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Abstract: In a context of climate change, precipitation patterns show substantial disturbances and
the occurrence of precipitation anomalies has tended to increase in the Huang-Huai-Hai River Basin.
These anomalies are likely influencing vegetation dynamics and ecosystem stability. This paper aims
to have a comprehensive understanding of vegetation growth response towards the precipitation
pattern in the Huang-Huai-Hai River Basin. The study used NDVI (Normalized Difference Vegetation
Index) data and mapped precipitation datasets from 1982 to 2011. NDVI and precipitation show
a similar spatial distribution: they decrease from the southeast coast to the northwest inland. Regions
with sparse vegetation are mainly distributed in arid and semi-arid areas or densely-populated areas.
Vegetation coverage and the regular precipitation pattern show a positive correlation (61.6% of the
whole region), while the correlation between vegetation coverage and precipitation anomalies is
negative (62.7% for rainless days and 60.3% for rainstorm days). The clustering result shows that
abundant vegetation is mainly situated in high precipitation or low anomaly areas. On the contrary,
the degraded regions are mainly distributed in low precipitation or high anomaly areas. However,
some special regions, mainly located in the Three North Shelterbelt Program region, the Tibetan
Plateau, and other regions along the rivers, present improved vegetation cover when precipitation
decreases or extreme events occur.

Keywords: NDVI; vegetation coverage; growing season precipitation; Huang-Huai-Hai river basin

1. Introduction

Vegetation, one of the ecological system roots, connects the atmosphere, soil, and water. Vegetation
plays a significant role in soil and water conservation, climate regulation, and ecosystem stability,
as well as the global ecological system [1]. To understand the vegetation dynamic changes on the world
is necessary. Remote sensing observations, the most effective method to obtain large-area vegetation
cover data, has been widely used, such as, Myneni et al. have used it to explored the plant growth
in the Northern High Latitutes [2]. Liu et al. have used multi-temporal remote sensing image to
analysis the landscape spatial patterns in east part of Beijing [3]. Karlson et al. have investigated
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how the hands-on application of RS for vegetation analysis has developed in the Sudano-Sahelian
zone by reviewing the scientific literature published between 1975 and 2014 [4]. Feng et al. have used
AVHRR NDVI and in situ green biomass data to evaluate vegetation optical depth in West African
Sahel [5]. GIMMS (Global Inventory Modelling and Mapping Studies) NDVI is able to take various
factors of influence into account and with high accuracy [6]. This dataset is considered to be the best
available for long-term greenery monitoring analysis [7,8]. The long-term NDVI time series data are
a comprehensive method to understand large-area plant activities.

Spatio-temporal variations of large-area foliage cover are the combined result of climate change
and human activities. These subjects are considered as popular research topics given the current
global change [9–11]. However, for long periods, climate change should have the most influence on
vegetation growth and distribution [12]. The main climatic factors include precipitation, temperature,
solar exposure, and so on, among which precipitation is the major factor [13]. Spano et al. found
that precipitation directly influences plant growth: foliage cover area was affected by precipitation
variations [14]. Li et al. discovered in Senegal forests in that there was a positive correlation between
NDVI and precipitation in dense greenery areas, and a negative one in sparse vegetation areas [15].
Wessels et al., Li et al., and Buyantuyev et al. all found that the large inter-annual variations
of precipitation in amount and distribution would bring about large inter-annual variations and
intra-annual dynamics of vegetation growth [16–18]. The influence of precipitation on vegetation
growth is, therefore, evident, especially the impact from precipitation anomalies; the occurrence of
precipitation anomalies influences the vegetation growth and the related ecosystem services [19].

