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Abstract: Climate change in Northwest China could lead to the change of the hydrological cycle 
and water resources. This paper assessed the influence of climate change on runoff in the Manas 
River basin as follows. First, the temporal trends and abrupt change points of runoff, precipitation, 
and mean, lowest and highest temperature in yearly scale during the period of 1961–2015 were 
analyzed using the Mann-Kendall (MK) test. Then the correlation between runoff and climatic 
variables was characterized in a monthly, seasonal and yearly scale using the partial correlation 
method. Furthermore, three global climate models (GCMs) from Coupled Model Inter-comparison 
Project Phase 5 (CMIP5) were bias-corrected using Equidistant Cumulative Distribution Functions 
(EDCDF) method to reveal the future climate change during the period from 2021 to 2060 
compared with the baseline period of 1961–2000. The influence of climate change on runoff was 
studied by simulating the runoff with the GCMs using a modified TOPMODEL considering the 
future snowmelt during the period from 2021 to 2060. The results showed that the runoff, 
precipitation, and mean, lowest and highest temperature all presented an increasing trend in yearly 
scale during the period of 1961–2015, and their abrupt change points were at a similar time; the 
runoff series was more strongly related to temperature than to precipitation in the spring, autumn 
and yearly scales, and the opposite was true in winter. All GCMs projected precipitation and 
temperature, and the runoff simulated with these GCMs were predicted to increase in the period 
from 2021 to 2060 compared with the baseline period of 1961–2000. These findings provide 
valuable information for assessing the influence of climate change on water resources in the Manas 
River basin, and references for water management in such regions. 

Keywords: runoff simulation; TOPMODEL; climate change; representative concentration pathway 
(RCP) scenarios; Manas River basin 

 

1. Introduction 

The global changes in climate, which are characterized by increased temperature and 
precipitation variations, have a profound effect on integrated Earth systems, especially hydrology 
and water resources [1]. The climatic elements, such as total precipitation, precipitation intensity, 
temperature, and evapotranspiration, affect every part of hydrology and water resources, including 
soil water, surface water, and ground water, by changing the hydrological cycle in a watershed and 
at a regional scale. As a dominant element of the whole water resources system, the variability of 
runoff has complicated characteristics of nonlinear, mutagenicity, randomness, and so on. The 



Water 2017, 9, 258  2 of 19 

 

influence of climate change on runoff is especially prominent [2–4]. The Coupled Model 
Inter-comparison Project Phase 5 (CMIP5) has been widely used in many studies for the purpose of 
hydrological behavior estimation [5–7]. The study of the historical and future hydrological regime 
changing process is significant for the sustainable development and utilization of water resources. 

Plenty of studies have been carried out on the quantitative analysis of the influence of climate 
change on the hydrological processes. Jones, et al. [8] chose two lumped parameter rainfall-runoff 
models and an empirical model to evaluate the sensitivity of the annual runoff to precipitation and 
potential evaporation of 22 basins in Australia. The results showed that a change of precipitation and 
potential evapotranspiration by 1% would cause a change of runoff by 2.1%–2.5% and 0.5%–1.0%, 
respectively. Legesse, et al. [9] analyzed, quantitatively, the sensitivity of runoff to temperature and 
precipitation with a modified rainfall runoff modeling system of the US Geological Survey in the 
Meki River in Ethiopia. It was revealed in the result that the runoff would increase by 80% or 
decrease by 60%, respectively, if the precipitation increased or decreased by 20%, and the increase in 
temperature would cause the increase of evapotranspiration by 6% and the decrease of runoff by 
13%. Dan, et al. [10] studied the response of runoff, evapotranspiration, and soil moisture to the 
change of average temperature and precipitation, and the study revealed that the decrement of 
runoff caused by the temperature rise decreased gradually, and the response of the hydrological 
cycle to the increasing amount by 15%–30% of precipitation is more obvious than the 2–5 °C increase 
in temperature. Those studies set the degrees of temperature rise and the increasing or decreasing 
rate of precipitation, or the different combinations of those settings. This has the advantage of 
recognizing the climatic variables that influence the runoff. However, the process of climate change 
is not considered in those studies, and the temperature change is considered as a factor of variation 
in evapotranspiration which causes the change in runoff. This is not a suitable consideration for a 
snowmelt-rainfall runoff basin. Kabiri, et al. [11] studied the influence of climate change on runoff 
using an HEC-HMS model, a software to simulate the rainfall-runoff processes of watershed system, 
considering the downscaling of global climate models (GCM) and different carbon emissions in 
runoff simulations in Klang River basin. Although using the GCM as the model input, the 
uncertainty of the input data was not considered in this research. Lopez, et al. [12] studied the 
sensitivity difference between the response of runoff and sediment to climate change under three 
underlying surfaces; vegetation, urban, and mixed-type cover, within a regional framework. Wang, 
et al. [13] studied the response of runoff to climate change using a two-parameter hydrological 
model and analyzed the variations and correlation historical hydrological and climatic variables. It 
was revealed in the result that the runoff is more sensitive to the precipitation than to the 
temperature. Sun, et al. [14] analyzed the hydrological impact of climate change on water resources 
using a modified TOPMODEL, considering 16 GCMs. The results showed that evapotranspiration 
presented a descending trend, and the runoff presented an increasing trend during the period from 
summer (April–August) to early fall and a decreasing trend during the remaining period. Those 
studies have the advantage of demonstrating the process of climate change compared with the 
hypothetical scenarios, although the analysis results may not reveal the variation of climate change 
and runoff in the study area of this research. 

