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Abstract: This study proposes variable balancing approaches for the exploration (diversification)
and exploitation (intensification) of the non-dominated sorting genetic algorithm-II (NSGA-II)
with simulated binary crossover (SBX) and polynomial mutation (PM) in the multiobjective
automatic parameter calibration of a lumped hydrological model, the HYMOD model.
Two objectives—minimizing the percent bias and minimizing three peak flow differences—are
considered in the calibration of the six parameters of the model. The proposed balancing approaches,
which migrate the focus between exploration and exploitation over generations by varying the
crossover and mutation distribution indices of SBX and PM, respectively, are compared with
traditional static balancing approaches (the two dices value is fixed during optimization) in a
benchmark hydrological calibration problem for the Leaf River (1950 km2) near Collins, Mississippi.
Three performance metrics—solution quality, spacing, and convergence—are used to quantify and
compare the quality of the Pareto solutions obtained by the two different balancing approaches.
The variable balancing approaches that migrate the focus of exploration and exploitation differently
for SBX and PM outperformed other methods.

Keywords: automatic parameter calibration; multiobjective optimization; NSGA-II; balance between
exploration and exploitation; HYMOD model

1. Introduction

A rainfall–runoff (RR) model is a mathematical model used to describe the RR process of
a watershed, which generally produces a surface runoff hydrograph (output) using a hyetograph
(input) [1]. The RR model is calibrated: (1) for estimating the model structure and parameters that
enable the model to closely match the behavior of the real system it represents; and (2) for estimating
model uncertainties. A hydrologist wants to develop a hydrological model with not only high
accuracy (i.e., the former case for minimizing a bias) and but also high precision (i.e., the latter case for
a reliable performance).

During the past two decades, the development and calibration of RR models have been the
focus of hydrological research [2,3]. Various RR models have been developed and are classified
into lumped and distributed models. The former is based on the assumption that the entire basin
has a homogeneous hydrological characteristic, whereas the latter divides the basin into elementary
unit areas resembling a grid network to consider the spatial variability of the basin characteristics.
The Sacramento Soil Moisture Accounting (SAC-SMA) model is an example of a lumped model,
whereas the Systeme Hydrologique Européen-Transport (SHETRAN) [4] is a distributed model.
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RR models never perfectly represent an actual system of interest, and the data used for calibration
always contain measurement errors [5]. Although the main focus of hydrological research has been
the development of automatic parameter calibration approaches, efforts have also been made to assess
parameter uncertainty in RR models to quantify the inability of the model to produce precise and
accurate results [2,5–11]. The present study focuses on the development of efficient and effective
automatic parameter calibration methods.

The governing equations of RR models are used to define the RR processes, which consist of
model parameters and variables. Traditionally, a manual approach has been applied in which a
hydrologist estimates the value of the model parameters through a trial-and-error process in which
the model matches the behavior of the actual system it represents [2]. The hydrologist’s experience
and knowledge of the model (e.g., the model structure and sensitivity of model parameters) are key
factors for the success of the model calibration in this approach. However, there is no guarantee that
the hydrologist will find the best parameter set yielding the highest accuracy of the RR model through
these time-consuming efforts because the optimal parameter calibration problem is highly nonlinear,
multimodal, and nonconvex [12] for which a simple gradient-based technique cannot be used.

To overcome the limitation of the manual approach in the speed and reliability of the RR
model calibration, an automatic, computer-based approach has been widely used during the last
two decades [3]. Generally, an RR model is linked to stochastic optimization algorithms to evaluate
the fitness of potential parameter sets and to identify the optimal parameter set resulting in the best
accuracy for the model [13]. These algorithms include simulated annealing (SA) [14], genetic algorithm
(GA) [15,16], particle swarm optimization (PSO) [17], harmony search (HS) [18], and shuffled complex
evolution-University of Arizona (SCE-UA) [12]. The most popular measure of the fit of the model is
the mean-square-error (MSE) estimator [2]. By using the automatic calibration method, the solution
space can be explored in less time than that taken when using the manual approach.

Various model accuracy measures have been introduced to consider the different aspects of model
accuracy. For example, use of maximum absolute error (MAE) focuses on the robustness of the model
accuracy to minimize the worst deviation between the observed and simulated values [19–23]. The
peak flow difference can generally be considered in the RR model for hydraulic structure design [19–25].
Therefore, a pair of competing model accuracy measures can exist among various measures. During
the model calibration process, hydrologists often observe that increasing a model accuracy measure
(e.g., the mass balance measure) cannot be achieved without sacrificing or decreasing another measure
(e.g., the peak difference). This phenomenon has triggered the advent of multiobjective automatic
model calibration models [2,10], which explore the trade-off in the relationship among two or three
competing model accuracy measures.

Efstratiadis and Koutsoyiannis [26] provided a thorough review and summarized the critical
issues in multiobjective calibration. They classified multiobjective calibration studies into aggregate
and pure Pareto approaches. The former combines multiple objectives into a single objective by
weighting them, whereas the latter identifies multiobjective optimal solutions (i.e., the Pareto optimal
solution) by simultaneously seeking multiple objectives. Recently, calibration methodologies used
specifically for pure multiobjective schemes have been introduced. Asadzadeh et al. [27] proposed a
selection measure known as convex hull control (CHC) for solving a multiobjective calibration problem
with a known and approximated convex Pareto solution.

Zhang et al. [28] performed sensitivity analysis of the parameters of the non-dominated sorting
genetic algorithm-II (NSGA-II) [29] on the accuracy of a distributed hydrological model known
as Systeme Hydrologique Européen-Transport (SHETRAN) [4,30–36]. Simulated binary crossover
(SBX) [37] and polynomial mutation (PM) [38] were used for the crossover and mutation, respectively, of
three NSGA-II algorithms: the original NSGA-II, the reference point-based-NSGA-II (R-NSGA-II) [39],
and the extension ER-NSGA-II [40]. The root-mean-square error (RMSE) and logarithmically
transformed RMSE (LOGE) between the observed and simulated hourly discharges were minimized
simultaneously. Three combinations of crossover and mutation distribution indices (CDI and MDI,
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respectively), the parameters of SBX and PM, respectively, with values of (0.5, 0.5), (2.0, 0.5), and (20,
20), which were kept constant during optimization were applied. CDI and MDI control the closeness
of the children solutions to the parent solutions in the crossover and mutation, respectively. Higher
parameter values (e.g., CDI = 20) result in children solutions that are more similar to the parent
solutions, which are assigned more weight on exploitation.

