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Abstract: The pollutant residence time and transport trajectory in Tieshangang Bay are considered
to have significant effects on deteriorating water quality. To understand the pollutant transport
behaviors in Tieshangang Bay, we developed a combination model (MIKE 21 FM) of the
hydrodynamic module and particle tracking module. Simulation results suggest that the water
velocities in the west and east troughs (near the entrance of the bay) are distinctly higher than any
other areas. Meanwhile, small semi-enclosed bays adjacent to the shoreline could affect local water
flow patterns, thereby causing gyres within them. The residence time of pollutants in Tieshangang
Bay is significantly affected by seasonal variations (i.e., the residence time of pollutants in Tieshangang
Bay in winter is less than that in summer). The results of transport trajectory simulations reveal that
the bay head is a slow flushing zone, while the entrance of the bay (west trough) can be identified as
a fast flushing zone.
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1. Introduction

Bays are an important part of the coastal ocean. In recent years, the development of many bays
(e.g., Tieshangang Bay, located in Southern China) and their coastal areas has been intensified and
expanded, due to their unique hydrogeological environment, convenient sea transportation conditions,
and rich marine resources. However, increasingly frequent human activities have caused serious
disturbance and pressure in and on bays and coastal areas [1], resulting in eutrophication of water
bodies, declining biodiversity, the frequent occurrence of toxic and harmful red tides, etc. Although the
coastal marine water body has a certain self-purification capacity, it only accounts for about 5h of the
world’s marine water bodies, while it has to accommodate 80% of the global organic mass and 75–90%
of suspended river sediment, as well as pollutants [2]. Moreover, most of the bays have semi-enclosed
geomorphic features. The depth and width of the waters are gradually reduced in the inland direction.
The self-purification capacity of the water body is related to its topographic features, tides, waves,
and currents, etc.

Meanwhile, the exchange of the water body in bays is an important hydrodynamic process in
the ocean circulation. Pollutants in the bay are mixed with surrounding water bodies via physical
processes such as convective transport and dilution diffusion [2]. In the process of exchange with
external water, pollutant concentration in the bay gradually decreases, resulting in improved water
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quality. The progress and extent of the whole convection-diffusion, as well as the mixing-exchange
process, are closely related to the self-purification capacity, environmental capacity, nutrient transport,
and ecological environment, etc. Therefore, water exchange has been increasingly investigated in
estuarine and coastal water quality studies in recent years [3–7]. As a concept related to water
exchange, transport time scales such as water age, flushing time, residence time, and transient time are
often used as parameters for representing the time scale of the physical transport processes [5,8–12].
These time scales can describe how some water quality parameters (e.g., eutrophication, red tides,
and chlorophyll-a concentration, etc.) change with different conditions [12]. Water exchange in a bay
is the result of the complex interplay of the abovementioned factors (e.g., geographic features, waves,
tides, winds, and currents), and therefore, knowledge of the transport time scale has great significance
in protecting the marine environment and maintaining the ecological balance of the coastal seas.

Tieshangang Bay is a part of the Beibu Gulf, located in the Southern China. In recent years,
with the development and utilization of the marine resources in the Beibu Gulf, water pollution in the
Beibu Gulf is becoming more and more serious. According to the industrial pollution discharge data
from the Guangxi Statistical Yearbook in 2009, the total discharge of pollutants increased by 1–1.5 times
than that of 2003 [13]. It was reported that a number of abnormal seawater quality accidents occurred
from January to September 2013. The monitoring results showed that the main reasons for the obvious
deterioration of seawater quality were due to the high level of inorganic nitrogen, active acid salt,
and chemical oxygen demand. Moreover, these areas are mainly distributed in estuaries and the sewage
areas of cities. Additionally, a number of marine activities, such as ship traffic, accident pollution,
and oil spills, also bring pollution to the ocean. The water exchange rate is slow in Tieshangang Bay
because of the synthetic effect of the semi-enclosed topography constraints, weak local sea currents,
and diurnal tides [2,14,15]. Therefore, it is difficult for pollutants to spread out of the bay. The long-term
accumulation has resulted in local environmental pollution in Tieshangang Bay. The present situation
shows that seawater eutrophication becomes more and more serious—especially in estuary and harbor
areas. Hence, it is very important to know the exchange characteristics between the bay water body
and the external water body. However, previous studies have mainly focused on the effect of water
self-purification capacity on the ecological environment from the changes of the biological distribution
aspect [16]. A few researchers have tried to simulate the water exchange characteristics by using
particle-tracking techniques [14] or dye-tracer techniques [15]. However, no references or estimates
that consider the effect of seasonal behavior on water exchange in Tieshangang Bay are available in the
literature. Therefore, the investigation of the seasonal transport time scale in Tieshangang Bay adds to
the novelty of the current study.

