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Abstract: Background: The hierarchical use of remotely-sensed imagery from satellites, and then
proximally-sensed imagery from helicopter sand drones, can provide a range of spatial and temporal
coverage that supports water quality monitoring of complex pollution scenarios. Methods: The study
used hierarchical satellite-, helicopter-, and drone-acquired thermal imagery of coastal plumes
ranging from 3 to 300 m, near Naples, Italy, and captured temporally- and spatially-overlapping
in situ samples to correlate thermal and water quality parameters in each plume and the seawater.
Results: In situ sampling determined that between-plume salinity varied by 37%, chlorophyll-a varied
by 356%, dissolved oxygen varied by 81%, and turbidity varied by 232%. The radiometric temperature,
Trad, for the plume area of interest had a correlation of 0.81 with salinity, 0.74 with chlorophyll-a,
0.98 with dissolved oxygen, and −0.61 with turbidity. Conclusion: This study established hierarchical
use of remote and proximal thermal imagery can provide monitoring of complex coastal areas.
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1. Introduction

Rapid water quality monitoring of receiving waters is important for the protection and
preservation of water and related terrestrial resources. However, in natural systems water quality
pollution phenomena can occur across a range of spatial scales, and involve a variety of chemical
pollutants, making them difficult and costly to rapidly monitor with in situ retrieval of samples and
with a fixed spatial or temporal scale remote sensing approach. Ideally, water quality monitoring
of pollutant target areas is spatially and temporally flexible to facilitate the environmental forensics
process of characterizing the path of the pollutant between the source and target. To monitor pollution
phenomena with extensive spatial or temporal scales, remotely-sensed imagery provides distinct
benefits not easily achieved by in situ techniques [1,2] particularly when the pollution interface is
affected by dispersion generated by terrestrial inflows to coastal zones [3]. A hierarchical monitoring
program is proposed in this manuscript to extend the benefits of water quality monitoring to sites where
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there are spatial, temporal, financial, and radiometric constraints prohibiting the use of more traditional
monitoring with in situ sampling, in situ sensor networks, and remote sensing. A hierarchical
monitoring program can use a combination of satellite, helicopter, and drone imagery, as well as
in situ sampling (Figure 1), to cover the spatial and temporal scales, and radiometric needs, of the
pollution phenomena.
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and (D) field boat to study the mixing of channel plumes in the coastal zone.

Prior to the emergence of remote sensing hydrology and the evolution of distributed sensor
networks, water quality monitoring was traditionally performed using an in situ sample of the
water column. In situ samples are either analyzed in real-time by the sampling instrument, such as
placing the dissolved oxygen meter into the target water body, or preserved for subsequent analysis
in a laboratory. The temporal, spatial, and financial limitations of this approach have encouraged
development of remote sensing and in situ sensor-based monitoring. Remote sensing has used
airborne and spaceborne hyperspectral and thermal imagery to characterize water quality parameters,
establishing relationships with the spectral or temperature signal and the water quality parameter [4].
Hyperspectral sensors detect tens to hundreds of narrow spectral bands throughout the visible,
near-infrared, and mid-infrared portions of the electromagnetic spectrum in order to better discriminate
between different targets and, as such, can contain the temperature signal [5]. However, hyperspectral
sensors generate large volumes of data that create challenges for data storage, manipulation, and water
quality analysis.

Nearly all airborne sensors are considered high spatial resolution, ranging between 25 and
0.5 m, and include the Airborne Visible Infrared Imaging Spectrometer manufactured by NASA
that provides 17 m resolution, 224 bands, across a 12 km swath width [6]. Spaceborne sensors that
are high-resolution (e.g., 20 to 0.5 m) are typically limited to eight bands, and are often operated
by commercial firms providing contracted monitoring services [6]. Moderate-resolution sensors
include the government-operated Landsat-8 (30 m resolution, 10 bands, 16 day revisit interval)
and the Hyperspectral Imager for the Coastal Ocean (100 m resolution, 128 bands, 10 day revisit
interval) [6–8]. Satellite microwave radiometers used for sea surface temperature water quality studies
include the Advanced Microwave Scanning Radiometer-2, with resolution ranging from 5 × 3 km to
62 × 35 km [6].