Zhang et al. [28] assumed that the algorithm’s balance between exploration (diversification) and
exploitation (intensification) did not change over generations, which is a static approach. The former
is defined as the algorithm’s ability to search wide areas of the solution space (e.g., the random search
of HS), and the latter refines the neighborhood of previously found promising areas in solution space
(e.g., the crossover of GA). However, some studies reported that the balance should be variable to
guarantee the best performance [41–43] because the effectiveness of wide search and fine-tuning
depends on the optimization phase. Cuevas et al. [44] stated that a common strategy for balancing
exploration and exploitation is to start with exploration and then gradually increase exploitation
as good fitness points are identified. It would be a better strategy in the automatic calibration of a
hydrological model to focus on searching various parameter sets broadly in the early optimization
phase and to give more weight to fine-tuning the solutions found in the latter phase.

This study introduces variable balancing approaches for the exploration and exploitation of
the NSGA-II with SBX and PM in the multiobjective automatic parameter calibration of a lumped
hydrological model, the HYMOD model. The proposed balancing approaches, which migrate
the focus between exploration and exploitation over generations by varying the crossover and
mutation distribution indices, CDI and MDI, respectively, were compared to traditional static balancing
approaches (the two dices value is fixed during optimization) in a benchmark hydrological calibration
problem for the Leaf River (1950 km2) near Collins, Mississippi. Three performance metrics, solution
quality, spacing, and convergence, were used to quantitatively compare the performance of the
two different balancing approaches.

2. Methodology

This study compared static and variable balancing approaches for the NSGA-II by using SBX
and PM operators in the multiobjective automatic calibration of a lumped RR model, the HYMOD
model. Two types of parameters are used throughout the study: algorithm parameters (e.g., crossover
rate, CDI, and MDI) and model parameters (HYMOD model parameters). An improved version of the
HYMOD model was used to simulate the RR process of the Leaf River basin located north of Collins,
Mississippi. First, the correlation among various model accuracy indicators (MAIs) was inspected by
visual inspection, linear regression, and Pearson correlation analysis to select two competing objectives
to be minimized in the calibration. In this study, the trade-off relationship between percent bias (PB)
and the sum of three peak flow differences (TPFD) was explored by using the static and variable
balancing approaches. The performance measures, solution quality, spacing, and convergence [45]
of the Pareto optimal solutions were quantified to identify the best balancing strategy. The following
sections describe the objective selection process, the multiobjective calibration model, NSGA-II, SBX,
PM, performance metrics, and the improved HYMOD model.

2.1. Objective Selection Process

The accuracy of the RR model was evaluated by comparing the observed and simulated discharge
values at specific points in the basin. The model parameters were calibrated to minimize the model
error. The prediction always contains errors (i.e., deviations from the observed value) that are jointly
influenced by: (1) measurement error; (2) inappropriate representation of the actual system; and (3) the
lack of basin information for model development and parameter calibration [26].

Various model accuracy measures have been formulated and used for automatic calibration of
RR models. Table 1 summarizes several MAIs used by the National Weather Service for calibration of
the Sacramento soil moisture accounting (SAC-SMA) model and MSE-based measures widely used
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in the domain of hydrological model calibration. Different measures represent different aspects of
model error. For example, an MSE measure is appropriate when measurement errors are uncorrelated
and more weights should be given to minimizing error at high flows. In contrast, the sum of peak
differences is considered when an RR model is used for flood management when peak discharge is the
main concern. Therefore, the appropriate model error measure should be carefully selected and used
for effective model parameter calibration.

Table 1. Model accuracy indicators (MAIs) and their formulations.

Name (Abbreviation) Formulation

Total Mean Squared Error (TMSE) 1
n

n
∑

t=1
(ot − st(θ))

2

Root Mean Squared Error (RMSE)

√
1
n

n
∑

t=1
(ot − st(θ))

2

Nash–Sutcliffe Measure (NSF) 1−
1
n ∑n

t=1 (ot−st(θ))2

1
n ∑n

t=1 (ot−o)2

Absolute Peak Difference (APD)
∣∣∣∣ max
1≤t≤n

{ot} − max
1≤t≤n

{st(θ)}
∣∣∣∣

Percent Bias (PB) 100×
∣∣∣∣ 1

n ∑n
t=1 ot− 1

n ∑n
t=1 st(θ)

1
n ∑n

t=1 ot

∣∣∣∣
Mean Absolute Error (MAE) 1

n

n
∑

t=1
|ot − st(θ|

Maximum Absolute Error (MAE) max
1≤t≤n

|ot − st(θ)|

Three Peak Flow Difference (TPFD) ∑
t∈Tp

|ot − st(θ)|

Notes: ot is the observed streamflow at time interval t (t = 1, . . . , n); st(θ) represents the simulated streamflow at
time t using the parameter values θ; o is the mean value of the observed streamflows during the period t = 1 to n;
and Tp is a set of times at which the three largest streamflows occurred at the observed value.

In order to construct a multiobjective automatic parameter calibration model, two competing
MAIs should be identified. The two correlated indicators should not be simultaneously considered in
the model because minimizing/maximizing one indicator would have the same effect on the other
indicator. To that end, uniform random sampling within the upper and lower bounds of parameters,
which is determined by physical reasonability, engineering knowledge, and Monte Carlo simulations
(MCS) generates random parameter sets. A simulated hydrograph is obtained from the RR simulation
using each generated parameter set for which the MAIs in Table 1 are calculated. Finally, the scatter
plot of each pair of the MAIs in Table 1 and its linear regression line are drawn and inspected to detect
the potential correlation.

2.2. Multiobjective Automatic Parameter Calibration Model

The two objectives selected from the objective selection process were optimized in the
multiobjective automatic parameter calibration model of the hydrological model. Most MSE-type
objectives are to be minimized, whereas a few accuracy measures are to be maximized (e.g., the
Nash–Sutcliffe measure (NSF)). The decision variables of the model are the parameters (θ) of the
hydrological model. The observed dataset of flow discharge was selected and provided to the model
for fitting the simulated results. Therefore, the multiobjective parameter calibration model was
formulated as {

Minimize f1 = MAI1(θ)
Minimize f2 = MAI2(θ)

, θ ∈ Θ, (1)
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where MAI1 and MAI2 are the first and second different MAIs calculated given the model parameter
θ, respectively; and Θ is the feasible parameter space defined by the minimum and maximum values
of each parameter, assuming that the two objectives are to be minimized.

