
water

Article

Runoff Responses to Climate and Land Use/Cover
Changes under Future Scenarios

Sihui Pan 1, Dedi Liu 1,*, Zhaoli Wang 2, Qin Zhao 1, Hui Zou 1, Yukun Hou 1, Pan Liu 1 and
Lihua Xiong 1

1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,
Wuhan 430072, China; psh.pan@foxmail.com (S.P.); wyygxty5268@163.com (Q.Z.);
zouhui@whu.edu.cn (H.Z.); ben_monkey@163.com (Y.H.); liupan@whu.edu.cn (P.L.);
xionglh@whu.edu.cn (L.X.)

2 The State Key Laboratory of Subtropical Building Science, South China University of Technology,
Guangzhou 510630, China; wangzhl@scut.edu.cn

* Correspondence: dediliu@163.com; Tel.: +86-136-2710-7512

Received: 5 April 2017; Accepted: 26 June 2017; Published: 29 June 2017

Abstract: Climate and land use/cover (LUC) are the two most significant factors that directly affect
the runoff process. However, most research on runoff response has focused mainly on projected
climate variation, while future LUC variability has been neglected. Therefore, the objective of this
study is to examine the impacts of projected climate and LUC changes on runoff. Future climate
scenarios are projected using the Quantile Mapping (QM) method, and future LUC scenarios are
predicted with the Cellular Automaton-Markov (CA-Markov) model. Three different scenarios are
simulated and compared to evaluate their impacts: Scenario 1 (LUC of 2010 and climate during the
2011–2050 period, abbreviated S1), Scenario 2 (LUC of 2010, 2020, 2030, 2040 and 2050 and climate
of the historical wet year, normal year and dry year, abbreviated S2) and Scenario 3 (LUC of 2010,
2020, 2030, 2040 and 2050 and corresponding climate projections of 2011–2020, 2021–2030, 2031–2040
and 2041–2050 period, abbreviated S3). These three scenarios are then input into the Soil and Water
Assessment Tool (SWAT) model to assess runoff responses. Beijiang River Basin, located in southern
China, is used in this case study. The results obtained from S1, S2 and S3 show that runoff change
in this basin is mainly caused by climate change; warmer temperatures and greater precipitation
increase runoff. LUC change has little influence on runoff at the whole-basin scale, but changes in
runoff components are more notable in the urban area than in the natural region at the sub-watershed
level. The impact of LUC change in urbanized region on runoff components differ obviously among
the wet, normal and dry years, and surface runoff and groundwater are found to be more sensitive to
urbanization. Runoff depth is predicted to increase in this basin under the impacts of both climate
and LUC changes in the future. Climate change brings greater increase in water yield and surface
runoff, whereas LUC change leads to changes in allocation between surface runoff and groundwater
in the urban region.

Keywords: climate change; LUC change; CA-Markov model; runoff responses; SWAT model

1. Introduction

Changes in climate and land use/cover (LUC) play an important role in altering the runoff process.
Climate variability influences runoff and the regional water balance by affecting precipitation and
temperature [1,2]. Specifically, precipitation is critical in determining the amount of water for runoff,
whereas temperature mainly affects evapotranspiration, which is regarded as a kind of loss for runoff
formation. LUC change influences the runoff routing process [3]. For instance, forest removal can
influence soil infiltration and further alter the runoff generation process [4]; increasing impervious
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surface areas due to urbanization can decrease the infiltration rate and concentration time and thus
result in increased surface runoff [5]. Since the change in runoff will have significant implications on
water resources [6,7], it is essential to study the responses of runoff to climate and LUC changes for
local ecological preservation and sustainable utilization of water resources.

Assessing the impacts of climate and LUC changes on runoff process has been an important
research focusing on hydrological studies [8–11]. Methods used to assess the impact of climate change
on runoff can be classified into two categories [12]. The first one requires the establishment of different
climate change scenarios based on historical observations and to input these scenarios into hydrological
models for runoff simulation. The second approach is to combine a climate model and a hydrological
model. Projected climate change is simulated using the climate model, such as a general circulation
model (GCM), and the outputs of the climate model are input into the hydrological model for runoff
simulation. Since GCMs have proven their capabilities for reproducing observed climatic changes [13],
many studies have been conducted in recent decades to examine the response of runoff to climate
change around the world by using combining GCMs and hydrological models. Most results of such
studies have indicated that the impact of climate change on runoff is considerable, with varying
characteristics across different regions. By using an ensemble of twenty GCMs and two hydrological
models, Li et al. [14] found that the runoff was projected to increase in the southeastern Tibetan Plateau
with greater precipitation and warmer temperatures. Gan et al. [15] reported that runoff was predicted
to decrease with the lower precipitation and warmer temperatures projected in the Naryn River Basin
in the future, based on an ensemble of five GCMs and a glacier-enhanced Soil and Water Assessment
Tool (SWAT) model. Similar findings were reported by Dhar et al. [16] and Chen et al. [17].

Methods used to investigate the impact of LUC change on runoff include paired catchment
studies and hydrological modelling. In a paired catchment experiment, land use is held constant in
the control catchment and changed in the treatment catchment. Bosch and Hewlett [18] reviewed
catchment experiments to assess the impact of vegetation change on water yield. Similar studies
have been reported in the subsequent reviews by Hornbeck et al. [19] and Stednick [20]. However,
the problem is that paired catchment studies are time-consuming and highly restricted in terms of size
and the characteristics of the watershed [12,21]. Therefore, hydrological models, especially distributed
models that relate spatial changes of LUC to runoff simulation, have been the most commonly used
tool to assess the impact of LUC change on runoff. One of the earliest works was from Onstad and
Jamieson [22], who assessed the impact of LUC modifications on runoff. Calder et al. [23] carried out
a modelling study to investigate the impacts of LUC change from natural forest to agricultural land on
a large-scale basin in Africa. Similar findings were discussed by Fohrer et al. [24], Li et al. [25] and
Mwangi et al. [26].