To summarize the constraints a water quality monitoring program may face with these sensors,
at high spatial resolution the monitoring is typically limited to pre-arranged, fee-based campaigns,
and, if publicly-available moderate-resolution sensor data are sufficient for the site, the 10 to 16 day
revisit interval may become a constraint. As an alternative to radiometric monitoring, finer spatial-and
temporal-scale monitoring is available via in situ wireless sensor networks, which relay auto-sampled
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water quality data to a base station [9]. For some sites, the constraint of these systems include
installation, operation, and maintenance costs, their inability to detect pollution extents due to
spatial gaps in coverage, and potential interference of the in situ sensor with other activities in
those coastal waters.

Thermal infrared imagery, or thermographic data, compared with hyperspectral imagery, are
relatively inexpensive and, as such, can allow more resources for increasing spatial and temporal
resolution. To capture the peak spectral emission of objects on Earth’s surface, and thereby obtain
a suitable signal to noise ratio, the thermographic image should be captured between 9 and 11 µm,
which is near the middle of the long-wave infrared electromagnetic spectrum. The thermographic data
offer a limited radiometric signal, but contain valuable information on surface properties affecting
the energy flux characteristics and dynamics. The radiant energy detected by thermal sensors is a
composite of energy emitted by the investigated surface that is transmitted through the atmosphere
and energy that is emitted by the atmosphere. While the water-atmosphere coupling complicates
interpretation of thermographic data, with proper signal processing researchers can estimate a number
of environmental variables important to Earth system science modelling [10].

The thermographic image measures the radiometric temperature, Trad (K), which is related to
the thermodynamic, or kinetic, temperature, Tkin (K), is typically measured with a thermometer.
The principle of thermographic data analysis is based on the physical phenomenon that all objects at
a temperature >0 K emit thermal radiation as a function of the body’s Tkin, and emissivity, ε, which
typically ranges 0 ≥ ε ≤ 1 depending on properties of the material.

As described by the Stefan-Boltzman law [5], the spectral radiant flux of a black body object, Mb,
(W/m2) is:

Mb = σT4
kin (1)

where σ is the Stefan-Boltzman constant, 5.6697 × 10–8 W m–2 K–4. As explained by Kirchoff’s Law [5],
Equation (1) presumes the black body is a perfect absorber and emitter, with an ε = 1, but otherwise
the spectral radiant flux of a real-world object, Mr, is:

Mr = εσT4
kin (2)

where ε < 1, which is the case for most substances [11]. In our work we use the Stefan-Boltzman law to
relate the apparent radiant temperature, Trad (K) of the real world object to Mr as:

Mr = σT4
rad (3)

where Trad is measured by thermal remote sensing. By combining Equations (2) and (3), we can
then obtain:

ε = T4
rad/T4

kin (4)

and establish emissivity as the property relating the remotely sensed Trad and the in situ measured
Tkin. This same relationship was established by Equation 1.7 in Kuenzer and Dech [12].

In standard processing of multi-pixel infrared thermographic image, it is possible to set only
one emissivity value for the whole image. If the observed surface is heterogeneous material (e.g.,
spatially-varying water chemistry, soil moisture, lithology, or vegetation), the homogenous emissivity
will generate erroneous kinetic temperatures for some pixels. However, these discrepancies are
diminished when emissivity values approach 1, which is the case for some natural surfaces, such
as water. The detection of possible water quality anomalies in coastal waters is made possible by
the processing of the multi-pixel thermographic image using a homogeneous emissivity value; for
seawater an emissivity value of 0.986 is recommended [13,14]. In monitoring of seawater, when a
thermographic pixel captures the radiometric temperature of non-seawater material with the same
kinetic temperature but different emissivity than the seawater, the thermographic sensor estimates an
erroneous kinetic temperature. In situ measurement of the kinetic temperature in parallel with remote
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sensing of the radiometric temperature would allow for the derivation of the emissivity. With advances
in technologies for in situ and remote sensing data capture, monitoring campaigns that use both
techniques for data capture are increasingly effective in spatially extending inferences about water
quality [15,16]. Spatial variation of emissivity across a thermographic image can generate noticeable
spatial variation in kinetic temperature [17,18]. In order to utilize anomalies in the thermographic
image, it is important to obtain images with an appropriate point of view, spatial resolution, and sensor
accuracy [19].