The two objectives were simultaneously optimized; they were not aggregated in this study. In the
field of hydrological model calibration, the NSGA-II, Multiobjective Complex Evolution (MOCOM)
algorithm and the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm are
widely used [8,46–59]. A set of Pareto optimal solutions (non-dominated parameter sets) was obtained
from the model. Then, a best-compromise parameter set is identified and suggested among multiple
Pareto optimal parameter sets based chiefly on the user’s judgment according to the analysis of the
shape of the Pareto front.

2.3. NSGA-II with SBX and PM

This study used NSGA-II to find the Pareto optimal parameter sets in the multiobjective calibration
model introduced in the previous section. The main mechanisms of NSGA-II compared with other
multiobjective metaheuristic algorithms are the non-dominated ranking and consideration of crowding
distance [29]. That is, a solution distant to others in the solution space and dominating other solutions
with respect to fitness is more likely to survive to the next generation. Details of NSGA-II have been
reported by Deb et al. [29].

This study employed SBX and PM operators for the crossover and mutation, respectively, of
NSGA-II to improve the search power. It should be noted that the occurrences of the crossover and
mutation operations are complementary, and their frequency is controlled by the crossover rate (Crate).
Therefore, if the Crate is 0.9, the rate of mutation is 0.1. The SBX and PM operators control the
spread of the children solutions compared with the selected parent solutions by CDI ∈ (0,+∞) and
MDI ∈ (0,+∞). Therefore, the best strategy for the control of CDI and MDI should be identified and
used to obtain the best effectiveness and efficiency of NSGA-II with SBX and PM.

The SBX operator produces two children solutions x1,j+1
i and x2,j+1

i from the two selected parent

solutions x1,j
i and x2,j

i by using polynomial probability distributions

ε(βi) =

 0.5(CDI + 1)βCDI
i , if βi ≤ 1

0.5(CDI + 1) 1
β

CDI+2
i

, otherwise , (2)

where βi =

{
(2ui)

1/(CDI+1), if ui ≤ 0.5

( 1
2(1−ui)

)
1/(CDI+1)

, otherwise
which can be obtained by inverse transform sampling

with a randomly generated number ui ∈ (0, 1), and ε is a probability function. As indicated in
Figure 1, large values of CDI result in a high probability of creating children solutions close to the
parent solutions. Then, the children solutions are derived from the equations below:

x1,j+1
i = 0.5

[
(1 + βi)x1,j

i + (1− βi)x2,j
i

]
, (3)

x2,j+1
i = 0.5

[
(1− βi)x1,j

i + (1 + βi)x2,j
i

]
. (4)

The PM operator creates the child solution x3,j+1
i from the parent solution x3,j

i by using the
polynomial probability distribution:

ε(δi) = 0.5(MDI + 1)(1− |δi|)MDI , (5)

where δi =

{
(2ri)

1/(MDI+1) − 1 if ri ≤ 0.5
1− |2(1− ri)|1/(MDI+1), otherwise

and ε is a probability distribution function.
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The child solution is then produced by the equation

x3,j+1
i = x3,j

i + (xUB
i − xLB

i )δi, (6)

where xUB
i and xLB

i are the upper and lower bounds of the ith decision variable, respectively.
Five parameters are used in NSGA-II with SBX and PM operators that affect the algorithm

performance: the number of generations (NGEN), the number of populations (NPOP), Crate, CDI,
and MDI.
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Figure 1. Probability distributions of simulated binary crossover (SBX) with three crossover distribution
index (CDI) values: CDI = 0.5 (solid gray line), CDI = 2.0 (dotted black line), and CDI = 20 (dashed
black line).

2.4. Variable Exploration and Exploitation Balancing Approaches

The success of the metaheuristic optimization algorithm depends on the balance between
the algorithm’s exploration (diversification) and exploitation (intensification) capability [44,60–63].
This study proposes variable changing methods for the CDI and MDI of SBX and PM, respectively.
Using higher parameter values (e.g., CDI = 20) assigns more weight to exploitation, whereas smaller
parameter values (e.g., CDI = 0.5) emphasize exploration (Figure 1).

We can vary the balance between exploration and exploitation over generations by changing
the CDI and MDI values. An example of the variable balancing approach is the so-called
parameter-setting-free (PSF) method, which has been used by a few researchers in the field of applied
mathematics for removing the burden on the user in selecting algorithm parameters [41–43].

Two respective representative PSF methods increase the algorithm parameter value from its
minimum to maximum (PSF1) and decrease the algorithm parameter value from its maximum to
its minimum (PSF2) (Figure 2). Therefore, the algorithm parameter at the generation igen, pigen
(e.g., p = CDI or MDI), is calculated as

PSF1 : pigen = pmin +
pmax − pmin

NGEN − 1
(igen− 1) (7)

PSF2 : pigen = pmax −
pmax − pmin

NGEN − 1
(igen− 1), (8)

where pmin and pmax are the minimum and maximum value of the algorithm parameter p, respectively.
Four different variable balancing approaches for exploration and exploitation are generated from the
combination of PSF1 and PSF2 for CDI and MDI. Therefore, Approach 1 uses PSF1 for both CDI and
MDI, whereas Approach 2 applies PSF2 for both indices. In contrast, Approach 3 uses PSF1 for CDI

and PSF2 for MDI, and Approach 4 applies PSF2 for CDI and PSF1 for MDI.
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2.5. Performance Metrics

In order to compare the Pareto optimal solutions obtained from different approaches, three
performance metrics were used: solution quality metric (SQM), spacing metric (SPM), and convergence
metric (COM). The original SQM and COM were introduced by Wang et al. [64] and Kollat and
Reed [65], respectively. SPM was originally proposed by Zheng et al. [45] for measuring run-time
performance of multiobjective algorithms, which was modified in this study for the evaluation of the
final Pareto solutions.