As a typical inland river in the arid region in Northwest China, the Manas River basin, which 
has snow storage and melting characteristics, is sensitive to climate change, and the seasonal 
variation of snowmelt runoff is caused by temperature increases [15–17]. The annual runoff showed 
an increasing trend and increased by about 10% in the last decades because of the increase of 
precipitation, glacial melt water, and temperature in Northwest China [18]. The runoff in 
Hongshanzui, Kensiwate, and Bajiahu revealed an obvious increasing trend and significant abrupt 
changes [17]. He and Guo [19] studied the influence of climate change on water resources in the 
Manas River basin using a monthly water balance model modified with snowmelt considering the 
hypothetical scenarios. It was revealed that the runoff decreased by 52.59% in summer, 1.77% in 
winter (December–February), and 46.87% in the annual average, as the temperature increased by 2 
°C and precipitation decreased by 20%. There is an important significance in further study of runoff 
variation and the relationship between runoff and climatic variables for water resources’ rational 
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allocation and utilization. Further study should be carried out on the quantitative analysis of the 
influence of climate change on runoff, and understanding the intercoupling of runoff and  
climate change. 

To the best of our knowledge, few studies have been carried out to analyze the relationship 
between runoff and climatic variables in a monthly, seasonal and yearly scale, and few runoff 
simulations were established to evaluate the influence of climate change on runoff with historical 
gridded meteorological data and GCMs on the upper area of the Manas River basin. The precision of 
the runoff simulation would be improved by considering the spatial variance of climatic variables. 
Therefore, the main research objectives of this paper are (1) to evaluate the historical temporal trends 
of runoff and climatic variables with the CN05.1 dataset, a daily precipitation and temperature 
dataset over China with the resolution of 0.25° latitude by 0.25° longitude which is generated by 
Wu and Gao [20], in the mountain area of the Manas River basin; (2) to characterize the correlation 
between hydrological and climatic variables in the monthly, seasonal and yearly scale; (3) to analyze 
the change of the further climatic variables using the dataset of GCMs in the Coupled Model 
Inter-comparison Project (CMIP5) [21]; and (4) to assess the influence of climate change on runoff 
based on the GCMs in CMIP5 using TOPMODEL considering the snowmelt in the mountain area. 
The simulation results could be useful to understand the impact of climatic variables on runoff, and 
serve as a reference for water management strategies in such regions. 

2. Study Area and Data Descriptions 

The source area of the Manas River basin is located at the northern foot of the Tianshan 
Mountains in Xinjiang Province, China, in the southwest of Junggar (shown in Figure 1). The 
vertical height decreases sharply from an elevation of 5000 m to about 500–800 m within the 
horizontal distance about 100 km from the source area to the piedmont plain. The streamflow 
mainly comes from snowmelt and precipitation. The streamflow generates in the mountain area, 
and dissipates in the plain area. The inter-annual variation of runoff is not obvious, while the 
intra-annual runoff clearly varies with the unequal temporal distribution of the monthly runoff. The 
runoff in the summer season, largely recharged by snowmelt and precipitation, accounts for about 
60%–70% of the annual runoff. During the winter season, the runoff mainly comes from 
groundwater recharge because it is in a frozen period, and the runoff amount is small, accounting 
for about 5%–7%. The variation of runoff in the Manas River basin is closely related to climatic 
variables such as precipitation, evaporation and effective accumulated temperature. The 
distribution of precipitation is uneven temporally and spatially. The precipitation decreases from 
south to north in a geographical distribution. In contrast, the evaporation increases from south to 
north. The seasonal precipitation distribution increases to 36% in spring (March–May), 31% in 
summer, 21% in autumn (September–November), and 12% in winter. The evaporation is 
concentrated in the summer, which accounts for about 87% of the annual total evaporation. The 
accumulated temperature above 0 °C, the so-called active accumulated temperature or accumulated 
temperature, is defined as the daily accumulated mean temperature which is above 0 °C during a 
certain time interval. It is the driving force that influences the glacier and snow melting directly [22]. 
There is still snowmelt runoff generated even if the mean daily temperature is lower than the 
snowmelt temperature, as long as the highest daily temperature is higher than the snowmelt 
temperature. The snowmelt may be underestimated if it is not considered in the runoff simulation 
[23]. The effective accumulated temperature could be used to describe the variation of the snowmelt 
and soil physical state. The surface water infiltration and runoff yield are effected by the soil’s 
physical state, especially by the soil freezing and thawing during the winter and spring season. The 
snowmelt mostly forms the runoff rather than infiltration due to the weak infiltration capacity 
during the soil freezing period. As long as the effective accumulated temperature increases, the 
freezing soil begins to thaw and infiltration capacity begins to recover. After the effective 
accumulated temperature reaches the critical value, part of the snowmelt infiltrates into the 
groundwater and reduces its contribution to the runoff [24]. 
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The variation of glacier and snow is influenced by climatic variables, with the precipitation 
being the driving factor of accumulation and the temperature being the driving factor of melting in 
the Manas River basin [25]. A significantly positive correlation is presented between the snow area 
and precipitation, and there is a negative correlation between the snow area and temperature. The 
runoff in spring is influenced by the snow in winter with the time lag effect. The intra-annual 
variation of snowmelt is obvious with significantly unequal distribution. The river basin is covered 
by a large area of snow during the winter season. With the rise of temperature since March, the snow 
begins to melt from the low elevation to the high elevation. The runoff is recharged more 
significantly by snowmelt as the effective accumulated temperature increases between April and 
May. The runoff is mainly recharged by snowmelt, which is significantly influenced by temperature 
rather than precipitation, during the spring season. Then the snowmelt begins to reduce  
until October [24]. 

