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Abstract: In this paper, the anionic surfactant sodium dodecyl sulfate (SDS) and the bio-surfactant
rhamnolipid are mixed to achieve micellar-enhanced ultrafiltration, and the associated aniline removal
efficiency is investigated. The impacts of five factors, including the mixing ratio of the SDS concentration
to the rhamnolipid concentration, the pH, the salinity, the operating pressure, and the aniline
concentration in the feed solution, on the aniline rejection and the membrane permeation flux are
explored. The aniline rejection mechanism of the rhamnolipid mixture surfactant is analyzed. This study
shows that the effect of these factors on the aniline rejection is in the order of pH > mixing ratio >
operating pressure > aniline concentration > salinity; the factors that affect the membrane permeation
flux are in the order of mixing ratio > operating pressure > salinity > pH > aniline concentration. Under
the optimal test conditions (i.e., SDS:rhamnolipid = 8:2, pH = 5, salinity = 250 mmol/L, operating
pressure = 3.5 bar, aniline concentration = 1.5 mM), the verification test results showed an aniline
rejection of 78.36%.

Keywords: micellar-enhanced ultrafiltration; aniline; rhamnolipid; orthogonal experiment

1. Introduction

With the rapid development of the chemical industry in China in recent years, aniline has become
a widely used compound. Similarly, chemical production has produced a significant amount of aniline
wastewater. Such wastewater produces ecological hazards and threatens the human population’s
health [1–3]. The current aniline wastewater treatment methods mainly include chemical methods,
physical methods, and biological methods [4–6]. Among them, micellar-enhanced ultrafiltration
technology (MEUF) has already become a relatively mature organic treatment technology employed
abroad. MEUF offers advantages including a simple operation, a high recovery efficiency, and a high
removal efficiency [7–11],all of which make MEUF promising for aniline wastewater treatment.
However, researchers worldwide have mainly used chemical surfactants [12,13], while studies
on the applications of bio-surfactants in micellar-enhanced ultrafiltration remain limited [14–16].
However, chemical surfactants have disadvantages, such as high critical micelle concentrations
(CMCs), high dosages, unfavorable economics, and the likely consequence of secondary pollution.
Moreover, a single chemical surfactant has a limited solubilizing capacity and poor repair efficiency.
Compared with the chemical surfactant, the bio-surfactant with a lower CMC and toxicity and better
environmental compatibility attracts much attention [17,18]. Recently, by utilizing the excellent
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characteristics of both the chemical surfactant and bio-surfactant to maximize the degradation
efficiencyand reduce environmental pollution, increasing attention has been paid to composite
surfactants [19], which have a relative strongly affinity for enhancing the performance of the surfactant
and reducing the repair cost.

This paper investigates the feasibility of the composite surfactant micellar-enhanced ultrafiltration
treatment of organics. A typical surfactant, SDS, and an environmentally friendly bio-surfactant,
rhamnolipid, are mixed for enhanced ultrafiltration, and the aniline rejection and membrane
permeation flux are investigated.

2. Materials and Methods

2.1. Materials

Aniline was produced by Shanghai Hushi Chemical Ltd., Shanghai, China, analytically pure;
the surfactant sodium dodecyl sulfate (SDS) was produced by Shanghai Hushi Chemical Ltd.,
chemically pure; rhamnolipid was produced by HuzhouZijin Biological Technology Ltd., Zhejiang,
China, 100% pure, CMC 50 mg/L.

2.2. Test Equipment

The test equipment is shown in Figure 1. The surfactant was added to the aniline wastewater, and
the mixture was stirred evenly with a glass rod. After allowing it to stand for 15 min, the mixture was
introduced into the membrane equipment through a peristaltic pump, while the penetrant solution
and concentrated solution flowed back to the water pool. The operating pressure was controlled to
regulate the reflux. The membrane operating pressure was displayed on a pressure gauge, and the
dialysate flux was displayed on a rotameter. At the end of each experiment, the surfactant was cleaned
from the equipment first, and the equipment was then cleaned using a membrane detergent for 20 min
to restore the ultrafiltration membrane to its original flux for the next experiment.
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Figure 1. Schematic diagram of the ultrafiltration setup.

2.3. Analysis Items and Method

The effects of the surfactant mixing ratio, feed solution pH, salinity, operating pressure, and aniline
concentration in the feed solution on the MEUF were analyzed.