In recent years, due to the influence of temporal and spatial precipitation patterns, the vegetation
cover has changed, especially in the Huang-Huai-Hai River Basin. Its ecosystem stability plays a main
role in China. However, because of the increasing precipitation anomalies, the vegetation cover has
been disturbed and has caused a series of environmental disasters, such as water and soil erosion, and
desertification [20]. The vegetation degradation seriously threatens the normal ecosystem cycle and
has caused serious losses to agriculture and industry [21,22]. Consequently, exploring the vegetation
processes to precipitation variability is essential. Which changes has vegetation coverage faced? How
can these variations be correlated to spatio-temporal patterns of precipitation? Many scholars have
conducted research on these issues for different parts of the basin, such as, Sun et al. have explore the
relationship between fractional vegetation cover change and rainfall in the Yellow River Basin [23].
Jing et al. have conducted a study on the relationship between dynamic change of vegetation coverage
and precipitation in Beijing’s mountainous areas [24]. Zhao et al. have analyzed the driving forces
of vegetation coverage change in the Loess Plateau [25]. Pang et al. have used the NDVI to identify
variations of vegetation to climate change on the Tibetan Plateau [26]. However, few researchers
have investigated the whole basin, and even fewer have considered the impact of precipitation
anomalies on vegetation. The vegetation sensitivity to precipitation, precipitation anomaly variations,
and the corresponding spatio-temporal reaction patterns in the whole basin are not yet thoroughly
understood. A better understanding of these issues could enrich our knowledge on ecosystem
resilience to precipitation variability. Additionally, this would be a good opportunity to identify the
areas particularly prone to precipitation anomalies and provide useful data for hazard prediction.

The main objectives were to: (1) analyze the spatio-temporal variations of the precipitation and
precipitation anomalies; (2) analyze the spatio-temporal variations of the vegetation coverage and
their regularity in the basin; and (3) investigate the influence of the precipitation and precipitation
anomalies on the vegetation coverage. In this way, the study intends to understand the potential
influences of increased precipitation variability on ecosystems of the Huang-Huai-Hai River Basin.
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2. Materials and Methods

2.1. Study Site

The Huang-Huai-Hai River Basin is located at 95◦ 53′–122◦ 60′ E, 32◦ 10′–43◦ N between several
remarkable geological formations, such as the Tibetan Plateau, Inner Mongolia Plateau, Loess Plateau,
and Huang-Huai-Hai Plain, from west to east. The basin area is about 1,445,000 km2 covering
14 provinces, including Qinghai, Sichuan, Gansu, Shanxi Province, and so on (Figure 1) [27]. The
area, population, and GDP (Gross Domestic Product) of the basin approximately account for 15%,
34%, and 38% of the national totals, respectively [28]. The basin includes the primary centers of
politics, economy, and culture of China. In the eastern part, the plain is the agricultural production
pole of China. The predominance of various climates (from arid to humid climate) leads to the
uneven precipitation distribution. The average annual evaporation and precipitation are 1699.5 mm
and 556.0 mm, respectively [29], about 60–80% of the precipitation falling in the rainy season (from
June to October). The average annual precipitation from 1960 to 2010 of the three first-level river
basins (the Yellow River Basin, Huai River Basin, and Hai River Basin) were 439.9 mm, 854.2 mm,
and 538.1 mm, respectively [30]. The maximum precipitation can be more than 2000 mm in the
southeast coastal areas, while the minimum precipitation can be below 400 mm in the northwest arid
regions [31]. The precipitation in the southeastern part of the Yellow River Basin is more than that in the
northwest region, and the precipitation in the mountainous of the Huai River Basin is more than that
in the plain area, while the precipitation in the Hai River Basin shows the opposite distribution trend
with the Huai River Basin. [32]. The abundant vegetation—including alpine meadow, bushes, and
farmland vegetation—can be divided into natural (45.7%) and artificial (53.0%) vegetation [33]. Natural
vegetation and rain-fed agriculture are relying on precipitation, so climate components (precipitation
and temperature) have significant roles to play. Irrigated agriculture vegetation depends mainly on
irrigation water, so human activities have principal influence on it. Recently, droughts and floods
have happened more frequently in the basin, which have aggravated the water and environmental
issues, which are related to vegetation. Therefore, studies in vegetation growth response towards
precipitation patterns in this basin are essential to offer a reference for vegetation conservation and
water resource management.
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2.2. Data Sources and Processing