In this context, detailed transport time scales of Tieshangang Bay were explored using the
hydrodynamic module of MIKE 21 FM (flow model) linked to a particle tracking module with
a long-time simulation (2004–2015). The main objectives were to: (1) investigate the influence of
the bay’s hydrodynamics on the pollutant transport pathways within the bay; (2) explore the effect of
seasonal behaviors on the residence time in Tieshangang Bay; and (3) examine the transport trajectory
of each sub-region, which can facilitate identification of the fast and slow flushing zones, as well
as exploration of the accident pollution transport pathways. The current study represents a first
attempt to investigate the comprehensive pollutant transport behavior in Tieshangang Bay with
seasonal variations by a combination model (MIKE 21 FM) of the hydrodynamic module and particle
tracking module with a long time simulation (2004–2015). This study provides useful information for
maintaining the ecological balance of Tieshangang Bay and similar semi-enclosed bays.

2. Materials and Methods

2.1. Study Area

Tieshangang Bay is located at the northeast of Beibu Gulf of China, which lies between
21◦28′–21◦45′ N, 109◦26′–109◦45′ E. The mouth of the bay is about 32 km wide; the coastline of
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the entire bay is approximately 170 km; and the area is nearly 340 km2 [17]. The topography of the bay
is high in the north and low in the south. It is inclined from land to sea, with a gentle slope (0.5–2.0h)
and a depth of 0–20 m. The submarine slope and intertidal shoal with a shallow water depth less than
2.5 m are 280 km2, accounting for 82% of the total area [18]. The tidal regime is irregularly diurnal,
with the mean and maximum tidal ranges of 2.89 m and 6.25 m, respectively [17,19]. The water
exchange is mainly affected by the tide because no large river flows to the bay [17]; i.e., the inflow
discharge of Baisha River and Gongguan River is only 2 m3/s and 16 m3/s, respectively [14]. Hence,
we did not consider the influence of the river on the residence time in the bay during the simulation.

2.2. Method

In this study, the hydrodynamic module—in conjunction with the particle tracking module of Mike
21 FM, which is a 2D depth-averaged model—was employed to investigate the transport behaviors
in Tieshangang Bay. We used the hydrodynamic module to obtain flow features of Tieshangang Bay.
The particle tracking module was applied to track the spatial distributions of water particles, and thus
to provide the transport trajectory using the Lagrangian random-walk technique [20,21]. It can also
examine the water residence and travel time of Tieshangang Bay. The MIKE 21 model has already
been successfully applied in exploring different water bodies, such as Poyang Lake (China) [21],
Vistula Lagoon (Poland and Russia) [22], the Gulf of Kachchh (India) [23], Alberni Inlet (Canada) [24],
and Chilika Lagoon (India) [25]. Hence, we only give a brief description of the model here.

2.2.1. Hydrodynamic Module

The bathymetry of the bay was based on surveyed data updated in 2008 (Figure 1b).
We constructed the seabed using triangular unstructured grids based on the measured topographic
information. The mesh resolution of the open boundary of the open sea is 300 m, and a higher mesh
resolution (20 m) was applied to bay head (Figure 1c). Therefore, a total of 25,442 nodes and 48,926
triangular elements were included in the grid. The minimum and maximum element sizes were 20
and 300 m, respectively. The Manning’s roughness of Tieshangang Bay was set to 32 m1/3/s [14,15,26].
The tidal boundary condition was provided by the tidal prediction based on the Global Tide Model
data in the Mike 21 Toolbox [27], and the inflow discharge of the rivers were not considered in this
model, as discussed in Section 2.1.
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Figure 1. (a) Location of Tieshangang Bay; (b) Topographic map of Tieshangang Bay; and (c) the 
unstructured grid for the MIKE 21 FM and a close-up of the variable mesh resolution. 