This goal of this research is to determine if coastal water quality monitoring across an area
with multiple channel inflows can be achieved using infrared thermographic imagery collected
from a hierarchical monitoring program. The research question is whether Trad from remote or
proximal imagery has a strong correlation (>60) with water quality parameters within channel
plumes entering a coastal area. There are a range of spatial scales in ecosystem management, and
hierarchical monitoring is developed to cross that range using a variety of thermal monitoring
platforms. Applied ecosystem science requires monitoring across variable spatial, temporal, and
organizational scales [20], and scientific knowledge guiding data management and fusion across
time and space [21]. For the study of a coastal area receiving inputs from rivers of varying spatial
extent, temporal flows, and water quality characteristics, a hierarchical monitoring program will utilize
various tools. Typically, environmental coastal monitoring actions have been provided by an in situ
aquatic vessel that collect a low spatial and temporal density of sample data, are time consuming, and
are accomplished only with significant advance planning. The hierarchical monitoring program with
Trad might be used to efficaciously deploy monitoring with more sophisticated and precise analytical
tools, such as in situ sampling or remote and proximal sensing with hyperspectral instruments.

2. Materials and Methods

The study area was the coastal zone northwest of Naples, Italy where four channels deliver
terrestrial discharges that can jeopardize coastal water quality. The four channels discharging to this
section of coast are the Volturno with a ~300 m wide channel at the outlet, Regi Lagni with a ~100
m wide channel, Agnena with two ~15 m wide channels bifurcating around a seawall at the outlet,
and Cuma with a ~3 m wide channel at the outlet. This coastal zone is a critical area that requires
monitoring due its important ecological value and the risk of pollution from discharge draining
the adjacent terrestrial area. The principal water quality concerns are discharges from wastewater
treatment plants and discharges from factory agricultural activities. The coastal bathymetry, warm
season intensification of currents, and diurnal reversal in winds act together to create a very complex
surface dynamic, resulting in different flushing mechanisms and exchange patterns between the
coastal zone with the river plumes discharging to the coast and the outer Tyrrhenian waters [22].
Vertical mixing of the water is less pronounced in the warm season due to a stable thermocline [22].
This thermocline is disrupted by the cooler weather and increase in precipitation during the winter
months, but in the warm season stratification of the water column allows for formation of a surface
mixed layer 30 to 40 m thick [23]. Water quality is particularly important during the warm season
when there is more recreational contact with the water due to sport and tourist activities, and for this
reason the study was conducted in July during peak use of the coastal area.

The hierarchical monitoring used temporally and spatially overlapping satellite, helicopter, and
drone platforms (Figure 1) in order to simultaneously obtain thermal images of the targets (Figure 1).
The selection of an imaging platform for water quality monitoring is based on the suitability of
platform characteristics (Table 1) to detect, recognize, and identify criteria for characterizing the
thermal anomalies of the plume (Figure 2). These criteria are specific to each sensor and target, and
may involve: ratios of image spatial resolution or image swath size to the target size; matching of
image spectral resolution to target thermal properties; and time to achieve target image relative to
target time constraints. In cases where a thermal imaging platform is suitable, targeted, overlapping
in situ monitoring may be deployed; otherwise un-targeted, wide in situ sampling might be used.
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The first step of the hierarchical monitoring was coordinating with flight dates for Landsat-8. After each
flight, the Landsat imagery was retrieved and reviewed for evidence of discharging plumes, noted by
different reflectance than the seawater, from the channels into the coastal zone. Evidence of discharging
plumes was identified in the Landsat-8 images obtained on 18 June 2013, both in the natural look and
TIRS band 10 thermal imagery. Given plume detection with Landsat-8, the second step in hierarchical
monitoring was deployment of the helicopter, drone, and field boat, either immediately, or to coincide
with the next Landsat-8 flight. In this project all monitoring was coordinated to temporally overlap
with the Landsat-8 flight date of 27 June 2013. The helicopter was a rotorcraft AW139 (Augusta
Westland, Rome, Italy), with a pilot and photographer, and acquired imagery at a flight acquisition
of 300 m, with Star SAFIRE QWIP (FLIR, USA) + FLIR T620 camera (FLIR, USA), providing images
with ~10 cm resolution. The unmanned drone was a StillFly 6–R Natural Drone (San Diego, CA,
USA), and acquired imagery at a flight acquisition of 50 m with a FLIR T620, providing resolution
with ~2 cm resolution [24,25]. The thermal cameras used by the helicopter and drone missions used a
constant emissivity value of 0.986, and were set for ambient parameters in the thermal sensor control
software, including atmospheric temperature, relative humidity, and distance, which was used by the
T620 camera to compensate for the atmospheric interference and provide an accuracy of 2 mK in the
measurements. Images were rejected if they had poor view angles (e.g., too oblique) and if they had
extreme solar reflection off the water surface.