The aniline concentration was measured using a Shimadzu ultraviolet visible spectrophotometer
(UV-2450, Shimadzu, Kunshan, Jiangsu, China); the wavelength of maximum absorbance was 280 nm.

The aniline rejection was calculated by the following formula:

R = 1 −
Cp

Cf
(1)
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where Cp is the aniline concentration in the dialysate (mg/L), Cf is the aniline concentration in the
feed solution (mg/L), and R is the aniline rejection.

The permeation flux was calculated by the following formula:

J =
Q

A∆t
(2)

where Q is the penetrated volume (L), t is the operation time (h), A is the flat membrane surface (m2),
and J is the membrane permeation flux (L/(m2·h)).

3. Results and Discussion

3.1. Effect of the Surfactant Mixing Ratio on the MEUF Aniline Rejection Efficiency

The aniline concentration in the feed solution was 1 mmol/L, the operating pressure was 2 bar,
the pH was 7, the NaCl salinity was 200 mmol/L, and the surfactant concentration was 10 CMC.
The mixing ratios of SDS:rhamnolipid were 2:8, 4:6, 5:5, 6:4, and 8:2, and the effect of the surfactant
concentration in the feed solution on the aniline rejection efficiency was investigated.

The results (Figure 2) show that the aniline rejection increased with an increasing mixing ratio
of SDS:rhamnolipid, the membrane permeation flux decreased with an increasing mixing ratio of
SDS:rhamnolipid, and membrane fouling further decreased the flux. These results show that a higher
rhamnolipid concentration results in a lower aniline rejection, which may have occurred because
aniline in neutral water bodies is mainly removed by surfactant solubilization. As a bio-surfactant,
rhamnolipid has a complex structure and a relatively large molecular structure, forming large and
sparse micelles, which are not conducive to capturing aniline molecules in solution and thus result in
a lower removal rate. The experiment showed that a mixed surfactant has a better aniline removal
efficiency than pure rhamnolipid. On the one hand, this result occurs because the mixture reduces
the rhamnolipid CMC and creates more micelles to solubilize more aniline. However, SDS molecules
are embedded in micelles so that rhamnolipid micelles are denser and more compact, which helps to
capture and remove aniline molecules using ultrafiltration technology. The membrane permeation flux
decreases with an increasing SDS concentration. This effect occurs because with an increasing SDS
concentration, more micelles with dense and compact structures are created; these micelles are more
likely to be compacted on the membrane surface to form a filter cake and reduce the membrane flux.
Moreover, small micelles are also more likely to enter membrane openings and thus cause more severe
membrane fouling.
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Figure 2. Effect of the percent of sodium dodecyl sulfate (SDS) and rhamnolipid on aniline rejection 
and permeate flux. 
Figure 2. Effect of the percent of sodium dodecyl sulfate (SDS) and rhamnolipid on aniline rejection
and permeate flux.
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3.2. Effect of the Feed Solution pH on the MEUF Aniline Rejection Efficiency

The aniline concentration in the feed solution was 1 mmol/L, the operating pressure was 2 bar,
the SDS:rhamnolipid ratio was 5:5, the NaCl salinity was 200 mmol/L, and the feed solution pH
values were 5, 6, 7, 8, and 9. The effect of the feed solution pH on the aniline rejection efficiency was
investigated. The test results are shown in Figure 3.
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Figure 3. Effect of pH on aniline rejection and permeate flux.

The results show that with an increasing solution pH value, the aniline rejection declines
initially and then gradually rises, and the membrane permeation flux increases with an increasing
pH value. When the pH value is 5, the aniline rejection is the highest. An aniline hydrating solution
in water is alkaline in nature, so an acid solution facilitates aniline hydrolysis. Both rhamnolipid
and SDS are anionic surfactants, and aniline hydrolysis generates positively charged aniline cations.
Therefore, micelles can adsorb more aniline ions via electrostatic adsorption and remove aniline ions
by ultrafiltration rejection. According to the physiochemical properties of rhamnolipid, rhamnolipid
can easily dissolve in an alkaline solution and is only slightly soluble in an acid solution. Therefore,
an increasing pH may facilitate rhamnolipid dissolution and thereby reduce the solution viscosity and
increase the membrane flux.