Considering the representativeness, topography and geomorphology in the study area, the 
runoff data at Kensiwate hydrological station was collected and analyzed. As the representative 
station in the Manas River basin, the Kensiwate hydrological station was built in 1955, and is 
located at north latitude 43°58′, east longitude 85°57′, with a catchment area of 4637 km2. In this 
study, we used the CN05.1 dataset, which was based on the interpolation from over 2400 observing 
stations in China using an anomaly approach with a resolution of 0.25° latitude by 0.25° longitude. 
It included four variables: daily mean, minimum and maximum temperature, and daily 
precipitation. The weighted average value of precipitation and temperature in the CN05.1 dataset 
based on the study area in the grid was used as the meteorological data of the whole study area. 
The daily runoff, precipitation and temperature data during the period from 1961 to 2015 were 
collected for the preparation of this research (as shown in Figure 1). For the purpose of preparation 
and further study, the standard of the Chinese Bureau of Meteorology was used to translate the 
daily data into monthly, seasonal, and annual order. The monthly precipitation and temperature 
data of GCMs in CMIP5 under three emission scenarios, representative concentration pathway 
(RCP) 2.6, RCP4.5, and RCP8.5, were downloaded for the analysis of climate variables and impact 
of climate change on runoff [26]. Three GCMs, which were MPI-ESM-MR, FGOALS-g2, and 
HadGEM2-AO, developed by Germany, China, and South Korea/Britain, respectively, were 
selected based on the performance of the evaluation results in temperature and precipitation data  
in China [27–29]. 

 
Figure 1. Location of the Manas River basin. 
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3. Methodology 

3.1. Trend Test 

The Mann-Kendall (MK) trend test is a nonparametric statistical method to detect the 
long-term variation trend of meteorological and hydrological series [30–32]. It has the advantages of 
easy calculation, not having to obey a certain distribution and being disturbed by a few outliers. 
The standard normal statistic Z of a time series x1, x2, …, xn is defined as: 
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where t is the extent of any given tie. 
The null hypothesis (H0) means there is no change trend in the time series. It is rejected if |Z| > 

Z1−α/2, and accepted if |Z| ≤ Z1−α/2. A positive value of Z means an increasing trend, while  
the opposite means a decreasing trend. In this study, the critical value α = 0.05 was used as 
significance level. 

3.2. Abrupt Change Point Analysis 

The MK nonparametric test is used to detect the abrupt change points of meteorological and 
hydrological series. It performances better in availability and universality [33]. The normally 
distributed statistic Sk constructed with a time series x1, x2, …, xn is defined as: 
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where the mean and variance of the normally distributed statistic Sk can be given by: 
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Var( ) ( 1)(2 5) / 72kS k k k= − +  (7) 

The statistical variable Zk is defined as: 

( ) / var( )k k k kZ S S S= −  (8) 

The normalized variable statistic Zk value, Z1 and Z2, is calculated using the progressive and 
retrograde series. The critical value α = 0.05 was used as significance level in this research. The 
positive and negative Z1 value indicates an increase and decrease when the null hypothesis is 
rejected (if any of the Zk values are outside the confidence interval). If the intersection of Z1 and Z2 
occurs within the confidence interval, the abrupt change point is indicated. 
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3.3. Partial Correlation Method 

The partial correlation method, proposed by Iman and Helton [34], is used to reveal the 
correlation between runoff and climatic variables. The method can test the linear correlation 
between two variables without the impact of other variables [13]. During the partial correlation 
analysis, the Partial Correlation Coefficients (PCC) between the variable x and y by removing the 
impact of the variable z, or two variables z1 and z2, are defined respectively as: 
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where rxy is the Simple Correlation Coefficients (SCC) between x and y, and rxz and ryz are the SCC 
between x and z, and y and z respectively, and so on. The SCC of rxy is defined as: 

1

2 2

1 1

( )( )

( ) ( )

n

i i
i

xy n n

i i
i i

x x y y
r

x x y y

=

= =

− −
=

− −



 
 (11) 

where xi and yi are the time series variables, and x and y are the average value of xi and yi 
respectively, n is the length of variables xi and yi. The value of PCC, ranges from −1 to 1, and 
indicates a more significant positive correlation between two variables as it reaches 1, and a more 
significant negative correlation as it reaches −1. During the partial correlation test, the PCC between 
two variables is can be non-zero in ensemble even if it is non-zero in sample due to the sampling 
error. The null hypothesis (H0) assumes that the PCC between two variables is equal to zero in the 
ensemble. The t statistic of PCC hypothesis test is defined as: 

2

2
1

n k r
t

r

− − ⋅=
−
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where r is the PCC, n is the length of variables, k is the number of variables, − − 2 is the degree 
of freedom. In this study, the critical value α = 0.05 was used as significance level. H0 is rejected if t > 
t0.05(n−k−2), and accepted if t ≤ t0.05(n−k−2). 

3.4. Bias Correction Method 

Bias correction is a method to improve the accuracy of CMIP5 simulation data. For the purpose 
of Statistical inference in the future, the statistical relationship between observed and simulated 
historical data is established. As a bias correction method, the Equidistant Cumulative Distribution 
Functions (EDCDF) method is used in this study [35,36]. The Cumulative Distribution Function 
(CDF) of observed, simulated and predicted data is established to calculate to cumulative frequency 
of a certain value in the future. This method is based on an assumption that the difference between 
the observed and simulated value remain the same for a certain cumulative frequency in the future. 
This difference value is used to correct the predicted data. 

The formula for calculation is as follows: 
1 1

, [ ( )] [ ( )]m p adj m p o c m p m p m c m p m pX X F F X F F X− −
− − − − − − − −= + −  (13) 

where X is the variables, F is the Cumulative Distribution Function, −  is the historical observed 
value of the baseline period, while −  is the simulated value, −  is the predicated value of 
the future, and Xm−p,adj is the bias corrected value. 
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The normal distribution is used for the bias correction of temperature time series, while the 
mixed gamma distribution is used for precipitation because of the intermittent feature that there is 
no rain in some months. The CDF of precipitation is defined as: 

( ) (1 ) ( ) ( )P x k h x kF x= − +  (14) 

where k is the proportion of months with precipitation in total months, h(x) is equal to 0 if there is 
precipitation, and it is equal to 1 if there is no precipitation, F(x) is the CDF of the precipitation time 
series, and the mixed gamma distribution is used to fit the precipitation time series. 