Research has been conducted on runoff responses to the impacts of changes in climate and LUC
in recent decades [9,27–29]. As an effective tool, the distributed hydrological model is widely used for
these studies. Li et al. [30] found that the combined effects of land use change and climate variability
decreased runoff, soil water contents and evapotranspiration in an agricultural catchment on the
Loess Plateau of China using the SWAT model. Chawla and Mujumdar [10] reported that runoff
was mainly influenced by climate change and was sensitive to change in urban areas in the upper
Ganga Basin, based on the Variable Infiltration Capacity (VIC) model. Similar findings were reported
by Cuo et al. [31] and Zhang et al. [32]. However, these previous studies on assessing future runoff
response rarely considered the influence of future LUC change on runoff, as they were mainly based on
historical LUC and climate data and/or climate projections. Without future LUC scenarios, the further
rational assessment on the future runoff response is limited. Therefore, projected LUC scenarios must
be established to investigate the impact of predicted LUC change on the runoff process to provide
more rational long-term water resource prediction and planning. Thus, in this study, the distributed
model is adopted to examine the impacts of projected climate and LUC changes on the runoff process
in Beijiang River Basin in China. The primary objectives of this study are to: (i) project future climate
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scenarios and LUC scenarios; (ii) apply the distributed model to simulate runoff; and (iii) assess runoff
responses under different climate and LUC scenarios.

2. Methodology

To investigate future runoff response to climate and LUC changes, projected scenarios of climate
and LUC must first be established. The climate scenarios are downscaled using the Quantile Mapping
(QM) method, and the future LUC scenarios are predicted using the Cellular Automaton-Markov
(CA-Markov) model. The SWAT model is then employed to assess runoff responses under future
scenarios of climate and LUC. The proposed methodology is shown in Figure 1.
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2.1. Establishment of Future Climate Scenarios

Future climate scenarios are typically projected by downscaling gridded GCM outputs into
site-specific series. However, as GCM is the tool primary for global-scale climate prediction [33,34],
the resolution of GCM outputs is too coarse to be directly applied to hydrological modelling which
is generally performed on a basin scale [33]. Therefore, downscaling techniques are used to produce
high-resolution climate change projections in order to bridge this gap in coupling the GCM with
the hydrological model. Statistical downscaling techniques are widely used because of the ease and
rapidity of implementation [17]. As one of statistical downscaling methods, QM, Themeßl et al. [35,36]
is used to correct the bias in the shape of the distribution of GCM outputs with reference to the
observed distribution [37,38]. This method can not only correct the long-term climatological mean
biases between GCM outputs and observations but also attempts to remove quantile-dependent
biases [39]. To implement the QM method, 100 percentiles of daily precipitation (or temperature) for
the observations and GCM time series for a specific month in the calibration period are calculated
to establish a distribution mapping technique in order to determine the relationships between the
observations and the GCM outputs [40]. The percentile ratios of precipitation (or differences for
temperature) are then multiplied by the GCM precipitation (or the temperature differences are added
to the GCM temperature) time series in the future period (Equation (1) for precipitation and Equation (2)
for temperature) [33,41].

Pfut,cor,j = Pfut,GCM,j ×
(

Pobs,Q/Pcal,GCM,Q
)

(1)

Tfut,cor,j = Tfut,GCM,j +
(
Tobs,Q − Tcal,GCM,Q

)
(2)

where the subscript Q refers to a percentile for a specific month, and the subscript j refers to a specific
day in the future period; Pobs/Tobs is the historical precipitation/temperature data; Pcal,GCM/Tcal,GCM
is the GCM-simulated precipitation/temperature in the calibration period; Pfut,GCM/Tfut,GCM is
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the GCM-simulated precipitation/temperature in the future period and Pfut,cor/Tfut,cor is the
corresponding correction.

The performance of QM is assessed by comparing the differences between commonly-used
statistics (i.e., mean, standard deviation, and the 95th and 75th percentiles of climate variables)
obtained from the corrections and from the observations.

2.2. Establishment of Future LUC Scenarios

The future LUC scenarios are predicted with the CA-Markov model to investigate runoff response
to LUC change. The CA-Markov model is a highly capable and widely-used tool for land use
simulation [42,43], which combines the Markov chain process and the CA model. The Markov chain
process controls temporal change among land use types based on a transition matrix, and the CA
model controls spatial pattern change through suitability maps [44,45]. The CA-Markov model used in
this study is embedded in the IDRISI Kilimanjaro software from Clark Labs. This model contains three
stages [43,44,46]. (I) The LUC transition matrix is computed from the LUC map using the Markov
model. (II) Suitability maps are produced based on the assessment indicators in the multi-criteria
evaluation module. (III) The spatial distribution of LUC is simulated by the CA model based on the
transition matrix and suitability maps.

The performance of the CA-Markov model is assessed using the Kappa coefficient [47] (shown in
Equation (3)) which is commonly adopted to evaluate the agreement between an observed map and
a simulated map:

Kappa =
Po − Pc

Pp − Pc
(3)

where Po is the proportion of appropriately simulated cells; Pc is the expected proportion correction
due to chance; and Pp is the ideal proportion with perfect matching between the observed map and
the simulated map, which equals 1. If Kappa = 1, then the agreement between two maps is perfect;
if 0.75 ≤ Kappa < 1, then the maps are in high level of agreement; if 0.5 ≤ Kappa ≤ 0.75, in medium
level of agreement; and if Kappa ≤ 0.5, rare agreement.

2.3. SWAT Model

The SWAT model is a watershed-scale, distributed and physically-based hydrological model
developed to simulate the effects of land management practices on water, sediment and
agro-contaminants with heterogeneous soils and land use conditions [48]. It is one of the most
widely-used distributed hydrological models, and many previous studies have proved its capability for
investigating impacts of climate and LUC changes on runoff [49–52]. In the SWAT model, a watershed
is delineated into sub-watersheds linked with each other by a stream network. Each sub-watershed
is further divided into hydrological response units (HRUs) according to LUC type, soil and slope.
Routing of water is simulated from the HRUs to the sub-watershed level, and then through the stream
network to the basin outlet [53–56]. The hydrological process is based on the water balance equation
(Equation (4)).

