attributes of the industrial
water demand in this paper. Due to the different impacts of each factor on the industrial water demand,
it is important to scientifically and reasonably estimate the weights of each factor which may affect the
forecasting accuracy. Therefore, it may lead to a large error if the weights are inadequate.

3.3. Attributes Weighting Based on the Back Propagation Neural Network (BPN)

Subjective weighting methods, such as the analytic hierarchy process (AHP) and the Delphi
Method, may bring weights instability and one-sidedness. However, the method of the BPN can
self-adapt the weights according to the impacts of each influential factor on the industrial water
demand [45].

The BPN is one of the most widely used artificial neural networks (ANN) in learning methods of
the feed-forward neural network [46]. It has the abilities of self-learning and self-adapting. The BPN
has been widely applied in many fields, such as pattern recognition, expert system, prediction and
signal processing, etc. In the classical structure of the BPN, the outputs of each layer are sent directly to
each neuron of the next layer. A three-layered BPN contains an input layer that receives and distributes
inputs, a middle (or hidden) layer that captures the nonlinear relationships of inputs and outputs,
and an output layer that produces calculated data. When the weights are trained, if the outputs of the
network are not equal to the expected outputs, the network will send the errors back to the input layer
and the middle layer and retrain to control the errors at a very low level. After the training, the weights
can be obtained according to the weight matrix throughout the network. In this study, we used
364 cases of 28 cities during 2000–2012 in which case attributes were used as input data, and observed
industrial water consumptions were used as target data (Figure 5). The training algorithm for the BPN
was Traingdm. The coefficients of the hidden layer, which were the weights of each attribute, were
calculated after self-learning.
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3.4. Similarities Calculation Based on Grey Incidence Analysis

Whether it can retrieve reasonable cases, thus obtaining the optimized solution, is key to the
success of a CBR model. The selection of similar cases in this paper applied grey incidence analysis
(GIA) by calculating the similarities between the target case and original cases. In comparison with
other methods, GIA had a better applicability in this research, and could also compute the degrees of
correlation accurately.

Assuming the case set has n cases, namely the original case set C = {C1, C2, . . . , Cn}; each case has
m attributes, namely the factor set of the original case F = {fi1, fi2, . . . , fim}, i = 1, 2, . . . , n; the target
case set T = {T1, T2, . . . , Tq} and the factor set of target case A = {ap1, ap2, . . . , apm}, p = 1, 2, . . . , q. Thus,
the n dimensional weighted grey similarity (G(Tp,Ci)) between target case (Tp) and each original case
(Ci) can be expressed as:

G(Tp, Ci) =
m

∑
j=1

ωj × ρ(ap(j), fi(j)) (1)

ρ(ap(j), fi(j)) =
min

i
min

j

∣∣ap(j)− fi(j)
∣∣+ λmax

i
max

j

∣∣ap(j)− fi(j)
∣∣∣∣ap(j)− fi(j)

∣∣+ λmax
i

max
j

∣∣ap(j)− fi(j)
∣∣ , λ ∈ [0, 1] (2)

where ωj is the weight of the jth influential factor; ρ(ap(j),fi) represents the similarity of the jth factor
between the target case and the original case; λ is discrimination coefficient values 0.5 by experience.

After calculating the similarities between the target case and each original case, combining
with the threshold (σ), whether the target case is similar to each original case could be judged.
The threshold was determined by expert experience, and was constantly adjusted in the process
of selection. Specifically, when G(ap,Ci) ≥ σ, namely the target case is similar to the original case,
and both of them have a similar socio-economic development level and almost the same industrial
water demand. Therefore, it can forecast the industrial water demand of the target case by analyzing
the industrial water consumption of similar original case/cases. Conversely, when G(ap,Ci) < σ, there
are few similarities of socio-economic situations and the industrial water demand between the target
case and original case.

3.5. Industrial Water Demand Forecasting

The retrieval process was not to choose one case which has the largest similarity, but a case
set inside which the similarities of every case were all above the threshold. Then, the industrial
water demand of the target case could be obtained by analyzing the features and industrial water
consumptions of similar original cases. At present, stepwise regression analysis, the optimized case
method and the weighted similarity method are the widely applied approaches to forecast the target
case. Due to the relatively lower error, this paper used the weighted similarity method to forecast the
industrial water demand.