Table 1. Hierarchical monitoring platforms of satellite, helicopter, and drone, with the associated
thermal image sensor, target distance, swath size, spatial resolution, and spectral resolution.

Hierarchical
Monitoring

Platform

Thermal
Image Sensor

Target
Distance

(km)

Image Swath
Size (km)

Image Spatial
Resolution (m)

Image Spectral
Resolution

(µm)

Satellite Landsat 8 TIRS 705 190 100 Band 10:
10.60–11.19

Helicopter FLIR T620 0.3 ~4.7 0.12 7–14
Drone FLIR T620 0.05 ~0.13 0.02 7–14
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The in situ samples were coordinated to spatially and temporally overlap with the thermal
imagery about the discharge plumes (Figure 3). A field boat was provided by the Regional Agency for
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the Environmental Protection and it carried an Ocean Seven 320 Plus multi-parameter Conductivity
Temperature Depth (CTD) probe. The boat was used for in situ sampling to test the correlation with
Trad, however, once this was performed subsequent monitoring would not require the costly concurrent
collection of in situ samples. To coordinate the spatial congruence of the in situ sampling and proximal
sensing, the operator of the field boat navigated to the coordinates of the areas of interest where
thermal anomalies in the water were detected, with coordinates sent by radio between the helicopter
and boat crews. The CTD in situ samples provided measurement of water kinetic temperature, Tkin,
salinity, dissolved oxygen, chlorophyll-a, and turbidity. The CTD records were acquired at a frequency
of 24 Hz, the highest allowed by the probes, taking the surficial measurements at 50 cm from the
surface. During the CTD acquisitions the wind speeds measured 6 m/s at the weather station close to
the sampling area, and this condition suggests the surface layer of the water was completely mixed
with a homogeneous Tkin sampled at the 50 cm depth [26].
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The third step of the monitoring program was to post-process the data and obtain the dataset
of water quality and temperature. The thermographic imagery was post-processed to delineate the
area of interest and obtain the average Trad value from that area, as well as other statistical data on the
distribution of the Trad values. The in situ sampling provided one temperature parameter, Tkin, and the
proximal sensing provided one temperature parameter, Trad, the combination of the two parameters
allowed for a third parameter equal to the difference Tkin − Trad, and a fourth parameter of emissivity,
ε, derived using the relationship between Tkin and Trad. An optional fourth step of the monitoring
program was to post-process the imagery to define the edges of the areas of interest, where the plumes
met with the coastal water. This involves extracting statistical information about the IR temperature
spectra, defining standard thermal patterns related to the phenomenology of water pollution [27].
In this study, the consistent temperature difference along the perimeter suggested the edge of the
channel plumes, which was confirmed with using Canny edge detection [28] (see image Figure 4 for
the Volturno channel).

Water 2017, 9, 500 7 of 14 

 

The third step of the monitoring program was to post-process the data and obtain the dataset of 
water quality and temperature. The thermographic imagery was post-processed to delineate the area 
of interest and obtain the average Trad value from that area, as well as other statistical data on the 
distribution of the Trad values. The in situ sampling provided one temperature parameter, Tkin, and the 
proximal sensing provided one temperature parameter, Trad, the combination of the two parameters 
allowed for a third parameter equal to the difference Tkin − Trad, and a fourth parameter of emissivity, 
ε, derived using the relationship between Tkin and Trad. An optional fourth step of the monitoring 
program was to post-process the imagery to define the edges of the areas of interest, where the 
plumes met with the coastal water. This involves extracting statistical information about the IR 
temperature spectra, defining standard thermal patterns related to the phenomenology of water 
pollution [27]. In this study, the consistent temperature difference along the perimeter suggested the 
edge of the channel plumes, which was confirmed with using Canny edge detection [28] (see image 
Figure 4 for the Volturno channel). 

 
Figure 4. Thermal image of the Volturno plume with polygons over the channel, seawater, and plume 
areas of interest, which correspond to histograms of radiometric temperature; and (upper right side) 
edges of the Volturno channel plume as white lines to the right of the image. 