SWt = SW +
t

∑
t=1

(
R − Qsur f − ET − P − QR

)
(4)

where SWt is the final soil water content (mm), SW is the initial soil water content (mm), t is time
(days), and R, Qsurf, ET, P, and QR are the daily amounts of precipitation, runoff, evapotranspiration,
percolation, and groundwater flow respectively, in units of mm. More detailed descriptions of the
model are given by Arnold et al. [48].
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The Nash-Suttcliffe coefficient (Ens) and the coefficient of correlation (R2) are chosen as
goodness-of-fit indices to evaluate the performance of the SWAT model, as shown in Equations
(5) and (6):

Ens = 1 −

n
∑

i=1
(Qoi − Qsi)

2

n
∑

i=1
(Qoi − Qo)

2
(5)

R2 =


n
∑

i=1
(Qoi − Qo) · (Qsi − Qs)√

n
∑

i=1
(Qoi − Qo)

2 ·
n
∑

i=1
(Qsi − Qs)2


2

(6)

where Qoi and Qsi are the ith observed and simulated runoff at time i; Qo and Qs are the means of
observed and simulated runoff, respectively; and n is the total number of observed data.

3. Study Area and Data

3.1. Study Area

Beijiang River is the second largest tributary of Pearl River Basin and one of the most important
water sources in Pearl River Delta, the third largest economic zone in China. Beijiang River Basin,
located in the north of Pearl River Basin in southern China (Figure 2), drains a watershed area of
39,220 km2. The basin with complex topography is characterized by mountains and hills, with higher
elevations in the north and lower elevations in the south. The region falls within the sub-tropical
climate zone, with an average annual temperature of 20 ◦C and precipitation of 1685 mm, respectively,
during the period of 1961–2010. More than 70% of annual precipitation occurs in the wet season
(from April to September), while the remainder occurs in the dry season (from December to March).
The predominant LUC type in 2010 was forest, followed by cropland, pasture, orchard (e.g., fruit trees
and tea trees), construction land and water bodies.
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where Qoi and Qsi are the ith observed and simulated runoff at time i; oQ  and sQ are the means of 
observed and simulated runoff, respectively; and n is the total number of observed data. 
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3.2. Dataset

A digital elevation model (DEM) was used, and soil, LUC, meteorological, hydrological and
future climate data were collected in this study. The DEM data obtained from the United States
Geological Survey (USGS) were used to extract topographic parameters and to delineate the watershed
into sub-watersheds. In addition, DEM was used to extract the slopes as a geographical data for LUC
prediction. Soil properties were classified based on the Harmonized World Soil Database (HWSD),
provided by the Food and Agriculture Organization (FAO). LUC maps from 1990, 2000 and 2010,
as well as the other geographical data (roads, railways, cities and towns) used to predict future LUC
scenarios were obtained from the Data Center for Resources and Environmental Sciences of Chinese
Academy of Sciences. Meteorological data (including daily precipitation and temperature data from
1961 to 2010) were gathered from the Guangdong Meteorological Service. The observed monthly
runoff data during 1961–2005 were collected from the Hydrology Bureau of Guangdong Province.
Future climate data were obtained from the Norwegian Earth System Model (NorESM) which is
a GCM in the Climate Model Intercomparison Project (CMIP5) of the Intergovernmental Panel on
Climate Change (IPCC). The daily GCM outputs, which contain precipitation and temperature data
for the twentieth and twenty-first centuries from the NorESM, were downloaded from the Lawrence
Livermore National Laboratory. The Representative Concentration Pathway (RCP) 4.5 and RCP 8.5
are the two 21st-century scenarios for future greenhouse gas emissions, where RCP 8.5 is a higher
emission pathway and RCP 4.5 assumes lower emissions [37].

4. Results and Discussion

4.1. Historical Climate, LUC and Runoff Changes

Historical climate change represented by precipitation and temperature from 1961 to 2010 in this
case has been analyzed at annual and seasonal (wet and dry) scales. To identify climate change trends,
the Mann-Kendall test is adopted and the confidence level is set to 95%. Results of the test show
that the average annual precipitation from 1961 to 2010 was 1685 mm with no significant increasing
trend (Figure 3). The average precipitation is 1228 mm in the wet season and 457 mm in the dry
season. No significant increasing trend in the wet season or decreasing trend in the dry season is
detected. The average annual temperature is 20.0 ◦C, with the presence of a significant increasing trend.
The respective temperatures of the wet season and dry season are 25.6 ◦C and 14.4 ◦C, with significant
increasing trends.
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Figure 3. Variations in average precipitation (P) and temperature (T) at annual (a) and seasonal
(wet season (b) and dry season (c)) scales from 1961–2010. The solid linear line represents the significant
increasing/decreasing trend at a 95% level, and the dashed line shows a nonsignificant trend.

During the period of 1990–2010, Beijiang River Basin experienced considerable changes in its
LUC (shown in Figure 4). The orchard area increased by 143% from 1990 to 2010 (Table 1). The area
of construction land increased by 40% as a result of population growth and economic development,
whereas the areas of pasture, cropland and forest decreased by 5%, 3% and 3%, respectively.

Table 1. Percentages (%) of LUC type in Beijiang River basin.

LUC Type
The Observed Map The Predicted Map

1990 2000 2010 2020 2030 2040 2050

Cropland 20.8 20.8 19.4 18.8 18.6 18.4 18.3
Forest 68.2 68.1 67.5 63.6 62.7 62.1 61.7

Orchard 1.4 1.5 3.5 7.0 7.6 7.9 8.0
Pasture 6.6 6.6 5.6 5.3 5.1 4.9 4.8

Water body 1.4 1.5 1.8 2.0 2.0 2.1 2.1
Construction land 1.6 1.6 2.2 3.3 3.9 4.5 5.1
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Figure 4. LUC of Beijiang River Basin in 2010.