3.5. Snowmelt Module 

The degree-day method was used to calculate the snowmelt in this research. The degree-day 
method is based on the linear relationship between the amount of glacial ablation and positive 
accumulated temperature [37,38]. The degree-day function is defined as: 

( )m air meltM C T T= −  (15) 

where M is the total ablation of glacier and snow, Cm is the degree-day factor, and Tair and Tmelt are 
the air temperature and critical temperature of snowmelt, respectively. 

The critical temperature of snowmelt is generally 0 °C. It could be adjusted in different actual 
situations to improve precision. The degree-day factor value varies over different melt periods 
because the snow properties change. For one thing, the degree-day factor is influenced by the 
surface of the glacier and snow cover. For another, the cover of forest vegetation increases 
atmospheric long-wave radiation, and reduces the short-wave radiation at the same time. In 
combination, the two aspects influence the snowmelt. For the purpose of improving the model 
precision, some influential factors, such as wind speed and radiation, are considered in the 
degree-day method. 

The degree-day method has the advantages of simple calculation and data collection. As the 
major variable of the method, temperature data is easy to collect and process into grid form. Based 
on those advantages, the degree-day method is widely applied in the sensitivity response of 
glaciers to climate change, snowmelt runoff simulation, and glacier dynamic models. As GCM data 
was downloaded in monthly form, the translated daily data obtained from the monthly data was 
used to calculate the snowmelt. The vertical change of the mountain region in the Manas River 
basin is obvious. The temperature rises as elevation decreases; thus, the elevation has a great 
influence on snowmelt. To simplify the problem, the mountain region was divided vertically, 
considering snow distribution and characteristics based on previous studies [39]. 

3.6. The TOPMODEL Description 

As a rainfall-runoff model, TOPMODEL, has been improved greatly and used widely since it 
was proposed by Beven and Krikby [40]. The distributed prediction of the hydrological response to 
rainfall is simulated using an index topographic similarity called the topographic index [41,42]. The 
runoff process predicted by TOPMODEL is divided into two parts: interflow and saturated 
overland flow. Only interflow occurred in the area where the soil moisture deficiency is greater 
than the rainfall, while both interflow and supersaturated runoff occur in the area where the soil 
moisture deficiency is less than rainfall or where the soil water content did not meet the saturated 
water content in the previous period. There is a basic assumption in TOPMODEL, which is that  
the area with the same value of topographic index and soil properties has a similar  
hydrological response. 

A function is defined by Beven and Kirkby based on the assumption of a rainwater supply rate 
with a uniform spatial distribution and a quasi-steady response. The local soil moisture deficiency 
is connected with the basin topographic index, and the function is defined as: 

ln[ / tan ]i ave t t aveS S m mα β λ= − +  (16) 
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1/ ln[ / tan ] 1/ave t t in nλ α β λ= =   (17) 

where Si is the local soil moisture deficiency, Save is the average basin soil moisture deficiency, λi is 
the topographic index, n is the number of the grids, m is the parameter of variation with soil 
hydraulic conductivity on soil depth, αt is the area of the hillslope per unit contour length that 
drains through a grid, and tanβt is the local surface slope. 

3.7. Calibration and Validation of the Model 

Two different criteria, the Nash-Sutcliffe Efficiency (NSE) coefficient and volume bias (VB), are 
used as measures to evaluate the model performances [43–45]. Those criteria are calculated as: 
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where Qobs and Qsim are observed and simulated runoff, respectively, Qobs is the average value of the 
observed runoff, and n is the length of the time series. The value of NSE, ranges from −∞ to 1, which 
indicates that the simulation is optimal when it is equal to 1. For the further evaluation of the model 
performance, VB is used to measure the total bias between the observed and simulated value. The 
value near 0 for the VB indicates that the simulated values are close to the observed values, and a 
positive value for VB means overestimation and negative value means underestimation. 

4. Results and Discussion 

4.1. Variation of Annual Precipitation, Temperature and Runoff 

In order to analyze the variation of climatic variables and runoff and understand the abrupt 
point and trend intuitively, mathematical statistics methods are adopted in this research. Results 
from the MK test of the annual runoff data in Kensiwate hydrological station is shown in Figure 2, 
Tables 1 and 2. It is indicated from Table 1 that the annual runoff and climatic variables all show a 
significant increasing trend at 95% confidence level during the period from 1961 to 2015. The abrupt 
point is shown in 1995, and the Z1 value reveals that the rising trend is significant at 95% confidence 
level after 2006. Table 2 shows a decreasing trend with a rate of 3.19 × 106 m3/year and 7.52 × 106 
m3/year before and after 1995 respectively, and the average annual runoff is 1159.20 × 106 m3 and 
1456.89 × 106 m3 respectively. Although the pre- and post-trend both show a decreasing trend, the 
total trend shows a rising trend with the rate of 6.50 × 106 m3/year. That is because of the sudden 
increase from 1997 to 2002. The average annual runoff between 1997 and 2002 is 1683.76 × 106 m3, 
greater than the total average annual runoff of 1272.86 × 106 m3 for the whole time series. 

Table 1. Results of MK tests for annual runoff, annual precipitation and temperature (MAT, LAT  
and HAT). 