NDVI data were derived from the National Aeronautics and Space Administration (NASA) [34].
GIMMS NDVI data—with a temporal resolution of 15 days and a spatial resolution of 8 km (from 1982
to 2006)—were acquired from NOAA (National Oceanic and Atmospheric Administration) using the
AVHRR (Advanced Very High Resolution Radiometer) method. MODIS (Moderate Resolution Imaging
Spectroradiometer) NDVI data—with a temporal resolution of one month and a spatial resolution of
1 km (from 2000 to 2011)—were extracted from the MOD13A3 (Global MOD13A3 data are provided
monthly at 1-kilometer spatial resolution as a gridded level-3 product in the Sinusoidal projection)
dataset. For exploring the most recent vegetation activities, GIMMS NDVI data between 2007 and 2011
have to be obtained. In this case, MODIS NDVI data seems the best choice for complementing GIMMS
NDVI data [35]. As these data do not come from the same kind of sensor, preliminary processing
and consistency checking are needed before combined utilization [36,37]. The MVC (Maximum Value
Composition) method was used to eliminate the influence from different temporal resolutions. GIMMS
NDVI output data have a temporal resolution of one month [37]. The resampling method was used to
obtain MODIS NDVI data with a spatial resolution of 8 km. The relationship established between both
kinds of NDVI from 2000 to 2006 shows a correlation coefficient of 95%. Using the pixel regression
method, we obtained GIMMS NDVI data from 2007 to 2011 from the MODIS NDVI data. During
the growing season, NDVI acquisitions are not disrupted by inter-annual snow, sand, and dust [38].
Moreover, vegetation coverage development occurs mainly during that time [39–41]. Thus, this is the
only period considered in this study. Equation (1) calculates vegetation coverage [42]:

f c = (NDVI−NDVIsoil)/(NDVIveg −NDVIsoil) (1)

where fc is the vegetation coverage of each pixel, NDVIsoil is the NDVI of the pixel with no vegetation
cover, and NDVIveg is the NDVI of the pixel with full vegetation cover.

Precipitation data were extracted from China’s Ground Precipitation 0.5◦ × 0.5◦ gridded dataset
(V3.0) established by the Meteorological Records Office of the National Meteorological Information
Center of China [43]. The 1109 stations selected as study stations have continuous observational
precipitation data (from 1982 to 2011) and are located inside or nearby the basin (Figure 1). The vector
diagram was computed by the ArcGIS10.2.2 software platform (Redlands, CA, USA, Environmental
Systems Research Institute) from precipitation data, and interpolated by the IDW (Inversed Distance
Weighted) method [44]. At the end, the grid figure obtained has a spatial resolution of 5 km, including
daily precipitation information. Rainless (daily precipitation below 5 mm) and rainstorm days (daily
precipitation is above 50 mm) grid figures are also obtained.

2.3. Time Series Analysis

Trend line analysis can simulate the trend of each grid [45] and reflect the characteristics of spatial
variation. One variable linear regression method allowed the analysis of the trend of the vegetation
cover change, precipitation, and precipitation anomalies. Equation (2) calculates the slope of the
linear time trend of each pixel by ArcGIS10.2.2 software (Redlands, CA, USA, Environmental Systems
Research Institute):

Slope =
n×

n
∑

i=1
(i× Ki)−

n
∑

i=1
i×

n
∑

i=1
Ki

n×
n
∑

i=1
i2 − (

n
∑

i=1
i)2

(2)

where n is the cumulative number of monitoring years. In this study n is 30, and i is the year taken
into account (1 refers to 1982, 2 to 1983, and so on). Ki is the value in year i (K can be the value of the
NDVI, the precipitation, the rainless days, and the rainstorm days). Slope, the slope of the linear time
trend for each pixel, is the average annual rate of vegetation cover, precipitation, rainless days, and
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rainstorm days from 1982 to 2011. When the Slope is above 0, the trend from 1982 to 2011 is increasing,
and vice versa.