SQM quantifies an algorithm’s ability to find non-dominated solutions. The steps for calculating
SQM are briefly described here. The final optimal Pareto solutions of all algorithms (all approaches or
cases) are gathered to identify the global non-dominated solutions, also referred to as the global Pareto
solution or the global Pareto front, Z*. The SQM of a case is equal to the number of non-dominated
solutions found by the case in Z*.

Deb et al. [29] considered crowding distance to be an important factor for the selection of the
children population so that NSGA-II would develop a wide-spread Pareto front, which is favored
with respect to the final solution diversity and exploration [66]. The Pareto front with a wide range
of objective function values means that the decision maker can choose from more parameter set
alternatives. SPM quantifies the extent of the Pareto front relative to the Pareto front Z* as

SPM =

max
i,j=1, ..., N

{dist
[
Fi, Fj

]
}

max
F,G∈Z∗

{dist[F, G]} , (9)

where Fi is the objective function vector of the ith solution in the algorithm population (population
size = N, i.e., Z = {F1, F2, . . . , FN}); dist(X,Y) is the Euclidean distance between the two vectors X and
Y; and F and G are any solution vectors on the global Pareto front Z*. To calculate SPM, each objective
function value of the solutions in Z* is normalized to have a maximum value equal to 1. Then, each
dimension of Z is normalized on the basis of the ranges of Z*.

COM measures the averaged Euclidean distance between an algorithm’s front and the global
Pareto front Z* as

COM =
1
N ∑N

i min
F∈Z∗
{dist[Fi, F]}, (10)

where min
F∈Z∗
{dist[Fi, F]} is the minimum Euclidean distance between the ith solution of the algorithm

population and any solution vector F on the global Pareto front Z*. Therefore, larger values of SQM
and SPM are preferred, whereas smaller values of COM (i.e., shorter distance to the Pareto front)
are preferred.
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2.6. Modified HYMOD

The original HYMOD model is a conceptual lumped RR model based on the
probability-distributed principle [67]. The model consists of a simple two-parameter rainfall
excess model linked with two series of parallel linear reservoirs for flow routing: three quick flow
tanks and a slow flow tank. The distribution between the quick and slow flow tanks is adjusted by the
parameter α, where 1-α is used for quick flow, and α is used for slow flow. Figure 3 shows a schematic
diagram of the model structure.

The model assumes that a basin consists of soil moisture storage with varying capacity. The spatial
variability of soil moisture capacity (C) is represented by the following cumulative distribution function:

F(C) = 1− (1− C
Cmax

)
B

, (11)

where Cmax is the maximum storage capacity of the basin, and B is the degree of spatial variability of
the soil moisture capacity of the basin. The time-varying total water storage of the basin (S(t)≤ Cmax

B+1 ) is
simulated by assuming that all storage within the basin is filled to the same critical level. Surface runoff
is generated from a saturated area, whereas water is infiltrated into unsaturated areas. Further details
on the rainfall excess model have been reported by Moore [67,68]. Therefore, the two parameters in the
distribution function of soil moisture capacity, Cmax and B, are important parameters to be calibrated.
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Figure 3. Schematic description of the modified hydrological model (HYMOD).

The outflow from a reservoir (Qout(t) in mm/day) and the reservoir state (X(t) in mm) during the
time interval t are calculated following the assumption of a linear reservoir and mass conservation,
respectively, as

Qout(t) = K× X(t) (12)

X(t + ∆t) = X(t)− (Qout(t) + Qin(t))∆t, (13)

where K is the leakage rate in 1/day, which is identical to Kquick from the quick flow tanks and Kslow
from the slow flow tank, and Qin(t) is the inflow into the reservoir at time interval t. Inflow to a
reservoir on the quick flow pathway can be either outflow from the basin or Qout from another tank.

This study used a modified HYMOD model, which considers the number of quick flow reservoirs
(n) as a parameter to be calibrated. Therefore, the timing of quick flow release to the river channel or
the residence time of the quick flow reservoirs can be determined for a specific watershed. Table 2
summarizes the definition and range of the six parameters to be calibrated.
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Table 2. Summary of the six parameters in the modified hydrological model (HYMOD) used in
this study.

Parameter Definition (Units) Lower Bound Upper Bound

Cmax Maximum storage capacity (mm) 50 600

B Shape parameter of the probability distribution of the soil moisture capacity 0.05 1.95

α Ratio of the distribution of the flow between quick and slow reservoirs 0.01 1

n Number of quick flow reservoirs 1 4

Kslow Conductivity of slow flow reservoir (1/day) 0.001 0.1

Kquick Conductivity of quick flow reservoir (1/day) 0.1 0.95

3. Case Study

A benchmark hydrological calibration test case for the Leaf River (1950 km2) near Collins,
Mississippi, was used to examine the proposed balancing approaches. The Leaf River case study has
been widely used for single and multiobjective hydrological model calibrations [8,9,12,27,53,69,70].
The two inputs are daily precipitation (mm/day) and potential evapotranspiration (mm/day; Figure 3).
Daily streamflow (mm/day) and the two inputs were obtained from the National Weather Service
Hydrology Laboratory. Initial storage in the watershed (i.e., initial basin storage and initial storage
for quick and slow flow reservoirs) is assumed to equal zero, which indicates that they are empty.
In order to remove the influence of the initial state, the HYMOD model was run for 15 days in a
warm-up period. Here, a year of historical hydrological data, from 1 October 1948, to 30 September
1949, was used for model calibration, with annual mean streamflow of 2.62 mm/day (Figure 4b).
The mean and standard deviations of the performance metrics were obtained for each of the static
and variable approaches from 10 independent trial runs to consider the variability of the optimization
results. Each optimization began with randomly generated model parameters with bounds as listed
in Table 2. Further details of the Leaf River calibration problem and data can be found in previous
studies [8,70–73].