Analysis Item Data Period Z Critical Value Significant Trend 
Annual runoff 1961–2015 3.09 (−1.96, 1.96) Increasing 

Annual precipitation 1961–2015 3.78 (−1.96, 1.96) Increasing 
MAT 1961–2015 4.59 (−1.96, 1.96) Increasing 
LAT 1961–2015 5.17 (−1.96, 1.96) Increasing 
HAT 1961–2015 3.64 (−1.96, 1.96) Increasing 



Water 2017, 9, 258  9 of 19 

 

Table 2. Results of abrupt change of annual runoff, annual precipitation and temperature (MAT, 
LAT and HAT). 

Analysis Item Change Point Pre-Trend Rate * Post-Trend Rate ** Total Trend Rate *** Change ****
Annual runoff 1995 −3.1852 −7.5200 6.4981 −4.3348 

Annual precipitation 1992 0.5155 0.9611 1.3244 0.4456 
MAT 1994 0.0103 0.0250 0.0278 0.0147 
LAT 1993 0.0196 0.0389 0.0321 0.0193 
HAT 1994 −0.0010 0.0236 0.0227 0.0246 

Notes: *, **, *** the pre-, post-, and total trend rate for annual runoff, annual precipitation, MAT, LAT, 
and HAT are in 10 × 106 m3/year, mm/year, °C/year, °C/year, and °C/year, respectively; the negative 
value stands for a decreasing trend and the positive value stands for a rising trend; **** change 
between pre- and post-trend rates with positive values are increases in change and negative values 
are decreases in change; the metering unit is the same as the trend rate. 

 
Figure 2. Nonparametric Mann-Kendall (MK) test and liner regression analysis of annual runoff. 

Figure 3a,b respectively shows the result of MK test and liner regression analysis for annual 
precipitation, mean annual temperature (MAT), lowest annual temperature (LAT), and highest 
annual temperature (HAT). It is revealed that the crossing point of Z1 and Z2 in annual precipitation, 
MAT, LAT and HAT all happen at 95% confidence level and the abrupt point can be found in 1992, 
1994, 1993 and 1994, respectively. The annual precipitation, MAT, LAT and HAT all show a rising 
trend. The rising trend becomes significant at 95% confidence level after 1999, 1999, 1997 and 2002 
respectively. Annual precipitation shows a rising trend before the change point with a rate of 0.5155 
mm/year, and 0.9611 mm/year after the change point. The total rising trend rate is 1.3244 mm/year. 
HAT shows a decreasing trend before the change point with rate of 0.0010 °C/year, and a rising 
trend rate of 0.0236 °C/year after change point. The change between pre- and post-trend rate is about  
0.0246 °C/year. The total trend rate is 0.0227 °C/year. The MAT and LAT all show a rising trend 
before and after the change point. The rising trend rate of MAT is 0.0103 and 0.0250 °C/year before 
and after the change point respectively, and LAT is 0.0196 and 0.0389 °C/year. The total trend rate 
of MAT and LAT is 0.0278 and 0.0321 °C/year respectively. The change rate of all the climatic 
variables increase after change point, and the change rate of annual precipitation, MAT, LAT and 
HAT between post- and pre-trend rate is 1.3244 mm/year, 0.0278 °C/year, 0.0321 °C/year and 0.0227 
°C/year respectively. The result of the MK test shows that the change point of annual runoff is 
similar to the climatic variables. That is, the annual runoff catastrophe appeared right after the 
climatic variables catastrophe appeared. From the similarity of annual runoff and climatic variables, 
it can be inferred that the change of annual runoff is caused by the change of climatic variables. 
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Figure 3. Nonparametric MK test and liner regression analysis of (a) annual precipitation and (b) 
temperature (mean annual temperature (MAT), lowest annual temperature (LAT), and highest 
annual temperature (HAT)). 

4.2. Correlation Analysis between Climatic Variables and Runoff 

The correlation between annual climatic variables and runoff was analyzed using the partial 
correlation method. A confidence level of 95% was used to test if the correlation was significant. 
The monthly, seasonal and annual PCC between runoff and climatic variables (precipitation and 
mean, lowest and highest temperature) during the period from 1961 to 2015 was shown in Table 3. 

Table 3 indicates that the runoff is influenced by both precipitation and temperature, while the 
contribution of precipitation and temperature to runoff varies with the seasons. The negative 
relationship between monthly runoff and precipitation is shown in May, while the relationship is 
not significant at the 95% confidence level. Among all of the relationships between monthly runoff 
and climatic variables, only the relationship between monthly runoff and precipitation is significant 
at the 95% confidence level during the winter season, only the relationship between monthly runoff 
and temperature (including mean, lowest and highest temperature) is significant in April, May, 
September and October, only the relationship between monthly runoff and mean temperature is 
significant in November, and none of the relationships between monthly runoff and climatic 
variables are significant in March. Most of the relationships between monthly runoff and climatic 
variables are significant at the 95% confidence level in summer except for the monthly highest 
temperature in July. Seasonal analysis results of the confidence test completely match the monthly 
results in the summer and winter season, and the results in spring and autumn mainly match the 
monthly results. All of the relationships between annual runoff and climatic variables are 
significant at the 95% confidence level. For the monthly analysis results, the best correlations 
between monthly runoff and precipitation occur in January, February and December (with PCC = 
0.3736, 0.3156 and 0.4008 respectively), the best correlations between monthly runoff and lowest 
temperature occur from April to October (with PCC = 0.3960, 0.5156, 0.4705, 0.6187, 0.5682, 0.5717 
and 0.3437 respectively), and between monthly runoff and mean temperature in November (with 



Water 2017, 9, 258  11 of 19 

 