The Mann-Kendall nonparametric statistical tests method—recommended by the World
Meteorological Organization (WMO) [46]—was used to explore the confidence level of the change
trend of vegetation coverage, precipitation, rainless days, and rainstorm days. Compared to the
parametric test method, the MK nonparametric statistical tests method is more suitable for calculating
the hydrology-metrological time trend, which is not influenced by outliers and involves a simple
calculation process [47]. The calculation process shown in Equation (3) calculates the standardized
statistic M of the time series value Rl (l = 1982, . . . , 2011) in each grid:

M = τ/δ, τ =
4S

N(N − 1)
− 1, δ2 =

2(2N + 5)
9N(N− 1)

(3)

where τ is the Kendall statistical magnitude; δ2 is variance. S is the number of occurrences of Rl1 < Rl2
in all allelomorphs of the time series. (Rl1, Rl2, 1982 ≤ l1 ≤ l2 ≤ 2011) of Rl (Rl is the time series value
of each grid in some year, use l to represent the year, l = 1982, . . . , 2011; l1 and l2 are some two years
from 1982 to 2011, 1982 ≤ l1 ≤ l2 ≤ 2011; the time series value can be the value of the NDVI, the
precipitation, the rainless days, and the rainstorm days); N is 30. M is the standardized statistic, which
obeys the standard normal distribution. If M is positive, it indicates an increasing trend, and vice versa.
When p = 0.05, if the time series has a significant change trend, then the |M| > Ma = 1.645, indicating
that the time series have passed the significance testing of 95%.

Correlation analysis is commonly used to analyze the relationship between inter-annual vegetation
coverage change and climatic factors [48]. We used the Pearson linear correlation coefficient method
(Equation (4)) to calculate the relationship of vegetation coverage with precipitation, rainless days, and
rainstorm days:

r =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(4)

where xi and yi are the actual values of each precipitation element and vegetation coverage in every
grid, respectively; x and y are average values of each precipitation element and vegetation coverage in
every grid, respectively; i is the serial number of the year, i is 1 for 1982, 2 for 1983, and so on; r is the
correlation coefficient of x and y in each grid.

2.4. Spatial Clustering Analysis

Based on the grid graph of the normalized tendency rate of vegetation coverage, precipitation,
rainless days, and rainstorm days, we used the ArcGIS Spatial Analyst Tools (ArcGIS10.2.2, Redlands,
CA, USA, Environmental Systems Research Institute) to cluster the grid graphs mentioned above by
the Euclidean shortest distance clustering method. In order to eliminate the influence of irrigation
water, we have removed the large-scale irrigated districts before clustering.

3. Results and Discussion

3.1. Spatio-Temporal Patterns of Precipitation

3.1.1. Spatial Patterns of Precipitation

The distribution of precipitation is declining from the southeast coast to the northwest inland
(Figure 2a). The mean annual precipitation from 1982 to 2011 of the whole basin was 486.0 mm, and
regional minimum precipitation was 119.1 mm, which happened in the Yellow River Basin, while the
maximum precipitation was 1099.5 mm, which was 9.2 times the minimum value, occurring in the
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Huai River Basin. The average precipitation of the Yellow River Basin, Huai River Basin, and Hai River
Basin were 470.7 mm, 399.8 mm, and 710.5 mm, respectively.

3.1.2. Spatio-Temporal Variations of Precipitation

Precipitation in about 44.7% of the areas of the whole basin has increased, while in 55.3% areas
showed a decreasing trend (Figure 2b). The tendency rate of the precipitation in the whole basin, the
Yellow River Basin, Huai River Basin, and Hai River Basin, were 0.6 mm/decade, −9.7 mm/decade,
16.6 mm/decade, and −16.1 mm/decade, respectively. Only in the Huai River Basin did the
precipitation present an increasing trend. Precipitation in 77.1% of areas of the Yellow River Basin
and 76.3% of the areas of the Hai River Basin showed a decreasing trend, in 69.9% of the areas of the
Huai River Basin showed an increasing trend. The decreased areas of precipitation were primarily
distributed in Gansu Province, Sichuan Province, Beijing, Tianjin, the border areas of Anhui and Hubei
Provinces, and the coastal areas of Jiangsu Province. The significantly increased (p < 0.5) areas of
precipitation were primarily distributed in the middle part of the Yellow River Basin, most areas of
Qinghai Province, Shandong Province, and the downstream areas of the Huai River.
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during 1982–2011.