3.3. Effect of Salinity on the MEUF Aniline Rejection Efficiency

The aniline concentration in the feed solution was 1 mmol/L, the operating pressure was 2 bar,
the pH was 7, the SDS:rhamnolipid mixing ratio was 5:5, and the salinities (i.e., NaCl concentrations)
were 100, 150, 200, 250, and 300 mmol/L. The effect of the feed solution salinity on the aniline rejection
efficiency was investigated.

The results (Figure 4) show that with an increasing feed solution salinity, the aniline rejection
initially increased and then decreased, while the membrane permeation flux initially decreased and
then increased. When NaCl was added, the aniline rejection increased, while the membrane flux
decreased. This result may have occurred because the addition of NaCl reduces the surfactant CMC
and creates more micelles. In addition, because of the existence of chloride ions and sodium ions,
the electric charges on SDS and rhamnolipid are partially neutralized, so the electrostatic exclusion
effect between the surfactants is weakened [20]. This effect makes it easier to create micelles with
higher density, which increases the probability of aniline capture and solubilization but also aggravates
membrane fouling. Moreover, the existence of ions also lowers the electric charge and potential on the
micelle surface [21,22]. Therefore, sodium ions can compete with hydrolytic aniline ions, reducing the
probability of the electrostatic adsorption of aniline by micelles and affecting the removal efficiency.
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3.4. Effect of the Operating Pressure on the MEUF Aniline Rejection Efficiency

The aniline concentration in the feed solution was 1 mmol/L, the pH value was 7, the SDS:rhamnolipid
mixing ratio was 5:5, the NaCl salinity was 200 mmol/L, and the operating pressure settings were 2, 2.5, 3,
and 3.5 bar. The effect of varying the operating pressure on the aniline rejection efficiency was investigated.
The test results are shown in Figure 5.
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The result shows that the aniline rejection decreased with an increase in pressure and that the
membrane permeation flux increased with an increase in pressure. Some studies held the view that [23]
under a relatively high pressure, the micelle shape may be altered: micelles are compressed, and their
internal space is squeezed, so bonds between the organics and the micelles are constrained, which
reduces the solubilized aniline. Moreover, the micelle concentration on the membrane surface increases,
and the micelles are more likely to pass through the membrane pores to carry aniline into the penetrant.
Therefore, the aniline rejection declines. When the operating pressure increases, more micelles aggregate
on the membrane surface, which further boosts the concentration polarization effect, further reducing
the membrane flux.
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3.5. Effect of the Aniline Concentration in the Feed Solution on the MEUF Aniline Rejection Efficiency

The feed solution pH value was 7, the SDS: rhamnolipid mixing ratio was 5:5, the NaCl salinity
was 200 mmol/L, the operating pressure was 2 bar, and the aniline concentrations in the feed solution
were 0.5, 1, 1.5, 2, and 3 mmol/L. The effect of varying the operating pressure on the aniline rejection
efficiency was investigated.

The results (Figure 6) show that with an increasing aniline concentration in the feed solution,
the aniline rejection increased initially and then declined, while the membrane permeation flux remained
largely unchanged. When the aniline concentration increased from 0.5 mmol/L to 1.5 mmol/L,
the aniline rejection increased. This result occurred because the solution had already generated
a certain number of micelles; with an increasing aniline concentration, an excess of micelles in the water
can remove more aniline via solubilization. When the aniline concentration exceeded 1.5 mmol/L,
the micelle adsorption in the solution was already saturated, so aniline could not be solubilized, and its
concentration increased. This effect leads to more aniline moving into the dialysate and results in
reduced aniline rejection.
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3.6. Orthogonal Solubilization Test

The orthogonal experiment was adopted to optimize the experimental results. The orthogonal test
involved five factors, four levels, and two indices. Among them, the five factors are the mixing ratio of
SDS to rhamnolipid (A), the solution pH (B), the salinity (C), the operating pressure (D), and the initial
concentration of aniline (E). Table 1 lists the five factors and four levels; the two indices are the aniline
rejection and the membrane permeation flux. The orthogonal test results are listed in Table 2. Curves
of the factors with significant impacts on the aniline rejection and the membrane permeation flux are
shown in Figure 7. The orthogonal test results for the aniline rejection and the membrane permeation
flux are shown in Figure 8.

Table 1. Factors and levels.

Level
Factor

Mixing Ratio (A) pH (B) Salinity (C) (mmol/L) Operating Pressure (D) (bar) Aniline Concentration (E) (mM)

1 2:8 5 100 2 0.5
2 4:6 6 150 2.5 1
3 6:4 8 200 3 1.5
4 8:2 9 250 3.5 2
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Table 2. Results of the orthogonal experiment.