PCC = 0.2757). For the seasonal analysis results, runoff shows the closest relationship with highest 
temperature, precipitation, lowest temperature and precipitation in spring, summer, autumn and 
winter respectively (with PCC = 0.3169, 0.6116, 0.5387 and 0.5797 respectively). The seasonal runoff 
shows the most distant relationship with precipitation (with PCC = 0.0817 and 0.1186 respectively) 
in spring and autumn respectively, and the second closest relationship with lowest temperature 
(with PCC = 0.6085) with a slight difference compared with the closest relationship in summer. 
During the winter season, the runoff shows a weak relationship with temperature (with PCC = 
0.1644, 0.2149 and 0.0595 of mean, lowest and highest temperature respectively), and relationships 
are not significant at the 95% confidence level. For the annual series, the runoff is most closely 
correlated with precipitation (with PCC = 0.5704), followed by lowest and mean temperature (with 
PCC = 0.4716 and 0.4368 respectively), and the least closely correlated with highest temperature 
(with PCC = 0.3681). All of the best correlations occur at the 95% confidence level except for March 
in the monthly analysis results, in which the runoff is most closely correlated with highest 
temperature while none of the relationships between monthly runoff and climatic variables is 
significant at the 95% confidence level. 

It can be concluded from the partial correlation analysis that there is a positive correlation 
between runoff and both precipitation and temperature. The runoff is supplied by precipitation 
rather than snowmelt during the winter season, and the opposite is true in the spring and autumn. 
During the summer season, the recharge of precipitation and snowmelt to runoff are almost 
identical. The recharge of snowmelt to runoff is very low in winter, while it increases in spring due 
to the rising temperature. 

Table 3. Partial Correlation Coefficients (PCC) between runoff and climatic variables during the 
period of 1961–2015. 

Time Precipitation Mean Temperature Lowest Temperature Highest Temperature
January 0.3736 * 0.0054 0.0325 −0.0568 

February 0.3156 * 0.1718 0.2157 0.1032 
March 0.0451 0.2050 0.1456 0.2540 
April 0.1179 0.3773 * 0.3960 * 0.3793 * 
May −0.0175 0.4937 * 0.5156 * 0.4665 * 
June 0.3158 * 0.3474 * 0.4705 * 0.2699 * 
July 0.4263 * 0.3619 * 0.6187 * 0.2308 

August 0.4679 * 0.4378 * 0.5682 * 0.3204 * 
September 0.2067 0.5131 * 0.5717 * 0.4330 * 

October 0.2138 0.3240 * 0.3437 * 0.2963 * 
November 0.0213 0.2757 * 0.2652 0.2340 
December 0.4008 * 0.2447 0.2358 0.1955 * 

Spring 0.0817 0.3147 * 0.3064 * 0.3169 * 
Summer 0.6116 * 0.4690 * 0.6085 * 0.3564 * 
Autumn 0.1186 0.5379 * 0.5387 * 0.4850 * 
Winter 0.5797 * 0.1644 0.2149 0.0595 
Annual 0.5704 0.4368 * 0.4716 * 0.3681 * 

Note: * means the correlation is significant at 95% confidence level. 

4.3. Model Calibration and Validation 

The topographical index is calculated on the basis of DEM analysis. The downloaded DEM 
data of the study area with a resolution of 90 m was sampled into the raster with a resolution of 
1000 m [46]. Since mesh points with the same or similar topographical index are considered to have 
the same hydrological response in TOPMODEL, the region is segmented, and it is an improvement 
of the model operating efficiency. There are two different basic algorithms for the calculation of the 
topographical index: multiple- and single flow-direction algorithms. The multiple-flow direction 
algorithm is simpler than the single-flow direction algorithm. In the multiple-flow direction 
algorithm, the runoff is in eight directions for eight grids near the grid with different proportions, 
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which is decided by the difference of elevation between the two grids, while the single-flow 
direction algorithm is in the direction of the lowest grid. The single-flow direction algorithm is 
adopted in this research. It is not necessary to simulate the topographical index in all grids due to 
the similarity of the topographical index. The distribution function in the whole basin is generated 
by a statistical method with different topographical index values. The area with the larger index 
reaches the saturated state first, and the possibility of an occurrence of interflow or overland flow in 
this area is revealed. The region was segmented into 25 sections based on the topographical index. 
The minimum, maximum, mean, and standard deviation values of the calculated topographical 
index are 2.9, 17.9, 10.3, and 4.5, respectively. The relationship between the topographical index and 
the area ratio is shown in Figure 4. 

The historical monthly runoff data from 2001 to 2010 and 2011 to 2015 were chosen as the 
calibration and validation periods, respectively. Figure 5 shows the simulated runoff of the 
snowmelt-rainfall runoff model, the comparison of simulated and observed values and the general 
correlation between rainfall and runoff. According to the comparison of the simulated and 
measured values in the validation period, the model performance is provided as the NSE value of 
0.90 during the calibration period and 0.88 during the validation period, respectively, and the VB 
values are −0.07 and −0.08, respectively. The simulated monthly runoff shows an obvious bias in 
log-scale figure from late winter to spring. That is because the relationship between monthly runoff 
and temperature is significant at the 95% confidence level, while there is no relationship between 
monthly runoff and precipitation in the spring season. Therefore, the simulated result is 
significantly influenced by the accuracy of the snowmelt calculation. The result of analysis reveals 
that the model performance is acceptable and comparable to runoff simulation. 

 
Figure 4. Relationship curve of the topographical index and area ratio. 