3.1.3. Spatio-Temporal Variations of Precipitation Anomalies

Increasing rainless days will bring about drought risk, which is detrimental to vegetation growth,
so it is essential to explore the spatio-temporal variation of rainless days (Figure 2c). When compared
with Figure 2b, we can find that 65.2% of the increasing areas of rainless days are nearly overlapped
with the decreasing areas of precipitation, and the increasing rate of most areas were between 0.5 and
2 d/decade, and few upstream areas of the Luan River have passed the significance test (p < 0.05). The
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decreasing areas with the rate less than –1 d/decade were mainly distributed on Tibetan Plateau, the
south areas of the Hai River Basin, and most areas of the Huai River Basin, yet most areas have passed
the significance test (p < 0.05).

The moisture brought about by rainstorms can nourish vegetation, but the rainstorm erosivity
is disastrous to vegetation. To make it clear what influences rainstorms have on vegetation, we have
explored the spatial distribution of the rainstorm days (Figure 2d). Rainstorm days in 43.5% of the
areas of the basin presented increasing trends with the increasing rate over 0.2 d/decade, mainly
distributed in the core areas of the Yellow River Basin, the west areas of the Hai River Basin and most
areas of the Huai River Basin. Most areas in the Yellow River Basin and Hai River Baisn have passed
the significance test (p < 0.05), but the increasing trend in the Huai River Basin was not significant.

3.2. Spatio-Temporal Patterns of Vegetation Coverage

3.2.1. Spatial Patterns of NDVI

The NDVI presents the same variation tendency with precipitation, which is declining from the
southeast coast to the northwest inland with an average NDVI of 0.42, indicating that the vegetation
condition has a close relationship with precipitation (Figure 3a). The vegetation is denser in the Huai
River Basin with an average NDVI of 0.51, and in the Hai River Basin with a middle-average NDVI of
0.48. However, in the Yellow River Basin, the average NDVI is much lower (0.36). Poor vegetation
may be due to the long-term low precipitation on the Loess Plateau. In that way, the vegetation could
not obtain sufficient moisture for a long time, leading to a barren cover. However, the Tibetan Plateau
has a lush greenery which may be due to the presence of precipitation in the area [49].

3.2.2. Spatio-Temporal Variations of Vegetation Coverage

NDVI spatial distribution, which reflects the overall trend, does not reveal significant variations
of vegetation coverage. The trend line analysis method, used to simulate the trend for each grid, can
reflect the spatial characteristics of vegetation coverage. Figure 3b illustrates the spatial distribution of
vegetation coverage change tendency from 1982 to 2011, which is consistent with previous studies [50].
The vegetation coverage has been improved with a rate above 0.01/decade in 35.6% of the basin.
However the greenery was scattered in other parts (29.6%) with the rate below −0.01/decade. In the
rest of the regions (34.8%) there has been no obvious change with the rate between −0.01/decade and
0.01/decade. There is a slight increase throughout the basin. The improved regions were located at the
border areas of Inner Mongolia, and Shanxi and Shaanxi Provinces, which belong to the regions of the
Three North Shelterbelt Program (these results are confirmed by Wang et al. [51]). In the upstream
regions of the Yongding River, the border areas of Hebei and Shandong Provinces, and the areas
along the Huai River, the improving rate was about 0.05/decade (p < 0.05). It is worth noting that the
vegetation condition in the source regions of the Yellow River located on the Tibetan Plateau presents
an improving tendency, where human activities are rare; this may be caused by climate change. The
degraded regions were located at the areas along the Wei River and Fen River, the core areas of Shaanxi
Province, the border areas of Shaanxi and Gansu Provinces, the areas along the Yellow River, which
belong to the Hai River Basin, the areas along the Ziya River, the Beijing-Tianjin areas, the coastal
areas of Shandong Province, and the northern areas of Jiangsu Province, with a decreasing rate of
–0.05/decade, but the degradation was not significant. All in all, the degraded regions are mainly
located in the areas with dense population where human activities are frequent and the areas with
dry climate where water resources are deficient, indicating that vegetation degradation has a close
relationship with human activities and moisture.
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3.3. Correlation of Vegetation Coverage and Precipitation