Water 2017, 9, 187 9 of 23 

 

n Number of quick flow reservoirs 1 4 
Kslow Conductivity of slow flow reservoir (1/day) 0.001 0.1 
Kquick Conductivity of quick flow reservoir (1/day) 0.1 0.95 

3. Case Study 

A benchmark hydrological calibration test case for the Leaf River (1950 km2) near Collins, 
Mississippi, was used to examine the proposed balancing approaches. The Leaf River case study has 
been widely used for single and multiobjective hydrological model calibrations [8,9,12,27,53,69,70]. 
The two inputs are daily precipitation (mm/day) and potential evapotranspiration (mm/day; Figure 
3). Daily streamflow (mm/day) and the two inputs were obtained from the National Weather Service 
Hydrology Laboratory. Initial storage in the watershed (i.e., initial basin storage and initial storage 
for quick and slow flow reservoirs) is assumed to equal zero, which indicates that they are empty. In 
order to remove the influence of the initial state, the HYMOD model was run for 15 days in a 
warm-up period. Here, a year of historical hydrological data, from 1 October 1948, to 30 September 
1949, was used for model calibration, with annual mean streamflow of 2.62 mm/day (Figure 4b). The 
mean and standard deviations of the performance metrics were obtained for each of the static and 
variable approaches from 10 independent trial runs to consider the variability of the optimization 
results. Each optimization began with randomly generated model parameters with bounds as listed 
in Table 2. Further details of the Leaf River calibration problem and data can be found in previous 
studies [8,70–73]. 

 
(a) 

 
(b) 

Figure 4. Measurements in the Leaf River basin: (a) daily hyetograph; and (b) hydrograph. 

4. Application Results 

Figure 5 shows the procedures followed to compare the static and variable balancing 
approaches for the multiobjective calibration of the HYMOD model. First, two objectives considered 
in the multiobjective optimization are determined. Second, NPOP and NGEN suitable for the 
HYMOD model and the multiobjective calibration are selected. Then, several static approaches are 
compared to identify the best static approach. Finally, the static and variable approaches are 
compared to find the best approach. The following subsections describe the result of each step in 
Figure 5. 

Figure 4. Measurements in the Leaf River basin: (a) daily hyetograph; and (b) hydrograph.



Water 2017, 9, 187 10 of 23

4. Application Results

Figure 5 shows the procedures followed to compare the static and variable balancing approaches
for the multiobjective calibration of the HYMOD model. First, two objectives considered in the
multiobjective optimization are determined. Second, NPOP and NGEN suitable for the HYMOD
model and the multiobjective calibration are selected. Then, several static approaches are compared to
identify the best static approach. Finally, the static and variable approaches are compared to find the
best approach. The following subsections describe the result of each step in Figure 5.
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4.1. Numerical Experiment Setup

To select the two objectives, a scatter plot of a pair of the MAIs summarized in Table 1 was drawn
for visual inspection for detecting the potential correlation between two indicators using a fitted
linear regression line. Figure 6 shows the scatter plot of representative pairs: NSF versus Total MSE
(TMSE) (Figure 6a), TMSE versus TPFD (Figure 6b), PB versus TPFD (Figure 6c), and NSF versus PB
(Figure 6d). Although a perfect linearly negative correlation exists between NSF versus TMSE such
that increasing the TMSE will result in decreasing the NSF (Figure 6a), a moderate linearly positive
correlation exists between TMSE and TPFD (Figure 6b). Although the points were scattered widely
around the fitted linear regression line, a trade-off relationship is expected to exist between PB and
TPFD (Figure 6c). It appears that finding non-dominating points will provide valuable information
for the optimal relationship between the two indicators (e.g., marginal TPFD changes with respect
to the unit increase of PB). The Pearson correlation coefficient of representative pairs among TPFD,
NSF, PB, and TMSE is summarized in Table 3. It should be noted that although the negative coefficient
value was close to zero (Table 3), a no trade-off relationship might exist between NSF and PB, which is
shown as a potential linear relationship at the right lower corner of the scatter plot (Figure 6d).

Therefore, minimizing TPFD and minimizing PB were selected as the two objectives of Equation
(1) (i.e., f 1 = PB and f 2 = TPFD). The three largest peak flows occurred during the study year on
1 December 1948; 1 April 1949; and 2 May 1949, on Days 61, 183, and 214, respectively (Figure 5b).
The absolute error between the observed and simulated streamflow for the three times was used for
calculating TPFD (Table 1).

Table 3. Correlation coefficient of representative pairs of model accuracy indicators (MAIs) in Table 1.

TPFD NSF PB TMSE

TPFD 1.0
NSF −0.455 1.0
PB −0.228 −0.049 1.0

TMSE 0.504 −1.0 0.086 1.0

Notes: TPFD: Three Peak Flow Difference; NSF: Nash–Sutcliffe Measure; PB: Percent Bias; TMSE: Total Mean
Squared Error.
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Figure 6. Three representative plots showing 1000 randomly generated points in the two-objective
space: (a) Nash–Sutcliffe Measure (NSF) versus Total Mean Squared Error (TMSE); (b) TMSE versus
Three Peak Flow Difference (TPFD); (c) Percent Bias (PB) versus TPFD; and (d) NSF versus PB.
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In this study, the four proposed variable balancing approaches for the exploration and exploitation
of NSGA-II with SBX and PM were compared to the static balancing approaches using the performance
metrics, SQM, SPM, and COM. In the static approaches, where CDI and MDI are kept constant
during optimization (Figure 2), three sets of the parameters are applied following Zhang et al. [28]:
(CDI, MDI) = (0.5, 0.5), (2.0, 0.5), and (20, 20). In total, seven balancing approaches were compared using
three different Crates, Crate = 0.9, 0.75, and 0.6, which controls the frequency of visiting SBX and PM. Note
that this study assumed that Crate was kept constant during optimization following Zhang et al. [28].
Table 4 summarizes the parameter values and the method of the experiments considered.

Table 4. Parameter values of the experiments.

Crossover and Mutation
Rates (Crate)

Static Balancing Approaches
(Three Cases) (CDI, MDI)

Variable Balancing Approaches
(Four Cases)

0.6 (0.5, 0.5) PSF1 for CDI and MDI
0.75 (2.0, 0.5) PSF2 for CDI and MDI
0.9 (20, 20) PSF1 for CDI and PSF2 for MDI

PSF2 for CDI and PSF1 for MDI

Notes: CDI: crossover distribution index; MDI: mutation distribution index; PSF1: parameter-setting-free method
that increases the algorithm parameter value from its minimum to maximum; PSF2: PSF that decreases the algorithm
parameter value from its maximum to its minimum.