The average annual runoff depth was 1113 mm during 1961–2005, with a nonsignificant upward
trend (Figure 5). The runoff depth in the wet season was 843 mm, whereas it was 270 mm in the
dry season. The increasing trend in the wet season and the decreasing trend in the dry season were
not significant.
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4.2. Model Performance

4.2.1. Performance of QM

The performance of QM is assessed by comparing the differences between the statistics (i.e., mean,
standard deviation, 95th and 75th percentiles) obtained from the corrections by QM and from
observations. The values of these statistics are averaged from seven meteorological stations, and the
period from 1961 to 2005 is divided into the calibration period (1961–1990) and the validation period
(1991–2005).

The results of the performance assessment of QM are shown in Table 2, where the shaded values
(the relative errors larger than 5% of the statistics between the corrections and observations) show
a poorer relative performance compared to the unshaded ones. In the calibration period, QM has
a good performance with respect to precipitation and temperature, since most of the relative errors of
statistics between corrections and observations are less than 5%. However, in the validation period,
the performance of QM is not as good as that in the calibration period. Results shows that QM has
a poorer performance with respect to precipitation compared with temperature, and QM has a poorer
performance in the dry season than in the wet season. The values of relative error during the validation
period are found to be the highest for precipitation, and the highest among those (16%) occurs at the
75th percentile in the dry season. This is because the magnitude of precipitation in dry season is much
smaller than in wet season, which means that a small bias can cause a large change in the relative error.
Additionally, the deviation may be the result of abrupt changes in precipitation in Beijiang River Basin
in the 1990s [57] during the validation period. Overall, the performance of QM is generally acceptable,
although a certain number of biases still exist after bias correction with QM.

Table 2. Statistical values of corrections and observations in the calibration period (1961–1990) and
validation period (1991–2005).

Statistics Periods

Calibration Validation

P (mm/d) T (◦C) P (mm/d) T (◦C)

QM Observed QM Observed QM Observed QM Observed

Mean
Annual 4.58 4.60 19.83 19.84 4.63 4.68 20.00 20.33

Wet 6.62 6.67 25.48 25.48 6.85 6.86 25.71 25.76
Dry 2.54 2.52 14.16 14.17 2.31 2.51 14.26 14.88

Standard deviation
Annual 11.72 11.85 7.42 7.42 12.71 12.30 7.58 7.07

Wet 14.32 14.71 3.73 3.72 15.11 15.56 3.84 3.46
Dry 7.76 7.36 5.66 5.66 7.41 7.56 5.89 5.37

95th percentile
Annual 26.04 25.98 29.36 29.36 25.63 26.51 29.71 29.49

Wet 35.08 35.04 29.93 29.93 33.70 35.62 30.22 30.08
Dry 14.70 14.64 23.59 23.58 13.75 14.99 24.22 23.89

75th percentile
Annual 2.94 2.94 26.41 26.41 2.81 2.84 26.68 26.47

Wet 6.22 6.21 28.16 28.16 6.62 6.26 28.58 28.16
Dry 1.00 1.01 18.52 18.51 0.77 0.92 19.02 18.95

Note: The shaded values indicate that the relative error of statistics between corrections and observations is higher
than 5%.

4.2.2. Performance of the CA-Markov Model

Data for LUC in 1990, 2000 and 2010 (LUC1990, LUC2000, LUC2010) in Beijiang River Basin were
collected in this study. The observed LUC1990 and LUC2000 were used to facilitate the LUC2010
simulation with the CA-Markov model, and the observed LUC2010 was then compared with the
simulated LUC2010 to evaluate the model performance. First, the transition matrix between LUC1990
and LUC2000 was determined using the Markov model. Secondly, the indicators, including elevation,
slope, distance to traffic line, distance to the city and distance to the town, were selected to produce
transition suitability maps of LUC. Finally, the basis map LUC2000, the transition matrix and the
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suitability maps were used to simulate LUC2010 with the Markov-CA model. Comparing the observed
LUC2010 with the simulated LUC2010 (as shown in Figure 6), the Kappa coefficient is calculated as
0.90, which reveals a high-level agreement between the observed LUC2010 and the simulated one and
indicates the CA-Markov model has a strong capacity to simulate LUC. Therefore, with significant
effectiveness, the use of the CA-Markov model is acceptable for predicting future LUC in the study area.
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4.2.3. Performance of the SWAT Model

After preparing the imported maps (DEM, land use, soil) and database files (e.g., climate,
soil properties), the new SWAT project is built for Beijiang River Basin. Model calibration is carried out
by adjusting the values of model parameters in the SWAT-CUP (Calibration and Uncertainty Programs
for the SWAT model). The SWAT-CUP first identifies the five most sensitive parameters, which are
Alpha_BF (baseflow alpha factor), CH_K2 (channel effective hydraulic conductivity), SOL_AWC (water
capacity of soil layers), ESCO (soil evaporation compensation factor) and CH_N2 (Manning’s n value
for the main channel). Then, model calibration and validation can be carried out.

As the hydrological model parameters may potentially change responding to time-variable
precipitation, temperature and LUC [21,58–61], the time-variant hydrological model is adopted under
the changing environment. However, most of the time-variant hydrological models are lumped
hydrological models. Even the distributed models that relate spatial changes of LUC to runoff
simulation that have been the most commonly used tool to assess the impact of LUC change on
runoff, the distributed models with more calibrated parameters are difficult to be transformed into
time-variant hydrological model due to limited data. Therefore, the parameters of the SWAT model
are calibrated by historical data and are assumed to have extrapolative ability even under the future
LUC scenarios in this study. The climate during the historical period (i.e., 1961–2005) and the LUC
of early age (i.e., LUC1990) are used for calibration/validation [15,31,32]. The period of 1961–2005 is
divided into the calibration period (1961–1990) and the validation period (1991–2005). The values of
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Ens and R2 during the calibration period are 0.85 and 0.92, and those in the validation are 0.86 and 0.93,
respectively. These results show that the peaks and valleys of the simulation similarly correspond to
the observations (Figure 7), and the performances of SWAT are satisfactory in the calibration period
and the validation period.