Rp =

n
∑

j=1
(G(Tp, Ci)× Sj)

n
∑

j=1
G(Tp, Ci)

(3)

where Rp is the forecasting result of the pth target case; Sj is the industrial water consumption of the
jth original case.

4. Results

4.1. Validation of the CBR Model

The validation process used the data between 2000 and 2012 to forecast the industrial water
demand of the years 2013 and 2014 in Zhangye City. The case set contained 364 cases by using the
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statistics of 28 cities in China from 2000 to 2012. Table 1 shows the weighting result of each influential
factor which were calculated by the BPN.

Table 1. Weights of case attributes.

Case Attributes Weight Predicted Value of Zhangye in 2030

industrial population 0.2200 39.10 × 103

per capita GDP 0.1874 41.91 × 103 yuan
gross industrial production 0.1176 37.53 × 109 yuan

industrial fixed assets investment 0.1951 19.06 × 109 yuan
industrial electricity consumption 0.1247 2.37 × 109 kw·h
gross amount of water resources 0.1553 3.63 × 109 ton

From the above table, industrial population had the highest weight among the six features.
In contrast, gross industrial production was the lowest. Then, grey incidence analysis was used to
calculate the similarities between the target case and each original case. With the modified threshold
σ (=0.95), the number of similar cases according to the target cases of Zhangye City in the years 2013
and 2014 were screened by 16 and 14, respectively.

Further, these screened cases were applied to forecast the target cases by grey incidence analysis.
This paper used the relative error to test the accuracy of the CBR model. The smaller the error was, the
higher the accuracy would be. Table 2 gives the forecasting results in comparison with the observed
value in 2013 and 2014.

Table 2. Comparison between forecasting based on CBR and observed values in 2013 and 2014 (×106 tons).

Year Forecast Observed Relative Error

2013 65 69 −5.80%
2014 73 72 1.39%

The forecasting results of the industrial water demand in Zhangye City were 65 million tons
in 2013 and 73 million tons in 2014. Comparably, the observed values were 69 and 72 million tons,
respectively. Thus, the relative errors were −5.80% in 2013 and 1.39% in 2014. Apart from the
comparison of different years, this paper also compared different methods of forecasting to make
sure CBR was more suitable for industrial water demand forecasting. Table 3 illustrates the different
forecast results of the Grey Model (GM(1, 1)), BPN and CBR in Zhangye City for the year 2013.

Table 3. Comparison of industrial water demand forecasts in Zhangye, 2013 (×106 tons).

Methods Forecast Observed Relative Error

CBR 65 69 −5.80%
GM(1, 1) 81 69 17.39%

BPN 55 69 −20.29%

From the above table, the forecast results of the industrial water demand were 81 million tons
of GM(1, 1) and 55 million tons of BPN, respectively. Accordingly, the relative errors were 17.39%
and −20.29%, respectively. By contrast, the forecast result of CBR had relatively high accuracy, which
suggested that the forecasting result of CBR was fully justified by real conditions of industrial water
consumptions in Zhangye City.

4.2. Forecasting of the Target Case

After the above analysis, CBR can be applied to forecast the industrial water demand of Zhangye
City in 2030. In light of the validation process, the casebase extended to 420 cases of 28 cities from 2000
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to 2014. Firstly, we used the autoregressive integrated moving average model (ARIMA (q, d, p)) to
predict the attributes’ values of Zhangye City in 2030 (Table 1). Secondly, we calculated the similarities
between the target case in 2030 and each original case (Appendix A). When the threshold σ = 0.95,
the number of original cases similar to the target case was 10 (Table 4). Finally, we applied the
weighted similarity method to forecast the industrial water demand of Zhangye City in 2030, which
was 11.9 million tons.

Table 4. Similar cases and similarities to the target case.

City_Year Similarity City_Year Similarity

Yinchuan_2008 0.9560 Urumqi_2010 0.9566
Urumqi_2008 0.9523 Xining_2011 0.9512

Yinchuan_2009 0.9600 Xining_2012 0.9530
Urumqi_2009 0.9585 Xining_2013 0.9520

Yinchuan_2010 0.9677 Zhangye_2014 0.9525

5. Discussion

In this study, industrial water demand forecasting by CBR is more accurate in comparison
with GM(1, 1) and the BPN. However, the case base construction in this paper just considered the
socio-economic factors, but lacked environmental factors. The incompleteness of case attributes
may restrain accuracy improvement. In order to construct a case base that is as comprehensive as
possible, we collected original cases with a wide coverage. Not only the industrially developed cities
such as Beijing, Shanghai, and Guangzhou, but also the relatively backward ones were collected as
original cases.