3.3.1. The Relationship between Vegetation Coverage and Precipitation

The relationship between vegetation coverage and precipitation is positive (Figure 5a). The area
percentage of the regions where vegetation coverage showed a positive correlation with precipitation
was 61.6%. The maximum coefficient was 0.8, most of them varied from 0.1 to 0.6. Regions with
a positive correlation were mainly distributed in the north areas. Most of the regions were located at
arid and semiarid areas, with low precipitation and high evaporation, so the soil is dry and surface
water resources are insufficient. Precipitation is the main source of local vegetation growth, so the
vegetation has a high reliance on precipitation, leading to a positive correlation. Regions with a negative
correlation were mainly distributed in the northern coastal areas and midstream areas of the Ziya
River and most areas of the Huai River Basin, where population density is high and human activities
are frequent. In these areas, though the precipitation has increased, the vegetation has not improved,
illustrating that human activities have an adverse impact on vegetation (because human activities
are beyond our research, we will not explain them). At the same time, part of the irrigation districts
(including the Wei River Irrigation District and the North China Plain Irrigation Districts), the areas
with dense river networks and the source areas of the Yellow River presented low correlations. The
reason for the low correlations in irrigation districts and dense river network areas could be the
abundant surface water in these areas which can supply sufficient moisture for vegetation, leading to
less dependence on precipitation. Additionally, the low correlation in the source areas of the Yellow
River may be due to the snow melt water which can supply moisture to vegetation growth. The result
is coincident with the study by Shen and Zhou [52].

To have a deeper understanding about the impact of precipitation on vegetation, we have also
studied the relationship between inter-annual NDVI and precipitation. Due to the large span of the
Huang-Huai-Hai River Basin, precipitation and NDVI in different first-level river basins were variable,
so we have explored each basin, respectively. The response relationship of NDVI and precipitation
in the whole basin and the three first-level river basins are all in good condition, especially in 1989,
1999, 2006, and 2009 (Figure 4). From the inter-annual variations, we can divide the 30 years into four
phases: (1) a slowly increasing phase (from 1982 to 1985); in this phase, NDVI in different basins was
increasing with high precipitation, but the increasing range was not obvious; (2) a large fluctuations
phase (from 1986 to 1998); in this phase, NDVI in different basins fluctuated corresponding with the
sharp fluctuations of precipitation; (3) a slowly decreasing phase (from 1999 to 2002); in this phase,
NDVI was gradually reducing with the low precipitation; and (4) an increasing phase (from 2003 to
2011); in this phase, NDVI started to continue increasing after the high precipitation in 2003, but NDVI
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has not presented a sharp rise corresponding to the large increase of precipitation in 2003. Instead it
increased sharply in 2004, which could be due to the low precipitation in 2002, when the soil was dry.
In order to replenish the shortage of soil water, less precipitation can nourish the vegetation, resulting
in the vegetation lag to precipitation, which is coincident with others research [53,54].
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3.3.2. The Relationship between Vegetation Coverage and Precipitation Anomalies

Comparing the correlations between vegetation coverage and precipitation and rainless days, we
find that the distribution of the relationship between vegetation coverage and rainless days is similar to
the relationship between vegetation coverage and precipitation (Figure 5a,b). Most areas with negative
correlation were overlapped with the positive correlation areas of precipitation, mainly distributed
in the arid and semi-arid regions in the northern part. In the whole basin, the relationship between
vegetation coverage and rainless days is negative. The area percentage of the regions where vegetation
coverage showed a negative correlation with rainless days was 62.7%. The minimum coefficient was
−0.8, most of them varied from −0.6 to −0.1. It is observed from Figure 2c that the rainless days
in these areas have increased, indicating that drought risk in these areas has enhanced, which has
a detrimental impact on vegetation. Positive correlation areas are mainly distributed in a few areas of
the Tibetan Plateau, the core areas in the Hai River Basin, and most areas of the Huai River Basin. From
Figures 2c and 3b we can observe that most of the areas, including the areas in the Tibetan Plateau,
the areas in the Hai River Basin, and the valley areas of the Huai River, presented increasing rainless
days coupled with improving vegetation cover. The reason for this result may be related to the local
ecological recovery. Most areas in the Huai River Basin showed decreasing rainless days coupled
with degrading vegetation cover, indicating that the decreasing of rainless days has not resulted in
vegetation improvement, though the vegetation degradation may be influenced by other factors.