Water 2017, 9, 475  11 of 23 

 

0.86 and 0.93, respectively. These results show that the peaks and valleys of the simulation similarly 
correspond to the observations (Figure 7), and the performances of SWAT are satisfactory in the 
calibration period and the validation period. 

 
Figure 7. Comparison of simulated and observed monthly runoff in the calibration period (1961–
1990) and validation period (1991–2005). 

4.3. Future Climate and LUC Scenarios 

QM is used to correct bias under the RCP 4.5 and RCP 8.5 scenarios. Table 3 shows the 
percentages of seasonal change in precipitation and temperature between the future period (2011–
2050) and the period from 1961 to 2010. Compared to the average annual precipitation in the period 
of 1961–2010, the one in the period of 2011–2050 increases by 3% under RCP 4.5 and by 8% under 
RCP 8.5. Precipitation increases by 6% under RCP 4.5 (13% under RCP 8.5) in the wet season and 
decreases by 1% under RCP 4.5 (3% under RCP 8.5) in the dry season. The average annual 
temperature in the future period increases by 0.5 °C under RCP 4.5 and by 1.8 °C under RCP 8.5. The 
temperature increases by 0.7 °C under RCP 4.5 (1.8 °C under RCP 8.5) in the wet season, and 
increases by 1.5 °C under RCP 4.5 (2.0 °C for RCP 8.5) in the dry season. 

Table 3. The seasonal change percentages of precipitation (P) and temperature (T) between the 
future period under RCP4.5 and RCP8.5 and the observations period of 1961–2010. 

Item 
P T 

Annual Wet Dry Annual Wet Dry 
Change percentage of RCP4.5 3% 6% −1% 0.5 °C 0.7 °C 1.5 °C 
Change percentage of RCP8.5 8% 13% −3% 1.8 °C 1.8 °C 2.0 °C 

The CA-Markov model is employed to predict future LUC in Beijiang River Basin. Future LUC 
maps for 2020, 2030, 2040 and 2050 are predicted by the CA-Markov model based on the map 
LUC2010 (the basis map), the suitability maps and the transition matrix between LUC2000 and 
LUC2010. From 2010 to 2050, LUC shows the increases in the areas of orchard, construction land and 
water bodies, but reductions in forest, cropland and pastures (Table 1). In 2050, forest is projected to 
still be the main LUC type, followed by cropland, orchard, construction land, pasture and water 
bodies (shown in Figure 8). From 2010 to 2050, the most change occurs in construction land area, 
with an increase of 132%. The orchard area increases by 128%, whereas the areas of pasture, forest 
and cropland decrease by 14.3%, 8.6% and 5.7%, respectively. 

0

2000

4000

6000

8000

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
Simulation Observation

Calibratio Validatio

D
isc

ha
rg

e

Year

Figure 7. Comparison of simulated and observed monthly runoff in the calibration period (1961–1990)
and validation period (1991–2005).

4.3. Future Climate and LUC Scenarios

QM is used to correct bias under the RCP 4.5 and RCP 8.5 scenarios. Table 3 shows the percentages
of seasonal change in precipitation and temperature between the future period (2011–2050) and the
period from 1961 to 2010. Compared to the average annual precipitation in the period of 1961–2010,
the one in the period of 2011–2050 increases by 3% under RCP 4.5 and by 8% under RCP 8.5.
Precipitation increases by 6% under RCP 4.5 (13% under RCP 8.5) in the wet season and decreases by
1% under RCP 4.5 (3% under RCP 8.5) in the dry season. The average annual temperature in the future
period increases by 0.5 ◦C under RCP 4.5 and by 1.8 ◦C under RCP 8.5. The temperature increases by
0.7 ◦C under RCP 4.5 (1.8 ◦C under RCP 8.5) in the wet season, and increases by 1.5 ◦C under RCP 4.5
(2.0 ◦C for RCP 8.5) in the dry season.

Table 3. The seasonal change percentages of precipitation (P) and temperature (T) between the future
period under RCP4.5 and RCP8.5 and the observations period of 1961–2010.

Item
P T

Annual Wet Dry Annual Wet Dry

Change percentage of RCP4.5 3% 6% −1% 0.5 ◦C 0.7 ◦C 1.5 ◦C
Change percentage of RCP8.5 8% 13% −3% 1.8 ◦C 1.8 ◦C 2.0 ◦C

The CA-Markov model is employed to predict future LUC in Beijiang River Basin. Future LUC
maps for 2020, 2030, 2040 and 2050 are predicted by the CA-Markov model based on the map LUC2010
(the basis map), the suitability maps and the transition matrix between LUC2000 and LUC2010.
From 2010 to 2050, LUC shows the increases in the areas of orchard, construction land and water
bodies, but reductions in forest, cropland and pastures (Table 1). In 2050, forest is projected to still
be the main LUC type, followed by cropland, orchard, construction land, pasture and water bodies
(shown in Figure 8). From 2010 to 2050, the most change occurs in construction land area, with an
increase of 132%. The orchard area increases by 128%, whereas the areas of pasture, forest and cropland
decrease by 14.3%, 8.6% and 5.7%, respectively.
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4.4. Runoff Response to Climate and LUC Changes

To investigate the response of runoff to the projected climate and LUC changes, three types of
scenarios (Scenario 1 (LUC of 2010 and climate during the 2011–2050 period, abbreviated S1), Scenario
2 (LUC of 2010, 2020, 2030, 2040 and 2050 and three historical climate conditions, abbreviated S2)
and Scenario 3 (LUC of 2010, 2020, 2030, 2040 and 2050 and corresponding climate projections of
2011–2020, 2021–2030, 2031–2040 and 2041–2050 period, abbreviated S3)) are analyzed (Table 4). In S2,
in order to reflect the historical climate condition (1961–2010) and simplify the analysis, three typical
hydrological years based on the frequency analysis: 1994 (10%), 2000 (50%) and 1985 (90%) are chosen
to respectively represent the wet year, normal year and dry year. The impact of climate change on
runoff is investigated based on S1, while the impact of LUC change on runoff is studied based on S2.
The impact of climate and LUC change simultaneously in the future on runoff is assessed based on S3.