Number of
Experimental Set

Level X Y

A B C D E Rejection (%) Permeate Flux
(L/(m2·h))

1 1 1 1 1 1 45.55 263.25
2 1 2 2 2 2 17.89 269.82
3 1 3 3 3 3 17.41 289.33
4 1 4 4 4 4 17.30 298.14
5 2 4 2 3 1 29.17 287.77
6 2 3 1 4 2 26.30 295.27
7 2 2 4 1 3 30.46 236.22
8 2 1 3 2 4 58.98 243.16
9 3 2 3 4 1 41.15 253.43

10 3 1 4 3 2 67.17 234.83
11 3 4 1 2 3 33.70 255.05
12 3 3 2 1 4 31.00 228.57
13 4 3 4 2 1 23.97 212.20
14 4 4 3 1 2 35.31 205.30
15 4 1 2 4 3 78.22 239.28
16 4 2 1 3 4 50.07 247.68

X

K1 24.550 62.500 38.925 35.600 34.975
K2 36.250 34.900 39.075 33.650 36.675
K3 43.250 24.675 38.200 40.975 39.950
K4 46.900 28.875 34.750 40.725 39.350
R 22.350 37.825 4.325 7.325 4.975

Y

K1 280.13 245.13 265.31 233.33 254.16
K2 265.60 251.78 256.36 245.05 251.30
K3 242.97 256.34 247.80 264.90 254.97
K4 226.11 261.56 245.34 271.52 254.38
R 54.020 16.435 19.962 38.192 3.667
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The orthogonal test results show that under the fifteenth set of experimental conditions
(SDS:rhamnolipid = 8:2, pH = 5, salinity = 150 mmol/L, operating pressure = 3.5 bar, aniline
concentration = 1.5 mM), the aniline rejection reached the maximum of 78.22%, and the membrane
permeation flux was 239.28 L/(m2·h); under the fourth set of experimental conditions (SDS:rhamnolipid
= 2:8, pH = 9, salinity = 250 mmol/L, operating pressure = 3.5 bar, aniline concentration = 2 mM),
the maximum membrane permeation flux was 298.14 L/(m2·h), and the aniline rejection was 17.30%.
The range analysis results and the figures show that the factors affect the aniline rejection in the order
of B > A > D > E > C, and pH has the most significant influence on the aniline rejection efficiency, while
salinity has the smallest influence; the optimal test condition for the aniline rejection is A4B1C2D4E3.
The factors affect the membrane permeation flux in the order of A > D > C > B > E, and the mixing ratio
has the most significant influence on the membrane flux, while the influence of the aniline concentration
is the smallest; the optimal test condition for the membrane flux is A1B4C4D4E4. A comprehensive
analysis shows that the influences of factor A on the aniline rejection and the membrane permeation
flux are second-most and most important, so A4 and A1 are used. In the case of A4, the aniline rejection
increases by 87.6% compared with the case of A1, while the membrane flux decreases by 19.3%, so the
A factor is set to A4. Similarly, the B factor is set to B1, the C factor is set to C4, the D factor is set
to D4, and the E factor is set to E3. Therefore, the optimal test condition for the aniline rejection and
the membrane permeation flux is A4B1C4D4E3. The optimal test conditions (SDS:rhamnolipid = 8:2,
pH = 5, salinity = 250 mmol/L, operating pressure = 3.5 bar, aniline concentration = 1.5 mM) were
studied by a verification test, which showed an aniline rejection of 78.36% and a membrane permeation
flux of 245.36 L/(m2·h).

4. Conclusions

The analysis of the test results shows that the studied factors affect the aniline rejection in the
order of pH > mixing ratio > operating pressure > aniline concentration > salinity, and that the factors
affect the membrane permeation flux in the order of mixing ratio > operating pressure > salinity > pH
> aniline concentration. A comprehensive analysis shows that the optimal test plan was A4B1C4D4E3.
Under the optimal test conditions (i.e., SDS:rhamnolipid = 8:2, pH = 5, salinity = 250 mmol/L, operating
pressure = 3.5 bar, aniline concentration = 1.5 mM), the verification test results showed an aniline
rejection of 78.36% and a membrane permeation flux of 245.36 L/(m2·h).
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