The performance of MIKE 21 FM was validated against (1) the tide level records at Shatian and 
Shitoubu, which is obtained from the local tide gauge stations; and (2) the magnitude and direction 
of velocity records at three temporary measurement points in Tieshangang Bay (Figure 1b). The 
velocities were obtained from the previous study on this area [15], which were measured in 1-m cell 
size and 1 Hz data rate with a sampling time of 30 min using Aquadopp Profiler (Nortek Co., Ltd., 
Bærum, Norway). The results show that the model appears to be in agreement with the tidal level 
and direction for spring and neap tides (Figures 2–4). However, the magnitude of the velocities might 
be under- or over-estimated in this model (Figures 2 and 3), partly because of the complex bathymetry 
and meteorological condition. 

Figure 2. Comparisons of measured and calculated velocity and direction of spring tides. 
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Figure 1. (a) Location of Tieshangang Bay; (b) Topographic map of Tieshangang Bay; and (c) the
unstructured grid for the MIKE 21 FM and a close-up of the variable mesh resolution.

The performance of MIKE 21 FM was validated against (1) the tide level records at Shatian and
Shitoubu, which is obtained from the local tide gauge stations; and (2) the magnitude and direction of
velocity records at three temporary measurement points in Tieshangang Bay (Figure 1b). The velocities
were obtained from the previous study on this area [15], which were measured in 1-m cell size and
1 Hz data rate with a sampling time of 30 min using Aquadopp Profiler (Nortek Co., Ltd., Bærum,
Norway). The results show that the model appears to be in agreement with the tidal level and direction
for spring and neap tides (Figures 2–4). However, the magnitude of the velocities might be under-
or over-estimated in this model (Figures 2 and 3), partly because of the complex bathymetry and
meteorological condition.
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Figure 2. Comparisons of measured and calculated velocity and direction of spring tides.
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Figure 3. Comparisons of measured and calculated velocity and direction of neap tides.
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Figure 4. Comparisons of measured and calculated water levels of (a) spring tides and (b) neap tides.

2.2.2. Particle Tracking Module

The Lagrangian particle-tracking technique has been widely used to estimate the transport time
scale in a variety of water bodies [25,28,29]. In this study, the particle-tracing module—as driven by
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the hydrodynamic module of MIKE 21 FM—was applied to estimate the water residence time and the
sub-zone transport trajectory of Tieshangang Bay. The mean residence time of the bay is estimated by
the e-folding time [30], which is the time when the average of the conservative particles in the bay is
decreased to 1/e (i.e., 33%, e-folding) of the initial particle numbers [31]. In an ideal model, one would
assign one particle to each grid cell in the particle tracking module. However, it is impossible to apply
this to the current study because of the large horizontal scale of Tieshangang Bay. Hence, a particle
number sensitivity analysis was carried out first, considering five different numbers of particles (see in
Table 1).

Figure 5 shows the sensitivity analysis results. There is a significant discrepancy in the calculation
of the percentage of particles remaining in the bay. Case 1 and Case 2 exhibit an overestimation of
the residence time due to the insufficiently-released particles. In the view of Case 3, there is a small
discrepancy for the first 10-day simulation compared to Case 4 and Case 5. However, no relevant
differences are observed between the percentages of particles remaining in the bay calculated using
1830 particles and 4430 particles. A maximum error smaller than 5% was found between the results
obtained from Case 4 and Case 5. Based on previous results, 1830 particles with a resolution of
500 m × 500 m were selected for the present study.
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Table 1. Different resolution of released particles.

Case Numbers Resolution
30 Days 60 Days 90 Days

Percentage of Particles

1 283 2000 m × 1000 m 39.2% 36.4% 32.9%
2 534 2000 m × 500 m 38.0% 33.0% 29.0%
3 934 1000 m × 500 m 32.9% 29.6% 27.5%
4 1830 500 m × 500 m 32.6% 28.6% 26.7%
5 4430 500 m × 200 m 31.8% 27.9% 26.0%

We performed separate simulations for the water residence time of Tieshangang Bay because it is
located in the East Asian monsoon region, which shows notable seasonal dynamics (i.e., southwest
winds in summer and northeast winds in winter) [2]. The releases were assumed to take place
in summer and winter with the meteorological data obtained from QUICKSCAT [32], respectively.
The particle tracking module of Mike 21 FM was also used to calculate the transport trajectory in
Tieshangang Bay. Three sub-zones (i.e., the bay head; Shitoubu, middle of the bay; and the west trough,
the entrance of the bay; Figure 1b) were chosen to distinguish the fast and slow flushing zones of
the bay.
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The settling velocity (Sv) and dispersion coefficients (DH and DV) significantly affected the
transport in the particle tracking module of Mike 21 FM [20]. The parameters in Table 2 were
determined based on the previous studies in Tieshangang Bay [14,15] and other similar areas [20,26].