Table 4. Three scenarios for investigating the impacts of climate and LUC changes on the runoff.

Scenario Description

S1 Only climate change scenario: RCP4.5 and RCP8.5 (2011–2050). LUC is LUC2010.

S2 Only LUC change scenario: Changing LUC (LUC2010, LUC2020, LUC2030, LUC2040 and
LUC2050) with three typical hydrological years.

S3
Simultaneous climate and LUC change scenario in the future: RCP4.5/RCP8.5 (2011–2020)
+ LUC2020; RCP4.5/RCP8.5 (2021–2030) + LUC2030; RCP4.5/RCP8.5 (2031–2040) +
LUC2040; RCP4.5/RCP8.5 (2041–2050) + LUC2050.

4.4.1. Impact of Climate Change on Runoff Process

S1 is used to assess the impact of climate change on runoff. The results show that the average
annual runoff depth in the future period (2011–2050) increases by 9% under RCP 4.5 and by 16% under
RCP 8.5 compared to the simulated runoff depth during the period of 1961–2005 (Table 5). Runoff
depth increases in both wet and dry seasons under both RCP 4.5 and RCP 8.5. There is an 8% (17%)
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increase in runoff depth under RCP 4.5 (RCP 8.5) in the wet season, and there is a 10% (12%) increase
in runoff depth under RCP 4.5 (RCP 8.5) in the dry season, with a small decline in precipitation and
warmer temperatures.

Table 5. The changes between the predicted runoff depth under RCP 4.5 and RCP 8.5 and the simulated
runoff depth during the period of 1961~ 2005.

Season Robs (mm) Rsim (mm)
Prediction under RCP 4.5 Prediction under RCP 8.5

Change
Amount (mm)

Change
Percentage (%)

Change
Amount (mm)

Change
Percentage (%)

Annual 1116 1118 +98 +9 +178 +16
Wet 844 836 +70 +8 +144 +17
Dry 272 282 +28 +10 +34 +12

Note: Robs is the mean value of observed runoff depth during 1961~2005, and Rsim is the mean value of simulated
runoff depth based on LUC2010 during 1961~2005. The change amount and change percentage are calculated by
comparing Rsim with the predicted runoff depths under RCP 4.5 and RCP 8.5.

However, increasing runoff depth in the dry season mainly resulted from its increase in the first
two months of the season (October and November). The mean value of simulated runoff depth during
1961–2005 is 103 mm from October to November. The simulated runoff depth is 176 mm in the other
four months during the dry season (from December to March of the next year). It is clear that the
increase in predicted runoff depth in the whole dry season is mostly caused by the increased runoff
depth in October and November under RCP 4.5 and RCP 8.5 (Figure 9). The mean values of predicted
runoff depth from October to November during 2011–2050 are 130 mm under RCP 4.5 and 148 mm
under RCP 8.5, whereas the predicted runoff depths are 180 mm under RCP 4.5 and 168 mm under
RCP 8.5 from December to March in the following year. The greater increase in runoff depth in the wet
season results in the greater runoff depth in the first two months in the dry season (27 mm under RCP
4.5 and 45 mm under RCP 8.5), because those months are more strongly influenced by the recession
flow of the wet season. In the last four months of the dry season, little variation is present between
the predicted runoff depth under RCP 4.5 and the simulated runoff depth. However, under RCP 8.5,
the predicted runoff depth is lower than the simulated runoff depth because of a slight reduction in
precipitation and warmer temperatures from December to March in the following year.

Water 2017, 9, 475  13 of 23 

 

(17%) increase in runoff depth under RCP 4.5 (RCP 8.5) in the wet season, and there is a 10% (12%) 
increase in runoff depth under RCP 4.5 (RCP 8.5) in the dry season, with a small decline in 
precipitation and warmer temperatures. 

Table 5. The changes between the predicted runoff depth under RCP 4.5 and RCP 8.5 and the 
simulated runoff depth during the period of 1961~2005. 

Season Robs 
(mm) 

Rsim (mm) 
Prediction under RCP 4.5 Prediction under RCP 8.5 

Change Amount 
(mm) 

Change Percentage 
(%) 

Change Amount 
(mm) 

Change Percentage 
(%) 

Annual 1116 1118 +98 +9 +178 +16 
Wet 844 836 +70 +8 +144 +17 
Dry 272 282 +28 +10 +34 +12 

Note: Robs is the mean value of observed runoff depth during 1961~2005, and Rsim is the mean value of 
simulated runoff depth based on LUC2010 during 1961~2005. The change amount and change 
percentage are calculated by comparing Rsim with the predicted runoff depths under RCP 4.5 and 
RCP 8.5. 

However, increasing runoff depth in the dry season mainly resulted from its increase in the first 
two months of the season (October and November). The mean value of simulated runoff depth 
during 1961–2005 is 103 mm from October to November. The simulated runoff depth is 176 mm in 
the other four months during the dry season (from December to March of the next year). It is clear 
that the increase in predicted runoff depth in the whole dry season is mostly caused by the increased 
runoff depth in October and November under RCP 4.5 and RCP 8.5 (Figure 9). The mean values of 
predicted runoff depth from October to November during 2011–2050 are 130 mm under RCP 4.5 and 
148 mm under RCP 8.5, whereas the predicted runoff depths are 180 mm under RCP 4.5 and 168 mm 
under RCP 8.5 from December to March in the following year. The greater increase in runoff depth 
in the wet season results in the greater runoff depth in the first two months in the dry season (27 mm 
under RCP 4.5 and 45 mm under RCP 8.5), because those months are more strongly influenced by 
the recession flow of the wet season. In the last four months of the dry season, little variation is 
present between the predicted runoff depth under RCP 4.5 and the simulated runoff depth. 
However, under RCP 8.5, the predicted runoff depth is lower than the simulated runoff depth 
because of a slight reduction in precipitation and warmer temperatures from December to March in 
the following year. 