4.2. Selection of the Appropriate Number of Populatiosn and Generations

First, this study performed a sensitivity analysis of the NPOP and NGEN on the performance
of NSGA-II with SBX and PM. Before comparing the aforementioned balancing approaches, the
appropriate NPOP and NGEN should first be identified as suitable for the complexity of the modified
HYMOD model with six parameters. The combinations of NPOP of 30, 50, and 100 and NGEN
of 100, 500, and 1000 (nine cases) were applied to the multiobjective model calibration and were
compared with respect to SQM, SPM, and COM. Ten independent runs with randomly generated
initial populations were performed to guarantee the reliability of the results. A Crate of 0.9 was
used [28] with the constant CDI and MDI of (20, 20). To quantify the three performance metrics, the
global Pareto solutions Z* were first identified by gathering and non-dominatedly sorting all Pareto
solutions found from the nine cases.

Figure 7 shows 511 global Pareto solutions (Z*) identified from the non-dominated sorting of
5400 (=10 independent runs × 3 NGEN cases × (30 + 50 + 100)) Pareto solutions obtained from the
optimization of the nine cases (i.e., 9.46% of the Pareto solutions were the global Pareto solutions).
No point was located at the lower-left corner of the global Pareto solutions because no solutions were
found with a lower PB and lower TPFD than those solutions (Figure 7).

Several statistics of SQM (i.e., total SQM, mean SQM, and standard deviation (stdv) of SQM) and
the mean value of SPM and COM are summarized in Table 5. The total SQM is the total number of
global Pareto solutions found from 10 independent optimization runs for a case. The mean SQM is
an expected value of SQM for a single optimization run, calculated as the total SQM divided by 10.
The stdv of the SQM is a robustness measure that indicates the variation of the algorithm performance
over the runs. Therefore, greater values of total SQM and mean SQM are preferred, whereas smaller
values are favorable for the stdv of SQM.
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Table 5. Performance metrics of combinations of the nine cases of the number of populations (NPOP)
and the number of generations (NGEN). The total number of global Pareto solutions is 511.

NPOP = 30 NPOP = 50 NPOP = 100

NGEN = 100

Total SQM 1 3 60
Mean SQM (stdv) 0.1 (0.316) 0.3 (0.675) 6 (5.907)

Mean SPM 0.798 0.621 0.994
Mean COM 0.127 0.057 0.061

NGEN = 500

Total SQM 24 40 232
Mean SQM (stdv) 2.4 (2.989) 4 (5.033) 23.2 (6.647)

Mean SPM 0.703 0.820 0.825
Mean COM 0.026 0.048 0.014

NGEN = 1000

Total SQM 1 28 122
Mean SQM (stdv) 0.1 (0.316) 2.8 (1.814) 12.2 (4.872)

Mean SPM 0.826 0.855 0.895
Mean COM 0.058 0.031 0.066

Notes: SQM: solution quality metric; SPM: spacing metric; COM: convergence metric; stdv: standard deviation.

Although an NPOP of 30 resulted in the poorest performance (e.g., total SQM = 1 for the cases
NGEN = 100 and 1000), NPOP = 100 guaranteed the best performance with respect to SQM. NPOP
had a greater impact on the algorithm performance than NGEN. In this study, NPOP = 100 and
NGEN = 500 were selected for testing the static and variable balancing approaches because they
yielded the greatest number of global Pareto solutions, where 45.4% of the global Pareto solutions
were identified by this case, and the smallest mean COM value of 0.014 (gray filled cases in Table 5).
The mean COM of the second-best case, NPOP = 100 and NGEN = 1000, was 0.066 (Table 5). It should
be noted that the coefficient of variation of the SQMs of the selected case (CV = 6.647/23.2 = 0.287) was
lower than the second-best case (CV = 4.872/12.2 = 0.399), indicating the production of more reliable
final solutions.

4.3. Comparison of the Static and Variable Balancing Approaches

This study compared the static and variable balancing approaches in three steps. First, the static
approaches with nine different Crates, CDI, and MDI sets were compared to identify the best static
balancing approach. Ten independent runs were performed by using each combination of the nine
cases (Table 4). Then, all Pareto solutions were gathered to identify the global Pareto solutions. A total
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of 990 global Pareto solutions was obtained, which was 11% of all Pareto solutions from the nine
cases. The SQM, SPM, and COM were calculated using the identified global Pareto solutions and
are summarized in Table 6. The greatest number of global Pareto solutions was found from the case
Crate = 0.6 and (CDI, MDI) of (20, 20). The case Crate = 0.6 and (CDI, MDI) of (2.0, 0.5), guaranteed
the closest Pareto solutions to the global Pareto front, where the mean COM was 0.006. This result is
different from the best parameter set found by Zhang et al. [28]. They confirmed that (CDI, MDI) of
(0.5, 0.5) resulted in the best performance among the three sets of (CDI and MDI) with a Crate of 0.9 in
a multiobjective parameter calibration of a SHETRAN model minimizing the RMSE and minimizing
the LOGE. Therefore, we confirmed that the best algorithm parameter set varies depending on the
complexity of the hydrological model and the formulation (e.g., the considered objective function) of
the optimal calibration model.

Table 6. Performance metrics of the nine cases of the crossover rate (Crate) and (crossover distribution
index (CDI) and mutation distribution index (MDI)) combinations. The total number of global Pareto
solutions is 990.

(CDI, MDI)

(0.5, 0.5) (2.0, 0.5) (20, 20)

Crate = 0.6
Mean SQM (stdv) 10.6 (3.8) 12.5 (5.8) 13.9 (15.8)

Mean SPM 0.828 0.761 0.850
Mean COM 0.008 0.006 0.088

Crate = 0.75
Mean SQM (stdv) 10.7 (5.0) 12 (5.8) 12.4 (14.7)

Mean SPM 0.829 0.793 0.777
Mean COM 0.008 0.007 0.008

Crate = 0.9
Mean SQM (stdv) 8.8 (2.9) 8.2 (3.7) 9.9 (4.0)

Mean SPM 0.805 0.766 0.749
Mean COM 0.012 0.012 0.009

Notes: SQM: solution quality metric; SPM: spacing metric; COM: convergence metric; stdv: standard deviation.

Second, the best variable balancing method was identified among the 12 cases, which included
combinations of Crates of 0.6, 0.75, and 0.9 and Approaches 1 to 4 (Table 4). The Crate was fixed
during optimization, whereas CDI and MDI varied over generations using either PSF1 or PSF2. A total
of 805 global Pareto solutions was identified, which is 6.7% of all Pareto solutions from the 12 cases.
The solutions were compared with those found from the first step (i.e., static balancing cases).