Table 2. Model parameters used for scenario simulations.

Parameter Description Values and Reference

M Manning number 32 m1/3/s [14,15]
Ev Smagorinsky factor for eddy viscosity 0.28 [20,21,26]
Sv Settling velocity for particles No settling [26]
DV Vertical dispersion No dispersion [26]
DH Horizontal dispersion Scaled eddy viscosity formulation [26]

3. Results

3.1. Residence Time for Tieshangang Bay

Flow field characteristics have significant influences on the distribution and transport of pollutants
within Tieshangang Bay. Hence, the general flow behaviors in the bay which are generated by the
hydrodynamic module should be analyzed first. Figure 6 shows the spatial distribution of the water
velocity and depth of flood and ebb currents in Tieshangang Bay (e.g., 1 June 2008). A distinct difference
in the magnitude of 0.3–0.4 m/s was observed between the bay’s main flow channels (i.e., the water
depth ranged from 8 to 20 m; Figure 6b,d) and the shallow water areas (i.e., shallow water depth
roughly <8 m; Figure 6b,d). The water velocities in the west and east troughs (Figure 1b) near the
entrance of the bay (up to 0.7 m/s and 0.4 m/s for flood and ebb currents, respectively) were distinctly
higher than any other areas (about 0.3 m/s and 0.1 m/s for ebb and flood currents, respectively) of
Tieshangang Bay (Figure 6a,c), suggesting the strong effect of the tide on these places. The difference
is partly because of the complex topography of the bay. The tide flows into or out of the bay with
considerably narrower cross-sections in the main channel, which may increase the water velocity
here (Figure 6b). In general, the velocity of the ebb current is larger than that of the flood current
(Figure 6a,c).

Figure 7 shows that the streamline of the flood and ebb currents of spring (e.g., 4 June 2008) and
neap tides (e.g., 10 June 2008) respectively, during June. In general, the large-scale tidal flow patterns
generated by the hydrodynamic module show distinct south–northward and north–southward flows
for flood and ebb currents, respectively, in the entire bay (see the streamlines in Figure 7). During the
flood period, the tidal currents flow into the bay along the west and east troughs, and the mainstream
of the tidal currents is consistent with the direction of the channel. The direction of the tidal currents
in the bay head switches from northwest to northeast because of the constraint of the topography.
The general trend of the ebb-flow distribution is opposite to that of the flood current. The tidal
currents in the bay head flow southward, and the water in the bay flows out along the channel in
the south and southwest directions. Additionally, the local water flow patterns in the bay could be
influenced by the small semi-enclosed bays adjacent to the shoreline, generally causing gyres in them
(i.e., the streamlines are closed; Figure 7a,b,f). The tidal flow patterns indicate that the inflows from
the outside sea (or outflow from the bay) pass through the shallow water areas and further flow into
the bay’s main flow channels. Therefore, the tidal flow velocities along the bay’s main channels are
obviously higher than those of the water velocities in the shallow water areas (Figure 7).
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Tieshangang Bay in summer and winter seasons, respectively. The initial percentage of conservative 
particles was set to 100% (i.e., ε = N (t)/N (0) = 1) [21], and the percentage of the particles remaining 
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Figure 8 illustrates the results of residence time for the bay in summer for 12-year simulations 
(2004–2015). The water residence time has a large change between years. For example, the mean 
residence time (i.e., 33% of the initial particles remaining in the bay) arranges from 14.8 days to over 
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Figure 7. Map of the streamline of spring and neap tides: (a–d) the tidal process of spring tide
(e.g., 4 June 2008); and (e–h) the tidal process of neap tides (e.g., 10 June 2008).

The particle tracking module was applied to simulate the residence time in Tieshangang
Bay under two kinds of hydrodynamic conditions; i.e., tidal currents with summer monsoon
(south wind, 1 May–31 July, 2004–2015) and tidal currents with winter monsoon (northeast wind,
1 November–31 January, 2004–2015). Tieshangang Bay was evenly distributed with 1830 virtual
particles, and the distribution of water particles in the 92 days was simulated in each season. The time
step size was calculated as 1800 s. Figures 8 and 9 illustrate the simulation results of the residence time
for Tieshangang Bay in summer and winter seasons, respectively. The initial percentage of conservative
particles was set to 100% (i.e., ε = N (t)/N (0) = 1) [21], and the percentage of the particles remaining in
the bay (i.e., ε = N (t)/N (0)) was recorded, as shown in Figures 8 and 9.