 
Figure 9. The runoff depth in different months of the dry season under different scenarios. 

0

50

100

150

200

Simulated RCP4.5 RCP8.5

R
un

of
f d

ep
th

 (m
m

)

Total runoff depth from October to November

Total runoff depth from December to March of next year

Scenario

Figure 9. The runoff depth in different months of the dry season under different scenarios.



Water 2017, 9, 475 14 of 23

4.4.2. Impact of LUC Change on Runoff Process

The response of runoff to LUC change is investigated with different LUC scenarios (LUC2010,
LUC2020, LUC2030, LUC2040 and LUC2050) and three typical hydrological years (S2 as shown in
Table 4). Results show a few differences in runoff at the outlet of the whole basin under the LUC2010,
LUC2020, LUC2030, LUC2040 and LUC2050 scenarios for the wet, normal and dry years (shown in
Figure 10). It can therefore be concluded that LUC change has little influence on the variation in runoff
at the whole-basin level.

The impacts of spatial distribution of LUC on runoff at the sub-watershed level are assessed by
analyzing the runoff components in the different hydrological years. According to the spatial analysis
module in the SWAT model, the whole Beijiang River Basin is divided into 35 sub-watersheds (shown
in Figure 2), where the two typical sub-watersheds with different special distributions of LUC (Sub12
and Sub31) are selected. Sub12 represents an urbanized area which is expected to undergo further
drastic urbanization, from 22.5% in 2010 to 40.7% in 2050 (shown in Table 6). Sub31 is selected as
a region where the natural conditions are maintained, with only 7% conversion from forest to orchard.
Figure 11 shows the impact of LUC change on the runoff components of Sub12 and Sub31 in different
hydrological years. In Sub12, the water yield and surface runoff increase due to rapid urbanization,
whereas lateral flow and groundwater decrease. The LUC change from 2010 to 2050 has little impact on
the annual water yield. There is almost no change in water yield for the wet year, but a slight increase
occurs in the normal and dry years, as shown in Figure 11a–c. Surface runoff and groundwater are
found to be more sensitive to LUC change than the lateral flow. The LUC change from 2010 to 2050
increases the surface runoff in the wet year by 81 mm (13%); in the normal year by 62 mm (17%), and in
the dry year by 51 mm (19%). Urbanization decreases groundwater in the wet year by 67 mm (10%),
in the normal year by 47 mm (10%), and in the dry year by 38 mm (10%). The changes in surface runoff
and groundwater may be attributed to the expansion of impermeable land surface, which makes
rainwater flow directly into the river and decreases soil infiltration. The increase of surface runoff and
the decline of lateral flow and groundwater are much higher in the wet year than in the normal and
dry years. Zhou et al. [56] reached similar results. However, the results concerning Sub31 with natural
conditions show no change in annual water yield, surface runoff, lateral flow or groundwater, as shown
in Figure 11d–f. For each different hydrological year, few significant differences in runoff components
influenced by LUC change are detected in Sub31. Therefore, important significant changes will occur in
the allocation between surface runoff and groundwater in urbanized region, but insignificant changes
in runoff generation processes are anticipated under natural conditions.

Table 6. Percentages of area (%) of each land use type in Sub12 and Sub31.

Sub-Watershed LUC Scenarios Cropland Forest Orchard Pasture Water body Construction
Land

Sub12

LUC2010 20.1 32.9 10.6 5.0 8.9 22.5
LUC2020 16.2 22.8 12.5 4.6 10.3 33.6
LUC2030 15.1 17.8 12.6 4.3 10.6 39.6
LUC2040 15.1 17.3 12.6 4.0 10.6 40.4
LUC2050 15.2 17.0 12.1 3.9 11.1 40.7

Sub31

LUC2010 13.0 73.7 3.7 1.0 7.4 1.1
LUC2020 13.1 71.6 6.2 0 7.9 1.2
LUC2030 13.1 71.4 6.4 0 8.0 1.2
LUC2040 13.2 71.3 6.2 0 8.0 1.4
LUC2050 13.4 70.0 7.0 0 8.1 1.5
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Figure 10. Average interannual simulated runoff for the wet year (a), the normal year (b) and the dry
year (c) under different LUC scenarios in S2.
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Figure 11. Changes in runoff components under the different LUC scenarios from 2010 to 2050 in
Sub12 (a–c) and Sub31 (d–f). Bar graph shows the annual values, and the triangles show the change
percentages between runoff components of LUC2010 and LUC2050. The dash-dotted line shows the
horizontal line of the change percentage equaling to 0%.

4.4.3. Impact of Climate and LUC Changes on Runoff Process

Runoff prediction under S3 is proposed to represent the runoff response to climate and LUC
change simultaneously during the future period of 2011–2050 (shown in Figure 12). The average
annual runoff depth in the future period increases by 9% under RCP 4.5 and by 16% under RCP 8.5,
compared to the simulated runoff depth during the historical period of 1961–2005. Runoff depths in
the wet season rise by 8% under the RCP 4.5 scenario and by 16% under the RCP 8.5 scenario, whereas
the runoff depth in the dry season increases by 14% under RCP 4.5 and by 16% under RCP 8.5. Overall,
considering the whole basin, climate change plays a dominant role in altering runoff process, whereas
LUC change has little influence on change in runoff.
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Figure 12. Average runoff depth at annual (a), and seasonal (wet season (b) and dry season (c)) scales
under S3 during 2011–2050.