3. Results and Discussion 

Plumes discharging from the four channels into the coastal waters were observed and captured 
with the helicopter thermographic camera. To capture the largest plume from the Volturno channel, 
with a channel width of ~300 m, the helicopter was used to take an oblique image (Figure 4), while 
less oblique images were used for the Agnena plume (Figure 5), Regi-Lagni plume (Figure 6), and the 
Cuma plume (Figure 7). The Cuma channel width was ~3 m, sufficient to allow for an area of interest 
to be delineated in the channel using the helicopter-acquired ~10 cm thermographic image. For more 
detailed analysis of the mixing zone between the Cuma channel discharge and coastal water, the drone-
acquired ~2 cm thermographic image provides excellent detail (Figure 7). The Landsat-8 imagery 
performed its function as a first step of the hierarchical monitoring, and was sufficient to confirm that 
spectral differences existed along the coastal zone, and initiated the subsequent monitoring step 2, 
proximal image collection, and step 3, image post-processing, in the hierarchical program. 

Figure 4. Thermal image of the Volturno plume with polygons over the channel, seawater, and plume
areas of interest, which correspond to histograms of radiometric temperature; and (upper right side)
edges of the Volturno channel plume as white lines to the right of the image.

3. Results and Discussion

Plumes discharging from the four channels into the coastal waters were observed and captured
with the helicopter thermographic camera. To capture the largest plume from the Volturno channel,
with a channel width of ~300 m, the helicopter was used to take an oblique image (Figure 4), while
less oblique images were used for the Agnena plume (Figure 5), Regi-Lagni plume (Figure 6), and
the Cuma plume (Figure 7). The Cuma channel width was ~3 m, sufficient to allow for an area of
interest to be delineated in the channel using the helicopter-acquired ~10 cm thermographic image.
For more detailed analysis of the mixing zone between the Cuma channel discharge and coastal water,
the drone-acquired ~2 cm thermographic image provides excellent detail (Figure 7). The Landsat-8
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imagery performed its function as a first step of the hierarchical monitoring, and was sufficient to
confirm that spectral differences existed along the coastal zone, and initiated the subsequent monitoring
step 2, proximal image collection, and step 3, image post-processing, in the hierarchical program.
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Locations Salinity % Chl-a μg/L DO% Sat Turbidity FTU Tkin °C 
Volturno Plume 3.4 0.97 107 1.70 21.90 
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Regi Lagni Plume 1 3.3 2.20 65 2.29 22.48 
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Figure 7. Thermal image of Cuma plume with histogram of radiometric temperature for areas of the
channel, seawater, and area of the plume; and (in upper right side) drone-acquired thermal image of
the mixing zone in the Cuma channel outlet.

The in situ water quality measurements were obtained for one sample of coastal seawater beyond
the plumes, one sample in the Volterno plume, one sample in the Agnena plume, two samples in
the Regi Lagni plume, and two samples in the Cuma plume (Figure 3, Table 2). The salinity of the
coastal seawater was 3.4% (i.e., 34 parts per thousand), while the salinity of plumes had a maximum
of 3.7% and a minimum of 2.7%. The chlorophyll-a of the coastal seawater was 0.93 µg/L, while the
chlorophyll-a of plumes had a maximum of 2.5 µg/L and a minimum of 0.97 µg/L. The dissolved
oxygen of the coastal seawater was 87% of saturation, while the dissolved oxygen of plumes had a
maximum of 107% and a minimum of 59.3%. The detection of dissolved oxygen above 100% saturation
is relatively common in coastal sites due to the production of pure oxygen by photosynthetically-active
organisms, as well as a momentary lack of equilibrium of dissolved oxygen between the water column
and air column. The turbidity of the coastal seawater was 0.93 FTU (Formazin turbidity unit), while the
turbidity of plumes had a maximum of 5.6 FTU and a minimum of 0.9 FTU. The kinetic temperature of
the coastal seawater was 22.1 ◦C, while the kinetic temperature of plumes had a maximum of 23.7 ◦C
and a minimum of 21.9 ◦C.

Table 2. Water quality parameters measured during the in situ field campaign, with salinity in %,
chlorophyll-a in µg/L, dissolved oxygen (DO) in % saturation, turbidity in Formazin turbidity units
(FTU), and kinetic temperature in ◦C.