Figure 8 illustrates the results of residence time for the bay in summer for 12-year simulations
(2004–2015). The water residence time has a large change between years. For example, the mean
residence time (i.e., 33% of the initial particles remaining in the bay) arranges from 14.8 days to over
92 days among the simulation years. However, the decreasing trend of the particles is similar for the
12-year simulations, which can be divided into fast and slow decrease phases. Take 2008 as an example:
the particles decrease sharply to 50% of the initial particles in the first 10 days (i.e., fast decrease phase).
After that, the slope of the time-dependent particle curve becomes flat (i.e., slow decrease phase).
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Figure 9 illustrates the results of residence time for the bay in winter for 12-year simulations
(2004–2015). The water residence time is also different between years; e.g., the mean residence time
varies from 5.9 days to 90 days, except for 2013 (over 92 days). The decreasing trend can also be
divided into fast and slow decrease phases. Taking 2008 as an example, the reduction rate of particles
was, however, faster than that in summer. It only takes 1.3 days to reduce the particles by 50% in the
bay, which is about 8.7 days less than that in summer. The rapid reduction phase continued for about
8.5 days, and only 34.1% of the initial particles remained in the bay. After that, it only decreased by
7.5% of the initial particles in the next 83.3-day simulation.

The residence time when 50% of the initial particles remained in the bay in summer and winter is
shown in Figure 10. Comparing simulations of summer and winter, one can note that the residence
time (50% particles remaining in the bay) has a large change (5.9 days to 90 days) in summer, while
it shows a relatively shorter time scale (less than 10 days for all simulated years) in winter. Table 3
shows the mean residence time in summer and winter from 2004 to 2015, respectively. In summer,
there were five years (i.e., 2006, 2009, and 2012–2014) where the mean residence time was over 92 days.
The mean residence time of the other seven years ranged between 14.9 days for 2004 and 70 days for
2010. In winter, however, only one year’s (i.e., 2013) mean residence time was over 92 days. The mean
residence time of the other eleven years ranged from 8.6 to 90 days. Based on the above analysis,
the residence time in winter is less than that in summer, indicating that the water exchange in winter is
more active than that in summer.

Table 3. The mean residence time (i.e., 33% of the initial particles remaining in the bay) of Tieshangang
Bay in summer and winter (2004–2015).

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Summer 14.8 65.8 >92 16.8 49.8 >92 70 30.6 >92 >92 >92 56.8
Winter 8.6 90 57.6 24 16.3 26.8 90 34.3 20 >92 89.8 8.8
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3.2. Transport Trajectories for Different Released Sources

In order to identify the fast and slow flushing zones in the bay, the tracer particle release source
was used to simulate the water transport in three selected sub-zones (i.e., the bay head; Shitoubu,
middle of the bay; and the west trough, the entrance of the bay; Figure 11a,e,i) in Tieshangang Bay.
A one-month simulation (i.e., from 1 June to 1 July 2008) was conducted, and the particle positions
were recorded in each hour. Figure 11 shows the spatial distribution of particles released from each
selected sub-zone after 0, 15, and 30 days in the bay.

The particles released in the bay head area were driven to the northeast of the bay by the flood
current and to southwest of the bay by the ebb current. However, the particles did not move out
of the bay (Figure 11d) because of the short time of the ebb current. Therefore, all of the released
particles remained in the bay head during the simulation, which is likely to cause the accumulation of
pollutants. Particles released in the Shitoubu area—located in the middle of Tieshangang Bay—moved
back and forth with the tide currents along the main channel in the middle of the bay. Due to the
dispersion of shallow water, a part of the particles moved into the small bay (e.g., Dandouhai) under
the force of the tidal current during the simulation. The transport pathways cover almost the entire
inner bay after 30 days simulation (Figure 11h). The particles released in the west trough of the
channel near the shelf—located in the center of the entrance to Tieshangang Bay—move with the
prevailing flow of Tieshangang Bay. After 15 days, 70% of the initial particles were flushed out of
the bay (Figure 11j), and almost 80% of the released particles moved to the outside sea after 30 days
simulation (Figure 11k). Most of the flushed particles finished their trajectory near the south and
southeast bay (Figure 11l), which coincides with the tidal current patterns (from west to east) during
the high water slack (Figure 7b) or the low water slack (Figure 7g). The transport pathways covered
almost the entire Tieshangang Bay, except for the bay head.