 
Figure 5. Mean monthly runoff in log-scale and precipitation during the calibration (2001–2010) and 
validation (2011–2015) period. 
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4.4. Climate Change in the Future 

For the purpose of future runoff simulation, three GCMs in CMIP5 adopted three radiative 
forcing scenarios (RCP2.6, RCP4.5, and RCP8.5,). Those GCMs, which were MPI-ESM-MR, FGOALS-g2, 
and HadGEM2-AO, and developed by Germany, China, and South Korea/Britain, were selected 
based on the performance of the evaluation results in temperature and precipitation data in China 
[27–29]. The monthly precipitation and temperature data was derived from those GCMs. The 
climate variables, including monthly average (tas), minimum (tasmin) and maximum (tasmax) 
surface air temperatures, and monthly total precipitation (pr), were collected. The collected data of 
the GCMs with different resolutions were downscaled into the gridded data with the same 
resolution with CN05.1 dataset using the bilinear interpolation method, and the weighted average 
value of the GCMs based on the study area was used for the whole study area. Then the data was 
bias-corrected using the EDCDF method based on the baseline period from 1961–2000. Figure 6 
illustrates that the bias-corrected meteorological data has a smaller difference with the historical 
observed data compared to the uncorrected ones. Compared to the uncorrected data, the 
bias-corrected data shows better performance in the mean meteorological data and solves the 
problem of overestimations and underestimations, which is more suitable as the model input. 

Figure 7 shows the change trends of precipitation and temperature of MPI-ESM-MR, FGOALS-g2, 
and HadGEM2-AO during the period from 1961 to 2100. It is illustrated that there is a more obvious 
increasing trend in the temperature time series compared with that of precipitation. The slight 
increasing trend of precipitation is shown in all scenarios of the chosen GCMs. A stronger 
inter-annual variability is presented in the precipitation time series compared with that of 
temperature. As is shown in Figure 8, the warmer and wetter condition is illustrated from the 
comparison of the future GCMs during the period from 2010 to 2060 and the observed data of the 
baseline period. The temperature increases by 1.49 °C for MPI-ESM-MR, 1.86 °C for FGOALS-g2, 
and 1.96 °C for HadGEM2-AO, respectively. Among all of the emission scenarios, the monthly 
mean temperature rises the largest in “rcp8.5”. “rcp4.5” came next, followed by “rcp2.6”, in all 
chosen GCMs. The monthly mean temperature rises by 1.06 °C, 1.58 °C, and 1.82 °C in the emission 
scenarios of “rcp2.6”, “rcp4.5”, and “rcp8.5”, respectively, of the MPI-ESM-MR, the FGOALS-g2 is 1.35 
°C, 1.90 °C, and 2.33 °C, respectively, and the HadGEM2-AO is 1.73 °C, 2.07 °C, and 2.09 °C, 
respectively. The highest rise occurs in December in the “rcp8.5” emission scenario of FGOALS-g2 
and rises by 3.62 °C; and the lowest was in March in the “rcp2.6” emission scenario of 
MPI-ESM-MR and rises by 0.45 °C. The temperature rise is over 1 °C in most months, except for 
February, April, and October in the “rcp2.6” emission scenario of FGOALS-g2, March in the 
“rcp8.5” emission scenario of HadGEM2-AO, and May in the “rcp4.5” emission scenario of 
MPI-ESM-MR. However, the temperature rise is less than 1 °C in many months in the “rcp2.6” 
emission scenario of MPI-ESM-MR, which are from February to June, and November and 
December. A temperature rise of over 3 °C occurred in July, August, and December. Despite the 
uncertainty of the precipitation data, the change could be studied from the GCMs. The precipitation 
increases by 11.24% of MPI-ESM-MR, 10.60% of FGOALS-g2, and 9.65% of HadGEM2-AO, 
respectively. The difference between the changes of intra-annual precipitation is significant. The 
greatest increasing change is during the winter season, usually during 2021–2060 in all of the 
GCMs. The temperature descends in December in the “rcp2.6” emission scenario of MPI-ESM-MR, 
the “rcp2.6” and “rcp8.5” emission scenarios of HadGEM2-AO, and in February in the “rcp2.6” 
emission scenario of FGOALS-g2. No consistent change is exhibited during other seasons of all 
chosen GCMs. A smaller increasing change, and even a descending change, can be seen from June 
to October in MPI-ESM-MR, from March to September in FGOALS-g2 and from April to August in 
HadGEM2-AO. 
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Figure 6. Average monthly precipitation and temperature data of global climate models (GCMs) 
before and after bias correction. 

 
Figure 7. The bias corrected projected annual precipitation and temperature time series during the 
period from 1961 to 2100. 



Water 2017, 9, 258  15 of 19 

 

 
Figure 8. Monthly mean precipitation and temperature changes in the future during the period from 
2021 to 2060. 

4.5. Influence of Climate Change on Runoff 

The bias-corrected precipitation and temperature data from selected GCMs during the period 
from 2021 to 2060 was used as the input of the hydrological process simulation with TOPMODEL in 
this study. The simulated average monthly runoff was used to compare the observed runoff in the 
baseline period of 1961–2000 to analyze the impact of climate change on runoff in the Manas River basin. 

Figure 9 illustrates that the simulated runoff of the selected GCMs under the influence of 
climate change increases in the future period compared with the baseline period. Due to the 
uncertainty on the meteorological data for different GCMs, the runoff simulated with different 
input data from different GCMs shows obvious differences. Among the three GCMs, FGOALS-g2 
provides the largest inter-annual change of runoff, followed by HadGEM2-AO with a very small 
difference, and the runoff of MPI-ESM-MR changed the least, with values of 30.89%, 30.34% and 
26.73% respectively. The simulated monthly runoff shows the largest change in the “rcp8.5” 
emission scenario of MPI-ESM-MR and HadGEM2-AO, and in the “rcp4.5” emission scenario of 
FGOALS-g2, with the runoff rising by 29.98%, 34.28%, and 32.34%, respectively. The emission 
scenario that shows least change is “rcp4.5” in MPI-ESM-MR and HadGEM2-AO, and “rcp8.5” in 
FGOALS-g2, with the runoff rising by 25.82%, 30.62%, and 30.96 respectively, while the increase of 
24.39%, 26.13%, and 29.36% in MPI-ESM-MR, HadGEM2-AO and FGOALS-g2, respectively, were 
seen in the runoff presented by the rest of the scenarios. 