Locations Salinity % Chl-a µg/L DO% Sat Turbidity FTU Tkin
◦C

Volturno Plume 3.4 0.97 107 1.70 21.90
Agnena Plume 3.7 0.55 87 2.05 22.10

Regi Lagni Plume 1 3.3 2.20 65 2.29 22.48
Regi Lagni Plume 2 2.7 1.66 59 5.65 22.90

Cuma Plume 1 3.7 2.25 100 1.94 23.06
Cuma Plume 2 3.7 2.51 102 1.94 23.65

Coastal Seawater 3.4 0.93 87 0.93 22.10
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The kinetic temperature, Tkin, measured by the CTD in situ, and the radiometric temperature, Trad,
measured from IR imagery, were used with Equation (4) to derive the emissivity, ε, for the areas of
interest (Table 3). The derived ε values ranged from 0.93 to 0.97, with seawater at 0.97; this seawater
ε value deviates from the standard of 0.98 and illustrates that ε can vary around a common value
due to the variation in environmental and viewing conditions [29,30]. The Tkin, Trad, the difference
Tkin − Trad, and the ε for each area of interest was correlated with the water quality parameters
(Table 4). The correlations with in situ water quality data were consistently the best for the parameters
of Tkin, Trad and ε, which were identical, or within 0.01 of each other, and worst for the parameter
of Tkin. The absolute values of the Trad correlations were just 0.02 to 0.06 below the absolute values
of the ε correlations, and 0.21 to 0.36 higher than the absolute values of the Tkin correlations. Given
that parameterizing ε and Tkin requires in situ measurement, the Trad correlations were of particular
interest because Trad can be collected remotely and expedite monitoring. For in situ salinity Trad had
a correlation of 0.81, for chlorophyll-a Trad had a correlation of 0.74, for dissolved oxygen Trad had a
correlation of 0.98, and for turbidity Trad had a correlation of −0.61.

Table 3. Water in situ kinetic temperature, Tkin (◦C), IR thermographic radiometric temperature, Trad

(◦C), the difference of Tkin and Trad, and the derived emissivity, ε, for the areas of interest.

Locations Tkin
◦C Trad

◦C Tkin − Trad
◦C ε

Volturno Plume 21.90 17.50 4.40 0.942
Agnena Plume 22.10 19.90 2.20 0.971

Regi Lagni Plume 1 22.48 17.10 5.38 0.929
Regi Lagni Plume 2 22.90 17.30 5.60 0.926

Cuma Plume 1 23.06 20.08 2.98 0.960
Cuma Plume 2 23.65 20.90 2.75 0.963

Coastal Seawater 22.10 19.90 2.20 0.971

Table 4. Correlation coefficients between water quality parameters salinity (%), chlorophyll-a (µg/L),
dissolved oxygen (DO, % saturation), turbidity (Formazin turbidity units, FTU), and in situ kinetic
temperature, Tkin (◦C), IR thermographic radiometric temperature, Trad (◦C), the difference of Tkin and
Trad, and the derived emissivity, ε, for the areas of interest.

Variables Salinity % Chl-a µg/L DO %Sat Turbidity FTU

Tkin 0.48 0.51 0.77 −0.25
Trad 0.81 0.74 0.98 −0.61

Tkin − Trad −0.87 −0.78 −1.00 0.69
ε 0.86 0.77 1.00 −0.67

In the Regi Lagni channel there was no detected difference between the channel continental water
and the seawater mixing zone water, attributed to a more complete mixing along this section of the
coast. All channels had a relatively low discharge during the warm season, with water temperatures
warmer than the seawater for all channels, but the larger Volturno, which drains a larger river basin
with high-altitude tributaries that may feed cooler water. The smallest channel, the ~3 m wide Cuma,
had the highest levels of chlorophyll-a, while the medium sized channel, the ~100 m wide Regi Lagni,
had the next highest levels of chlorophyll-a, suggesting they may be the most polluted channels.
The reported values of oxygen under saturation suggest the presence of a high level of photosynthesis,
and the Cuma channel had the highest chlorophyll-a and second highest dissolved oxygen values.
The high turbidity values from all channels, above the 0.93 FTU of the seawater, suggest the channels
are carrying a high concentration of particulate matter, which may carry additional contamination.

The two temperature variables that correlated best with water quality parameters, the difference
Tkin and Trad and ε, which is from a ratio of Tkin and Trad, are based on using both kinetic and radiometric
temperatures. However, in typical applications of this monitoring program the Tkin and ε will not be
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available. Only with in situ measurements will Tkin be available, and only with Tkin can ε be derived,
As intended in this study, Trad is the most available temperature parameter from this monitoring
program, and in this application it had a much stronger correlation with the water quality parameters
than the Tkin. The Trad correlations were, on average, 71% better than the Tkin correlations, and ranged
from 144% better for turbidity to 27% better for oxygen. The Trad correlations were all above 0.6, and
three were above 0.74, while three of the Tkin correlations were below 0.51.