Water 2017, 9, 321 12 of 15

Water 2017, 9, 321 11 of 15 

 

 
Figure 10. The residence time when 50% of the initial particles remained in Tieshangang Bay in 
summer and winter (2004–2015). 

3.2. Transport Trajectories for Different Released Sources 

In order to identify the fast and slow flushing zones in the bay, the tracer particle release source 
was used to simulate the water transport in three selected sub-zones (i.e., the bay head; Shitoubu, 
middle of the bay; and the west trough, the entrance of the bay; Figure 11a,e,i) in Tieshangang Bay. 
A one-month simulation (i.e., from 1 June to 1 July 2008) was conducted, and the particle positions 
were recorded in each hour. Figure 11 shows the spatial distribution of particles released from each 
selected sub-zone after 0, 15, and 30 days in the bay. 

The particles released in the bay head area were driven to the northeast of the bay by the flood 
current and to southwest of the bay by the ebb current. However, the particles did not move out of 
the bay (Figure 11d) because of the short time of the ebb current. Therefore, all of the released particles 
remained in the bay head during the simulation, which is likely to cause the accumulation of 
pollutants. Particles released in the Shitoubu area—located in the middle of Tieshangang Bay—
moved back and forth with the tide currents along the main channel in the middle of the bay. Due to 
the dispersion of shallow water, a part of the particles moved into the small bay (e.g., Dandouhai) 
under the force of the tidal current during the simulation. The transport pathways cover almost the 
entire inner bay after 30 days simulation (Figure 11h). The particles released in the west trough of the 
channel near the shelf—located in the center of the entrance to Tieshangang Bay—move with the 
prevailing flow of Tieshangang Bay. After 15 days, 70% of the initial particles were flushed out of the 
bay (Figure 11j), and almost 80% of the released particles moved to the outside sea after 30 days 
simulation (Figure 11k). Most of the flushed particles finished their trajectory near the south and 
southeast bay (Figure 11l), which coincides with the tidal current patterns (from west to east) during 
the high water slack (Figure 7b) or the low water slack (Figure 7g). The transport pathways covered 
almost the entire Tieshangang Bay, except for the bay head. 

 

t= 0 day t= 15 days t= 30 days 

Water 2017, 9, 321 12 of 15 

 

(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

Figure 11. Spatial distribution of particle trajectories (colored dots) at selected sub-zones during 1 
June–1 July 2008. (a–d) represent the particles released at the bay head; (e–h) represent the releases at 
Shitoubu, the middle of the bay; and (i–l) represent the releases at west trough located at the entrance 
of the bay. 

4. Discussion 

To understand the mechanism of the transport behavior in a semi-enclosed bay, we developed 
a combination model of the hydrodynamic module and particle tracking module to simulate the 
residence time and transport trajectory in Tieshangang Bay with seasonal variations. The current 
work represents a first attempt to use a combination model to offer comprehensive insights into the 
transport behaviors with seasonal variability of Tieshangang Bay relative to previous studies [14–16]. 

The particle distributions in the bay after 92-day simulations of summer and winter are shown 
in Figure 12 (taking 2008 as an example). In summer, the particles are more likely to accumulate in 
small semi-enclosed bays (e.g., Dandouhai, Figure 12a). This can be explained by the fact that the 
velocities of the ebb current are larger than that of the flood current (Figure 7a,c), leading to the 
particles moving southward. Moreover, the gyres are more likely generated in small bays (Figure 
7a,f), leading to the southward particles gathering there. In winter, a large number of the remaining 
particles stay in the bay head and the small bays (Figure 12b). This is partly because the particles are 
forced to move to the bay head during the flood current, and there is not enough time to bring 
particles out of the bay head with the ebb current. The gyres also promote the particles accumulating 
in small bays. The results of winter water transport show different characteristics compared to the 
summer based on the above analysis. 

t= 0 day t= 15 days t= 30 days 

t= 0 day t= 15 days t= 30 days 

Figure 11. Spatial distribution of particle trajectories (colored dots) at selected sub-zones during
1 June–1 July 2008. (a–d) represent the particles released at the bay head; (e–h) represent the releases at
Shitoubu, the middle of the bay; and (i–l) represent the releases at west trough located at the entrance
of the bay.