In the whole basin, the correlation between vegetation coverage and rainstorm days is low, and
the correlation coefficient in most areas was between −0.3 and 0.3 (Figure 5c). Around the whole basin,
the relationship between vegetation coverage and rainless days is negative. The area percentage of the
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regions where vegetation coverage showed a negative correlation with precipitation was 60.3%. The
minimum coefficient was –0.8, most of them varied from −0.6 to 0. It is worth noting that some parts
of the Yellow River Basin, Huai River Basin, and Beijing-Tianjin presented positive correlations with
coefficients between 0.3 and 0.6. From Figures 2d and 3b, we can know that the rainstorm days and
vegetation coverage have both decreased in the Beijing-Tianjin region, illustrating that the reduction of
rainstorm days has not brought about beneficial effects upon vegetation, and vegetation degradation
may be caused by frequent human activities. While the other positive areas with rainstorm days and
vegetation coverage have both increased, this may be the increasing rainstorm days that have supplied
the moisture for the vegetation growth and prompted the vegetation condition. This could be due to
the implementation of the Three North Shelter Forest and other ecological restoration projects that
have prompted the vegetation improvement [51,52]. Since human activities are beyond our research,
we will not explain them. Most areas of the Huai River Basin presented negative correlations, and the
increasing rainstorm days have brought about an adverse impact on the vegetation, resulting in the
vegetation degradation in these areas.
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3.4. Multi-Factor Cluster Analysis

Vegetation cover degraded by decreasing precipitation and increasing precipitation anomalies
was mainly distributed in most areas of the Yellow River Basin and the northern and western
Huai River Basin (Figure 6). These areas belong to arid and semi-arid regions with vulnerable
ecosystems, where the vegetation growth is highly dependent on precipitation. Thus, the precipitation
anomalies have strong influence on vegetation. However, in most areas of Shandong Province,
vegetation has degraded due to the condition of increasing precipitation and increasing rainstorm
days, indicating that extreme events have an adverse effect on vegetation growth. The areas with
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degrading vegetation on the condition of decreasing precipitation and increasing rainless days were
mainly located in the Beijing-Tianjin region, and the areas with improving vegetation on the condition
of increasing precipitation and decreasing rainless days were mainly distributed in the Tibetan Plateau.
The phenomenon indicates that the precipitation has a close relationship with vegetation cover. In
addition, there are some special regions with improving vegetation on the condition of decreasing
precipitation and increasing precipitation anomalies. These regions were mainly distributed in the
Three North Shelterbelt, Tibetan Plateau, and some regions along the rivers. The improvement in
vegetation in the Three North Shelterbelt region may be due to the ecological construction [51]. Li et al.
also found the ecological restorations to be the primary driving factors for vegetation improvement in
these areas [55]. In Tibetan Plateau, the snow melting water resulting from climate change, has supplied
enough moisture to the growth of vegetation [56]. The vegetation cover improvement in the river
areas may be due to the water from the river which can nourish the vegetation and some ecological
constructions implemented along these rivers have brought about vegetation improvement [51,52].Water 2017, 9, 557  11 of 15 

 

 
Figure 6. The coupling relationship between vegetation coverage and precipitation factors in the 
Huang-Huai-Hai River Basin. 

4. Conclusions 

Understanding the relationship between precipitation, precipitation anomalies and vegetation 
activity are necessary to estimate the potential impacts of precipitation on vegetation, especially in 
arid regions and densely-populated areas. The quantitative analyses presented in this study have 
illustrated the relationship between precipitation factors and vegetation. The spatial distributions of 
average precipitation and average NDVI are quite similar. They are all declining from the southeast 
coast to the northwest inland, indicating that the distribution of NDVI is influenced by precipitation. 
The scattered vegetation was mainly located in densely populated areas where human activities are 
frequent, and dry climate areas where water resources are scarce. Thus, vegetation degradation 
should be connected with human activities and moisture. The correlation between vegetation 
coverage and precipitation changes was positive, and the response relationships of annual NDVI 
and precipitation in the whole basin and the three first-level river basins were all very good, 
indicating that precipitation was the important factor of vegetation growth. Precipitation anomalies 
(including rainless days and rainstorm days) have adverse influence on vegetation growth, 
especially in arid and semi-arid regions. Since surface water is very scarce in arid and semi-arid 
regions, precipitation is the main moisture source of local vegetation growth, as vegetation has a 
high dependence on precipitation. 