The study demonstrates how thermographic data can support a coastal monitoring program that
targets the water quality impact of channel plumes discharge along the coast. This study addressed
the research question by establishing a strong correlation between Trad and four common water quality
parameters. In a subsequent application of this hierarchical monitoring program, the second step
would not require a concurrent field boat with in situ sampling and, instead, would just collect Trad
for areas of interest within the thermographic imagery acquired by the helicopter and/or drone.
If the plumes and seawater areas had different values of Trad for any one channel, then in situ
samples could subsequently be obtained to characterize the water quality. The limitations of the
monitoring program include the inability to estimate the water quality parameter concentration using
the Trad, and predictive equations are difficult to establish given the sensitivity of Trad to variation
in ambient air temperature, water temperature, and emissivity of the pollutant. At sites where
thermographic data alone are insufficient for the monitoring program, other approaches have been
used. The fusion of optical data and synthetic aperture radar have been used for feature-based
detection of environmental hazards [31,32], and ratios of multi-spectral bands have been used to
detect surface contamination of soil and water [33,34]. Monitoring programs can also use remote
sensing-based detection cyanobacteria together with knowledge of flow paths to make inferences of
the impact and source of water pollution [35].

Without the hierarchical monitoring via helicopter, prior coastal monitoring for this region limited
its focus to pollution from the largest channels, including the Volturno, and another large channel
further north, called the Garigliano [36–39]. Due to the larger discharge plumes from these rivers, they
have been considered to be the principal cause of water quality impairment. This research revealed
that the smallest channel, the Cuma, and the medium-sized channel, the Regi Lagni, had the highest
concentrations of chlorophyll-a, which can lead to significant local degradation of coastal water quality.
Indeed, the contaminant concentrations from the small channels originate with wastewater treatment
and agricultural runoff, and can be higher than those of the larger rivers. The lower flow rates from
these small channels do not generate significant plume dispersion, and constrain the dilution and
degradation of the pollutant during transport. During the warm season the coastal currents are mostly
onshore, due to local land-sea breezes, and the river discharge and pollutants are retained in the
littoral area.

In summary, the hierarchical sampling protocol might search for thermal anomalies first using
satellite data, if the channel width is large enough, and then proceed to helicopter or drone data
depending on channel size and distance between channels. Collaboration between teams with
environmental expertise and teams with access to helicopters and drones may be critical to combine
resources and complete the monitoring program. The collaboration with governmental authorities
for access to helicopters can satisfy their needs for pollution monitoring, and ideally fit within their
operational requirements in terms of both flight regulations and the mission goals, while satisfying the
scientific aims and requirements to analyze the data. The application of this methodology produces
multi-resolution data that can be processed to highlight thermal anomalies, and the inferences with
respect to water quality are enhanced using local knowledge of pollutant sources. Indeed, with a
proper knowledge of the environmental dynamics, such as the interaction of the channels and coastal
currents, this application can link thermal anomalies and environmental criticalities.
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4. Conclusions

This research demonstrated that a hierarchical use of remotely-sensed imagery from satellites,
then helicopter, and then proximal sensed imagery from drones, provides a range of spatial and
temporal coverage to support water quality monitoring of complex pollution scenarios. The research
established that the thermal infrared cameras can be used in the monitoring of water quality anomalies,
with the radiometric temperature, Trad, strongly correlating with water quality parameters of salinity,
chlorophyll-a, dissolved oxygen, and turbidity. The Landsat-8 remotely-sensed imagery was used as a
first step to identify that plumes were discharging into the coastal water. The helicopter was used as a
second step to obtain proximal imagery with a spatial resolution of ~10 cm, able to sample the plumes
discharging from ~300 to ~3 m channels. The area of interest in the proximal thermal imagery captured
Trad values that had a correlation of 0.81 with salinity, of 0.74 with chlorophyll-a, 0.98 with dissolved
oxygen, and −0.61 with turbidity. This study demonstrates the utility of using thermal imagery in
cases where more advanced monitoring is unable due to spatial, temporal, and financial constraints.
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