Figure 8a shows all of the Pareto fronts obtained from the two balancing approaches; their global
Pareto fronts are drawn in Figure 8b. It was confirmed that the global Pareto solution of the variable
approaches dominated that of the static approaches, indicating that the former outperformed the latter.
The gap between the two global fronts was significant as the inferiority level of the latter. Using fixed
CDI and MDI (i.e., static approach) would result in providing false information regarding the trade-off
relationship between the two objectives to decision makers (Figures 7 and 8b). For example, the global
Pareto solution of the TPFD of 6 mm/day resulted in a PB of 4.7% in the variable approach and 13.1%
in the static approach.

Finally, the global Pareto front was extracted from all Pareto solutions of all static and variable
cases to quantify the performance metrics and to confirm the results from the second step. Table 7
summarizes the valued of SQM, SPM, and COM of the 21 total cases (=9 static cases + 12 variable cases).
As expected, the mean SQMs of the static approach is zero, indicating the Pareto solutions obtained by
the static approach are inferior to those obtained by the variable approach. The mean SPM and COM
values of the variable approaches were significantly lower than those of the static approaches, which
indicates that the former produced a more converged solution with a widespread front.

Most global Pareto solutions were identified by Approaches 3 and 4 when using Crates of 0.6
and 0.9 (gray filled cases in Table 7). Approaches 3 and 4 changed the focus of the exploration and
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exploitation differently for SBX and PM. For example, Approach 3 focused on the exploration (CDI

begins at 0.5) in the early phase and the exploitation (CDI approaches 20) in the latter phase for SBX and
considers the opposite for PM (Figures 1 and 2). Considering the same exploration and exploitation
variations (Approaches 1 and 2) resulted in poor performance (Table 7).
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Figure 8. Comparison of the Pareto optimal solutions obtained by using static and variable approaches:
(a) Pareto solutions identified by the two approaches, each of which was run independently;
(b) comparison of the two global Pareto fronts, where each global Pareto front was extracted
independently; and (c) global Pareto fronts identified by the two best cases: Crate = 0.6 and Approach
3, represented by the x symbol, and Crate = 0.9 and Approach 4, indicated by the cross symbol.

For a high Crate (i.e., 0.9), Approach 4 outperformed Approach 3 with respect to all three
performance metrics (Table 7). For a low Crate of 0.6, Approach 3 performed better than Approach
4 with respect to SQM, whereas SPM and COM were similar. The global Pareto solutions found by
Approach 3 with a Crate of 0.6 and those by Approach 4 with a Crate of 0.9 were located throughout
the entire front (Figure 8c), indicating the ability to develop widespread Pareto solutions. Interestingly,
an intermittent level of crossover rate (i.e., Crate of 0.75) resulted in poor performance compared with
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the other variable approach cases. Therefore, a careful sensitivity analysis should also be conducted on
the fixed Crate to be used with variable approaches.

Table 7. Performance metrics of all 21 static and variable cases. The total number of global Pareto
solutions is 805.

Static Approach (CDI, MDI) Variable Approach (Table 4)

(0.5, 0.5) (2.0, 0.5) (20, 20) Approach 1 Approach 2 Approach 3 Approach 4

Crate = 0.6
Mean SQM (stdv) 0 0 0 0 0 22.3 (4.138) 16.9 (5.705)

Mean SPM 2.081 1.525 1.241 1.278 1.597 1.269 1.299
Mean COM 0.189 0.175 0.255 0.193 0.228 0.017 0.013

Crate = 0.75
Mean SQM (stdv) 0 0 0 0 0 0.1 (0.316) 0

Mean SPM 2.081 2.023 1.945 1.266 1.180 1.280 1.599
Mean COM 0.186 0.201 0.181 0.158 0.232 0.191 0.194

Crate = 0.9
Mean SQM (stdv) 0 0 0 0 0 19.9 (7.880) 21.3 (4.084)

Mean SPM 1.801 1.646 1.416 1.426 1.551 1.138 1.149
Mean COM 0.214 0.208 0.194 0.206 0.218 0.062 0.011

Notes: CDI: crossover distribution index; MDI: mutation distribution index; Crate: crossover rate; SQM: solution
quality metric; SPM: spacing metric; COM: convergence metric; stdv: standard deviation. Mean SQM is 4.3 when it
is assumed that all methods are performed equally. Note that a case with a mean SQM of zero indicates no global
Pareto solution was found. The metrics SPM and COM are relative measures. For example, a method with a mean
SPM of 2.081 produces a Pareto front 168% wider than that of an approach with a mean SPM of 1.241. Similarly,
a method with a mean COM of 0.255 indicates a Pareto front 1962% farther from the global Pareto front compared
to an approach with a mean COM of 0.013.

4.4. Calibrated Parameters and Hydrographs

The solutions were positioned on different parts of the Pareto front. To determine the cause of
this result, the calibrated values of the six parameters of the HYMOD model (Table 2) were inspected.
Figure 9 shows the parameter ranges of the global Pareto solutions obtained by the variable balancing
approaches, and the Pareto front is shown in Figures 8 and 10. It should be noted that the plotted
values in Figure 9 are the normalized parameter values using each parameter’s maximum value
(Table 2). It was found that the final parameter sets can be classified into two groups: one with two
quick flow reservoirs (Group 1) and the other with a single quick flow reservoir (Group 2). Each group
had distinctively different ranges for some parameters (Figure 9). For example, Group 1 had a shape
parameter B of less than 0.026 and quick and slow flow distribution ratios α of about 0.6 (Figure 9).
In addition, the leakage rate of the slow flow reservoir Kslow was close to 0.1/day for all solutions in
Group 1. In contrast, Group 2 had B values between 0.1 and 0.42 and α close to 1. Kslow had a wide
range of values.

Because of such differences in the parameter values, the solutions with two quick flow reservoirs
were located in the low PB and high TPFD region of the global Pareto front, whereas those with a
single quick flow reservoir were located in the medium-to-high PB and low TPFD regions (Figure 10).

Most rainfall excess is directed to slow flow tanks when α is close to 1 (Figure 3). Therefore, the
contribution of a single quick flow reservoir is negligible to the final discharge of the HYMOD model
in Group 2 (n = 1 and α close to 1). In addition, its Kquick value was lower than that for Group 1 (n = 2)
(Figures 3 and 8). Conversely, the parameter values of Group 1 (n = 2) were in the physically sound
ranges in which about 40% of the rainfall excess flowed to a series of two quick flow tanks with Kquick
of approximately 0.54/day and a single slow flow tank with Kslow close to 0.1/day (Figure 9).