The clustering result shows that vegetation coverage change was caused by both meteorological 
factors and human activities in the Huang-Huai-Hai River Basin. The degradation of vegetation in 
the Huai River Basin was mainly caused by increasing precipitation anomalies, and in the Yellow 
River Basin and Hai River Basin, the decreasing precipitation and increasing precipitation anomalies 
were both important factors for vegetation degradation. The results presented in this study have 
illustrated the influences on vegetation of precipitation anomalies for wide areas of the 
Huang-Huai-Hai River Basin. These results can provide references for the research on the impact of 
disasters on vegetation ecosystem. The regions with increasing precipitation anomalies will be more 
prone to extreme events like droughts and floods. In these regions, important ecosystem services 
supplied by vegetation ecosystem, such as raw material production, erosion regulation, climate 

Figure 6. The coupling relationship between vegetation coverage and precipitation factors in the
Huang-Huai-Hai River Basin.

4. Conclusions

Understanding the relationship between precipitation, precipitation anomalies and vegetation
activity are necessary to estimate the potential impacts of precipitation on vegetation, especially in
arid regions and densely-populated areas. The quantitative analyses presented in this study have
illustrated the relationship between precipitation factors and vegetation. The spatial distributions of
average precipitation and average NDVI are quite similar. They are all declining from the southeast
coast to the northwest inland, indicating that the distribution of NDVI is influenced by precipitation.
The scattered vegetation was mainly located in densely populated areas where human activities are
frequent, and dry climate areas where water resources are scarce. Thus, vegetation degradation should
be connected with human activities and moisture. The correlation between vegetation coverage and
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precipitation changes was positive, and the response relationships of annual NDVI and precipitation
in the whole basin and the three first-level river basins were all very good, indicating that precipitation
was the important factor of vegetation growth. Precipitation anomalies (including rainless days and
rainstorm days) have adverse influence on vegetation growth, especially in arid and semi-arid regions.
Since surface water is very scarce in arid and semi-arid regions, precipitation is the main moisture
source of local vegetation growth, as vegetation has a high dependence on precipitation.

The clustering result shows that vegetation coverage change was caused by both meteorological
factors and human activities in the Huang-Huai-Hai River Basin. The degradation of vegetation in the
Huai River Basin was mainly caused by increasing precipitation anomalies, and in the Yellow River
Basin and Hai River Basin, the decreasing precipitation and increasing precipitation anomalies were
both important factors for vegetation degradation. The results presented in this study have illustrated
the influences on vegetation of precipitation anomalies for wide areas of the Huang-Huai-Hai River
Basin. These results can provide references for the research on the impact of disasters on vegetation
ecosystem. The regions with increasing precipitation anomalies will be more prone to extreme events
like droughts and floods. In these regions, important ecosystem services supplied by vegetation
ecosystem, such as raw material production, erosion regulation, climate regulation, and so on, can
be seriously affected by precipitation anomalies. In order to have a comprehensive understanding
of the vegetation variations and make prediction for vegetation anomalies, it is necessary to conduct
the prediction research on precipitation anomalies in the future. Furthermore, the results can support
opinions for government to conduct land cover use plan appropriately.

From the clustering result, we find that the ecological constructions were also significant factors
influencing vegetation improvement. These results will enrich our knowledge about the influence
of ecological restoration projects on vegetation activity in the basin, especially in the Three North
Shelterbelt. Though the vegetation has improved in these regions, the area in western and northern of
China is still in preliminary recovery with weak self-regulation capability, poor stability. It is difficult
to form steady ecological system in a short period [57]. More efforts should be made to promote the
implementation of ecological recovery project, and strengthen the continuous monitoring of vegetation
activity dynamic.

In this paper, we have explored the influence from precipitation and precipitation anomalies
on vegetation. The result could help to deliver some recommendations on vegetation recovery for
relevant departments and other researchers. There are also some other factors affecting vegetation. In
order to conduct a comprehensive investigation of the vegetation variations, the following research
should consider more factors, such as human activities, temperature, and so on.
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