The runoff change is influenced by both the precipitation and temperature change. The 
precipitation increase results in the increase of the runoff, and the temperature increase causes the 
snowmelt increase, followed by the runoff increase. Meanwhile, the increase in temperature leads 
to the increasing evapotranspiration and then the declining runoff. Due to the combined influence 
of precipitation and temperature change, the sensitivity of runoff to the climatic variables is 
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different in different months. The runoff change shows a relatively smaller rising range in autumn, 
and even a descending change in July and August in most scenarios. As precipitation exhibits a 
similar change, while the temperature increases more obviously compared with the runoff during 
the same period, the change of runoff in autumn is influenced by precipitation rather than 
temperature. It is indicated from Figure 9 that the runoff significantly increases from February to 
May, even reaching above 50% in some RCP scenarios, in the period of 2021–2060 compared with 
the baseline period. The change of precipitation and temperature does not significantly increase, 
and it even descends in some months. This is because, compared with precipitation and mean 
temperature, other meteorological variables such as effective accumulated temperature influence 
the runoff more significantly. The infiltration of surface water and runoff yield, which are related to 
the water-holding capacity of the soil on the underlying surface, are influenced by effective 
accumulated temperature above 0 °C with the soil freezing/thawing. The influence of effective 
accumulated temperature on runoff varies in different months, and it is greatest in the spring 
months, because the effective accumulated temperature influences the snowmelt most significantly 
in the spring season compared with other seasons [24]. In addition, the runoff is mainly supplied by 
groundwater recharge during the winter season when the precipitation and snowmelt are low. The 
groundwater recharge is not fully considered in the runoff simulation [47]. 

 
Figure 9. Comparison of average monthly runoff, precipitation, and temperature change. 

5. Conclusions 

The historical annual and monthly series of precipitation and temperature data were used to 
study the climate change of the mountain area in the Manas River basin in the period from 1961 to 2015. 
A modified TOPMODEL with a snowmelt module was used for the runoff simulation with 
different future climate change scenarios for the period from 2021 to 2060. The study of the runoff 
change under the influence of climate change was carried out. The conclusions are summarized  
as follows: 

1. The annual runoff and climatic variables all show increasing trends during the period from 
1961 to 2015. The abrupt change point of annual runoff (1995) is similar to the climatic 
variables (1992, 1994, 1993 and 1994 of annual precipitation, MAT, LAT, and HAT respectively). 
The runoff is supplied by precipitation rather than snowmelt in the winter season, and the 
opposite is true in the spring and autumn. During the summer season, the recharge of 
precipitation and snowmelt to runoff are almost identical. 
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2. The bias-corrected monthly mean temperature data of the chosen GCMs, which are 
MPI-ESM-MR, FGOALS-g2, and HadGEM2-AO, from 2021 to 2160 all increase compared with 
the baseline period from 1961 to 2000. The monthly mean temperature increases the most in 
“rcp8.5”. “rcp4.5” showed the next largest increase, and “rcp2.6” increased the least in all 
chosen GCMs. The monthly precipitation presents the greatest increasing change in the winter 
season, and the descending change in December in the “rcp2.6” emission scenario of 
MPI-ESM-MR, the “rcp2.6” and “rcp8.5” emission scenarios of HadGEM2-AO, and in 
February in the “rcp2.6” emission scenario of FGOALS-g2. 

3. The monthly runoff from 2021 to 2060 simulated by the modified TOPMODEL with different 
emission scenarios in different GCMs all increase compared with the baseline period, and will 
increase by 24.39%, 25.82%, and 29.98% in “rcp2.6”, “rcp4.5”, and “rcp8.5” emission scenarios, 
respectively, of MPI-ESM-MR, 29.36%, 32.34%, and 30.96% of FGOALS-g2, and 26.13%, 30.62%, 
and 34.28% of HadGEM2-AO. The largest increasing change often occurs in April. The runoff 
increases significantly more from late winter to spring than in the other months. 

In this paper, the study area is located in the upstream mountain area of the Manas River, 
where the effect of human activity is weak and climate change is the dominant influencing factor of 
the runoff. The human activity, such as underlying surface variation and artificial water 
distribution, was not considered in this research. The influence of climatic variables on runoff was 
analyzed independently. This research is limited to uncertainties caused during the numerical 
simulation study of the influence of climatic variables on runoff. Firstly, the correlation analysis 
between the runoff and climatic variables is based on the assumption that each climatic variable is 
independent of the others, as opposed to the reality. Secondly, the historical and future climatic 
data and mathematical statistics methods used in this study to analyze the hydrological and 
meteorological time series cause inevitable uncertainty, such as the bias correction method for the 
meteorological data in CMIP5. Moreover, the complexity and polytropy in nature make the climate 
change more complicated, and the climate change assessment more unreliable. Thirdly, a 
physics-based distributed hydrological model coupled with an energy balance snowmelt model 
should be developed to evaluate the influence of climatic variables on runoff more accurately in the 
future. Finally, further study should be carried out on the effect of climate change on unusual 
hydrological events instead of runoff, to reveal the response mechanism of hydrological factors to 
climate change. For this purpose, observations and experiments should be carried out to collect data 
to improve the accuracy of the hydrological model. The simulated runoff with the chosen GCMs 
reveals that, as the runoff significantly increases from February to May, there is an increase in the 
frequency of spring flood occurrence. It provides the management of the hydropower stations and 
reservoir group with important reference values. In summary, the conclusions provided in this 
research should be useful for the management of water resources in the Manas River basin. 
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