The runoff process is influenced by both climate change and LUC change with intensive
anthropogenic activities, especially in urbanized regions. In Sub12, a comparison between the results
from S1 and S3 shows that the water yield and surface runoff increase under both RCP 4.5 and RCP
8.5 scenarios (shown in Figure 13). However, LUC change decreases lateral flow and groundwater
during the period from 2011 to 2050. Surface runoff increases by 51 mm (11%), and groundwater
decreases by 39 mm (8%) in S3 under RCP 4.5, whereas there is a 50 mm (10%) increase of surface
runoff and a 38 mm (8%) decrease of groundwater under RCP 8.5. Changes in surface runoff and
groundwater are therefore sensitive to LUC change in urbanized regions. Moreover, water yield and
lateral flow slightly increase and decrease, respectively. Therefore, urbanization can influence the
allocation between surface runoff and groundwater, as discussed in Section 4.4.2.

By comparing the results from S2 and S3, climate change will increase water yield and surface
runoff, whereas it will decrease the groundwater component and have an insignificant influence on
lateral flow, based on LUC2010 under S2 (Figure 14). In S3, the water yield increases by 73 mm (8%)
under RCP 4.5 and by 135 mm (14%) under RCP 8.5, and surface runoff increases by 147 mm (40%)
under RCP 4.5 and by 192 mm (51%) under RCP 8.5. Changes in runoff components and allocation
between surface runoff and groundwater are therefore found to be more severe under RCP 8.5 than
under RCP 4.5 in scenario S3.
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Figure 13. Average annual runoff components based on S1 and S3 under RCP 4.5 and RCP 8.5 scenarios
during the period of 2011–2050.

Water 2017, 9, 475  19 of 23 

 

 
Figure 13. Average annual runoff components based on S1 and S3 under RCP 4.5 and RCP 8.5 
scenarios during the period of 2011–2050. 

By comparing the results from S2 and S3, climate change will increase water yield and surface 
runoff, whereas it will decrease the groundwater component and have an insignificant influence on 
lateral flow, based on LUC2010 under S2 (Figure 14). In S3, the water yield increases by 73 mm (8%) 
under RCP 4.5 and by 135 mm (14%) under RCP 8.5, and surface runoff increases by 147 mm (40%) 
under RCP 4.5 and by 192 mm (51%) under RCP 8.5. Changes in runoff components and allocation 
between surface runoff and groundwater are therefore found to be more severe under RCP 8.5 than 
under RCP 4.5 in scenario S3. 

 
Figure 14. Average annual runoff components based on S2 and S3 during the period of 1961–2010. 

5. Conclusions 

The aim of this study is to examine future runoff response to climate and LUC changes in 
Beijiang River Basin in China. The climate scenarios are projected by downscaling GCM outputs 
using the QM method, and the future LUC scenarios are predicted with the CA-Markov model. The 
SWAT model is adopted to assess runoff responses of the study area by investigating and comparing 
the results of S1, S2 and S3. The following conclusions can be drawn: 

(1) The impact of climate change on runoff is significant. Runoff depth is projected to increase in 
both wet and dry seasons under future climate change for both RCP 4.5 and RCP 8.5.  

(2) LUC change has an insignificant influence on runoff at the basin level, since there are few 
differences in outlet runoff under different LUC scenarios. However, changes in runoff 
components are more important at the sub-watershed level. The impact of urbanization on 
runoff components can be better understood at the sub-watershed level, and urbanization has 
less impact on water yield than on surface runoff and groundwater. The impact of LUC change 

0

200

400

600

800

1000

1200

Water yield Surface runoff Lateral flow Groundwater

M
ea

n 
va

lu
e (

m
m

)

Runoff component
S1 of RCP4.5 S3 of RCP4.5 S1 of RCP8.5 S3 of RCP8.5

0

200

400

600

800

1000

1200

Water yield Surface runoff Lateral flow Groundwater

M
ea

n 
va

lu
e (

m
m

)

Runoff component
S2 S3 of RCP4.5 S3 of RCP8.5

Figure 14. Average annual runoff components based on S2 and S3 during the period of 1961–2010.

5. Conclusions

The aim of this study is to examine future runoff response to climate and LUC changes in Beijiang
River Basin in China. The climate scenarios are projected by downscaling GCM outputs using the QM
method, and the future LUC scenarios are predicted with the CA-Markov model. The SWAT model is
adopted to assess runoff responses of the study area by investigating and comparing the results of S1,
S2 and S3. The following conclusions can be drawn:

(1) The impact of climate change on runoff is significant. Runoff depth is projected to increase in
both wet and dry seasons under future climate change for both RCP 4.5 and RCP 8.5.

(2) LUC change has an insignificant influence on runoff at the basin level, since there are few
differences in outlet runoff under different LUC scenarios. However, changes in runoff
components are more important at the sub-watershed level. The impact of urbanization on
runoff components can be better understood at the sub-watershed level, and urbanization has
less impact on water yield than on surface runoff and groundwater. The impact of LUC change on
runoff components differs obviously among the wet, normal and dry years in urbanized regions.
The increase in surface runoff caused by urbanization is highest in the wet year.
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(3) With simultaneous changes in climate and LUC, runoff depth in the study area is predicted to
increase in the future. Climate change brings increases in water yield and surface runoff, whereas
LUC change leads to changes in the allocation of surface runoff and groundwater in urban areas.

In this research, the future climate scenarios are projected based on a GCM, and the future LUC
scenarios are predicted based on a LUC simulated model. However, the changes in climate and LUC
in the future period are uncertain not only for the scenarios but also for the calibrated parameter
of the hydrological model. Therefore, in the future research, it is suggested to collect more GCMs
and use different LUC simulated models to predict the future climate scenarios and LUC scenarios,
respectively. It is also recommended to investigate the uncertainties of the two types of scenarios and
the stationarity of the calibrated parameters of the models, as well as the future runoff response to the
different combinations of climate and LUC scenarios.
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