4. Discussion

To understand the mechanism of the transport behavior in a semi-enclosed bay, we developed
a combination model of the hydrodynamic module and particle tracking module to simulate the
residence time and transport trajectory in Tieshangang Bay with seasonal variations. The current work
represents a first attempt to use a combination model to offer comprehensive insights into the transport
behaviors with seasonal variability of Tieshangang Bay relative to previous studies [14–16].

The particle distributions in the bay after 92-day simulations of summer and winter are shown in
Figure 12 (taking 2008 as an example). In summer, the particles are more likely to accumulate in small
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semi-enclosed bays (e.g., Dandouhai, Figure 12a). This can be explained by the fact that the velocities
of the ebb current are larger than that of the flood current (Figure 7a,c), leading to the particles moving
southward. Moreover, the gyres are more likely generated in small bays (Figure 7a,f), leading to the
southward particles gathering there. In winter, a large number of the remaining particles stay in the bay
head and the small bays (Figure 12b). This is partly because the particles are forced to move to the bay
head during the flood current, and there is not enough time to bring particles out of the bay head with
the ebb current. The gyres also promote the particles accumulating in small bays. The results of winter
water transport show different characteristics compared to the summer based on the above analysis.Water 2017, 9, 321 13 of 15 
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The transport trajectories simulation shows that the particles released from the bay head remain in
the bay head, indicating that this area is a slow flushing zone, which inhibits the diffusion of pollutants.
Although the particles released from Shitoubu also remain in the bay after a 30-day simulation,
the transport pathway covers the entire inner bay, which is beneficial for pollutants diffusion in this
area (Figure 11h). When the particles are released from the west trough, the tidal currents are favorable
to push the particles travelling away from the released area and towards the north side of the bay
with the flood current, and then move to the south side of the bay with the ebb currents. Finally,
some particles are flushed out of the bay during the high or low water slack because of the west–east
current patterns (Figure 7b,g). Therefore, the entrance area of the bay can be identified as the fast
flushing zone in which pollutants would quickly travel to the outside sea.

This study developed a very practical combined model approach to estimate the residence time
of Tieshangang Bay. With some caution, it could also be applied to solve the same problem for similar
tide-dominant semi-enclosed bays.

(1) Some factors (e.g., degradation values, vertical dispersion, and settling velocity, etc.) that affect
pollutant transport behavior were not incorporated in the current model, since it is the first time
that a combined model has been employed to quantify the mean residence time of Tieshangang
Bay based on long-time simulation (2004–2015). Hence, future study may be necessary to consider
the abovementioned factors for more accurate estimation of the pollutant transport behavior.

(2) The assumption of the 2D depth-averaged flow has the ability to represent the flow field of
Tieshangang Bay in the current study. However, the water depth of the bay may reach up to 20 m
in the main stream of the bay. Hence, it is reasonable to expect the pollutant transport behavior
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may change with different water depths. Therefore, the current study could be extended to a 3D
model approach to investigate the water exchange of a similar bay.

5. Conclusions

In order to understand the pollutant transport behaviors in Tieshangang Bay, we integrated
a hydrodynamic module (using MIKE 21 FM) and a particle tracking module to simulate the physical
processes of pollutants. The mean residence time of pollutants in Tieshangang Bay was estimated
in summer and winter, respectively. The fast and slow flushing zones of Tieshangang Bay were also
identified by tracking the transport trajectory of particles released in selected sub-zones. The following
conclusions can be drawn from the study:

The hydrodynamic module simulation results suggest that the water velocities in the west and
east troughs (near the entrance of the bay) are distinctly higher than any other areas, which is partly
because of the topography of the bay. Meanwhile, small semi-enclosed bays adjacent to the shoreline
could affect local water flow patterns, thereby causing gyres within them.

The particle tracking module results revealed that water exchange in Tieshangang Bay is
significantly affected by seasonal behaviors. The mean residence time of pollutants in Tieshangang
Bay in winter is less than that in summer. Hence, the water exchange in winter is better than that in
summer. Based on the transport trajectories analysis, the bay head could be identified as the slow
flushing zone, while the entrance area of the bay can be identified as the fast flushing zone.
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