The BPN was applied to weight case attributes, which has been proved to be feasible. However,
the BPN also has some disadvantages, such as a poor rate of convergence, and easily getting stuck
in the local minimum. Furthermore, as the BPN is based on the gradient information of the error
function, when the problems are complex or the gradient information is hard to obtain, BPN may
be helpless. To overcome the disadvantages, many optimization algorithms have been introduced
in the study and design of neural networks such as constructing a neural network based on the
particle swarm optimization algorithm [47], and using evolutionary algorithms to optimize the neural
networks [48–50], which have been proved feasible and effective.

To validate that the CBR has a relatively high accuracy in industrial water demand forecasting,
a control experiment was implemented by GM (1, 1) and the BPN. The accuracy of GM (1, 1) is lower
than that of the CBR, and is suitable for short-term period forecasting. The forecasting of the BPN needs
more consistent internal regulations of training samples. However, each city has a distinctive driving
mechanism of development mode and industrial water consumption, which makes it difficult to train
the network simulation. Therefore, CBR is more appropriate for industrial water demand forecasting.

6. Conclusions

This study used case-based reasoning to forecast the industrial water demand in Zhangye City.
We extracted six attributes of the industrial water demand as features of the case and constructed a
case base containing 420 cases. The BPN was employed to calculate the weights of features. We also
selected grey incidence analysis to compute the similarities between the target case and original cases.
After constantly adjusting the threshold, the cases with relatively high similarities were screened to
forecast the industrial water demand. Our main conclusions are as follows.

(1) The effectiveness, workability and accuracy of CBR in the process of forecasting the industrial
water demand have been validated by both longitudinal and crosswise comparisons. The forecasting
accuracies reached −5.80% and 1.39% respectively in 2013 and 2014 by using CBR. Moreover, when
forecasting the industrial water demand of Zhangye in 2013, accuracies of only −17.39% and 20.29%
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were obtained for the Grey Model and BPN, respectively. Therefore, CBR showed better adaptation in
forecasting the industrial water demand of Zhangye in 2030.

(2) In the validation process, 13 and 11 similar original cases were screened for the target case in
2013 and 2014 respectively. Accordingly, the forecasted industrial water demands of Zhangye were 65
and 73 million tons in 2013 and 2014, respectively. In light of the validation results, the forecasting value
of the industrial water demand in Zhangye in 2030 was 11.9 million tons, with 10 similar original cases.

The development of the industrial water demand has characteristics of uncertainty and fluctuation.
This study proposed a CBR method to forecast the industrial water demand, which proved to provide
relatively high accuracy. With the implementation of strict water resource management policies in
China, the government departments are responsible for water management by scientifically planning
the industrial water demand and use, which is crucial for guiding water consumption control in
Zhangye as well as in other cities in China and other developing countries. Therefore, the results of
this paper provide a reference for water resources management and planning, for the consideration
of decision-makers.
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Appendix A

Table A1. Similarities between Original Cases and the Target Case (Industrial Water Demand of Zhangye City in 2030).

Cities 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Hefei 0.9057 0.9109 0.9070 0.9072 0.9052 0.9090 0.9209 0.9066 0.9093 0.9100 0.8582 0.8371 0.8042 0.7794 0.7104
Guangzhou 0.7721 0.7963 0.7949 0.7248 0.7150 0.7122 0.7547 0.7502 0.7167 0.6338 0.6845 0.6931 0.6740 0.6559 0.6122

Fuzhou 0.8711 0.8686 0.8691 0.8820 0.8508 0.8371 0.8404 0.8117 0.7913 0.8182 0.8044 0.7972 0.7769 0.7473 0.7062
Guiyang 0.8908 0.8854 0.8834 0.8910 0.8991 0.8825 0.8933 0.8898 0.8743 0.8940 0.8894 0.8877 0.9123 0.8821 0.8821
Xining 0.9023 0.9019 0.9020 0.9057 0.9067 0.8956 0.8898 0.8975 0.8954 0.9312 0.9418 0.9512 0.9530 0.9520 0.9376

Yinchuan 0.9047 0.9061 0.9073 0.9116 0.9179 0.9227 0.9312 0.9453 0.9560 0.9600 0.9677 0.9401 0.9215 0.8841 0.8748
Qingdao 0.8367 0.8397 0.8275 0.8247 0.8081 0.7875 0.7927 0.7838 0.7461 0.7221 0.6951 0.6694 0.6378 0.6105 0.6053
Suzhou 0.8239 0.8235 0.8103 0.7577 0.7258 0.6989 0.6631 0.6332 0.6132 0.5992 0.5531 0.5405 0.5212 0.5030 0.5058

Kunming 0.8654 0.8675 0.8672 0.8730 0.8762 0.8589 0.8660 0.8587 0.8630 0.8709 0.8697 0.8746 0.8669 0.8506 0.8471
Shenyang 0.8752 0.8844 0.8923 0.8989 0.8970 0.8842 0.8769 0.8804 0.8526 0.8249 0.7979 0.7802 0.7558 0.7454 0.7380

Changchun 0.8943 0.8979 0.9077 0.9154 0.9186 0.9141 0.9047 0.8942 0.8927 0.8842 0.8700 0.8594 0.8346 0.8123 0.7866
Urumqi 0.9106 0.9119 0.9153 0.9193 0.9234 0.9279 0.9330 0.9384 0.9523 0.9585 0.9566 0.9268 0.8957 0.8923 0.8802

Chongqing 0.7586 0.7605 0.7406 0.7352 0.7229 0.7130 0.7086 0.6593 0.6400 0.6316 0.6110 0.6114 0.6183 0.6053 0.5642
Tianjin 0.8076 0.8063 0.8035 0.8021 0.8016 0.8057 0.8005 0.7612 0.7126 0.6760 0.6274 0.5952 0.5849 0.5554 0.5399

Zhengzhou 0.8300 0.8241 0.8165 0.8216 0.8252 0.8296 0.8223 0.8034 0.8022 0.7851 0.7600 0.7297 0.7395 0.7256 0.7125
Chengdu 0.8349 0.8283 0.8224 0.8158 0.8073 0.7968 0.7981 0.7740 0.7570 0.7742 0.7424 0.7022 0.6598 0.6475 0.6617

Dalian 0.8859 0.8779 0.8917 0.9040 0.9200 0.9081 0.9050 0.8817 0.8386 0.8042 0.7790 0.7715 0.7331 0.7254 0.7127
Shanghai 0.7132 0.7093 0.7135 0.7128 0.7025 0.6817 0.6606 0.6315 0.6087 0.6054 0.5858 0.5721 0.5665 0.5550 0.5521
Wuhan 0.8295 0.8314 0.8371 0.8259 0.8386 0.8406 0.8350 0.8345 0.8134 0.7899 0.7408 0.7123 0.6725 0.6430 0.6239
Beijing 0.8001 0.8008 0.8025 0.8049 0.8078 0.7887 0.7715 0.7408 0.7489 0.7372 0.7108 0.6855 0.6833 0.6698 0.6639

Changsha 0.8558 0.8552 0.8557 0.8576 0.8568 0.8624 0.8693 0.8728 0.8700 0.8343 0.7890 0.7686 0.7187 0.6982 0.6872
Nanchang 0.8558 0.8643 0.8593 0.8647 0.8779 0.8747 0.8850 0.8934 0.8922 0.8848 0.8597 0.8391 0.7886 0.7707 0.7528

Nanjing 0.8688 0.8637 0.8640 0.8665 0.8700 0.8643 0.8604 0.7396 0.8040 0.7861 0.7461 0.7134 0.6813 0.6642 0.6656
Jinan 0.8462 0.8490 0.8519 0.8606 0.8629 0.8607 0.8642 0.8654 0.8455 0.8277 0.8023 0.7949 0.7831 0.7598 0.7495
Wuxi 0.8582 0.8564 0.8551 0.8329 0.7904 0.7708 0.7421 0.7212 0.6861 0.6729 0.6403 0.6264 0.6091 0.5997 0.5959

Shijiazhuang 0.8810 0.8847 0.8851 0.8827 0.8835 0.8659 0.8605 0.8517 0.8495 0.8434 0.8353 0.8341 0.8204 0.8002 0.7826
Xi’an 0.8899 0.8928 0.8907 0.8911 0.8922 0.8962 0.8990 0.8950 0.8930 0.8975 0.9022 0.9091 0.8821 0.8605 0.8553

Zhangye 0.9061 0.9082 0.9100 0.9087 0.9090 0.9136 0.9157 0.9179 0.9192 0.9236 0.9293 0.9347 0.9447 0.9465 0.9525
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