Finally, the three simulated hydrographs were compared with the observed hydrograph
(Figure 11). The two simulated hydrographs were obtained by using: (1) the lowest PB (PB of
3.04 × 10−8 and TPFD of 9.07 mm/day; simulated hydrograph 1); and (2) the lowest TPFD (PB of
29.71% and TPFD of 3.96 mm/day; simulated hydrograph 2). These two solutions are located at each
end of the global Pareto front (Figure 10), representing a hydrograph obtained by using parameters of
Group 1 and Group 2, respectively. A simulated hydrograph of PB of 1.87% and TPFD of 8.35 mm/day
was also plotted (simulated hydrograph 3) as a reference hydrograph. The three peak flow observations
are labeled Peak 1, Peak 2, and Peak 3 in Figure 11.
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Figure 11. Observed and simulated hydrographs obtained by using three representative global Pareto
solutions. The first has a percent bias (PB) of 3.04 × 10−8% and three peak flow difference (TPFD) of
9.07 mm/day (simulated streamflow 1), the second has a PB of 29.71% and TPFD of 3.96 mm/day
(simulated streamflow 2), and the third has a PB of 1.87% and TPFD of 8.35 mm/day (simulated
streamflow 3).
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It appears that simulated hydrograph 1, having the greatest TPFD, better fits the three peaks
than the simulated hydrograph 2, having the lowest TPFD (Figure 11). However, Figure 12 shows
that hydrograph 1 significantly sacrificed accurate prediction of the third peak flow (Peak 3) for the
optimization of PB (Figure 12c). Because PB measures the difference between the means of the observed
and simulated streamflows, more focus is put on adjusting the very high flows to match the two mean
values. It should be noted that the flow magnitude observation of Peaks 1 and 2 are 56% and 71%
greater than that of Peak 3, respectively. For this reason, the error for the day at Peak 3 of simulated
hydrograph 1 was 8.39 mm/day (Figure 12c), whereas negligible error was present for the days for
Peaks 1 and 2 (Figure 12a,b, respectively).
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Figure 12. Closer view of the hydrograph of the three peak flows in Figure 11: (a) Peak 1; (b) Peak 2;
and (c) Peak 3.

In contrast, simulated streamflow 2, having the lowest TPFD, was well matched to the observed
streamflow on all three peak days (Figure 12a–c). However, greedy blind searching characteristics
of the automatic calibration were detected. That is, in order to minimize the TPFD, the streamflow
value at a time interval before the peak day was increased or the concentration time of peak flow
was shortened, resulting in moderate to high error on the first two peak days (Peaks 1 and 2;
Figure 11a,b). Because matching the simulated streamflow only at the three time intervals, at days
183 (Figure 12a), 61 (Figure 12b), and 214 (Figure 12c), is the objective considered in the multiobjective
calibration model (Equation (1)), errors in the neighborhood time intervals were not considered.
Therefore, it is recommended that the sum of the absolute error at the peak flow days and the
error at their neighborhood time intervals at both sides of the rising and falling limbs be considered
when formulating peak flow accuracy measures. A hydrologist should pay very careful attention in
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selecting and formulating objective functions when employing automatic parameter calibration of
a hydrological model.

5. Discussion

This study has several limitations that should be addressed by future research. First, the proposed
balancing approaches should be compared with the traditional static approaches in the single and
multiobjective calibration of hydrological models with different levels of complexity (e.g., a spatially
distributed hydrological model). In addition, such comparison can be conducted in a multiobjective
parameter calibration with different sets of competing objectives and more than two objectives.
From thorough investigations, a generalized conclusion on how to improve solution quality and
guarantee the best performance can be derived to serve as a guideline for automatic parameter
calibration of hydrological models. Second, this study assumed a Crate of NSGA-II as a fixed value.
However, the Crate can be varied over generations, as with CDI and MDI, such that the best performing
method could be different from our findings. The final Pareto solutions were used for the comparison of
different balancing approaches in this study. However, run-time searching behavior of the approaches
could also be investigated by employing run-time performance metrics (e.g., Zheng et al. [45]).

6. Summary and Conclusions

This study proposed variable balancing approaches for the exploration and exploitation of
NSGA-II with SBX and PM in the multiobjective automatic parameter calibration of a lumped
hydrological model, the HYMOD model. Six model parameters for maximum storage capacity,
soil moisture capacity distribution, ratio between quick and slow flows, the number of quick flow
reservoirs, and leakage rates for quick and slow flow tanks were used. The two objectives of minimizing
the percent bias and minimizing the sum of the absolute error at three peak flow days were selected
by visual inspection, linear regression, and Pearson correlation analysis of a pair of various MAIs
quantified by using randomly generated model parameter values. The proposed balancing approaches,
which migrate the focus between exploration and exploitation over generations by varying CDI and
MDI, were compared with traditional static balancing approaches (the two dices value is fixed during
optimization) in a benchmark hydrological calibration problem for the Leaf River (1950 km2) near
Collins, Mississippi. Three performance metrics, the solution quality, spacing, and convergence (SQM,
SPM, and COM, respectively), were used to quantitatively compare the performance of the two
different balancing approaches. NPOP = 100 and NGEN = 500 were selected from sensitivity analysis
and were used for optimization.

First, a scatter plot of a pair of the MAIs summarized was drawn for visual inspection for detecting
the potential correlation between two indicators by using a fitted linear regression line. A trade-off
relationship was found between PB and TPFD. PB measures the difference between the means of the
observed and simulated streamflows, whereas TPFD calculates the sum of three peak flow differences.
The Pearson correlation coefficient between the two measures was −0.228, indicating a negligible
correlation exists.

Then, the best static approach was identified from nine cases of Crate and (CDI, MDI) with
combinations of Crates of 0.6, 0.75, and 0.9 and (CDI, MDI) values of (0.5, 0.5), (2.0, 0.5), and (20, 20).
A high value of CDI (or MDI) results in children solutions that are more similar to the parent solutions
(exploitation), whereas small values of CDI (or MDI) emphasize exploration. It was found that a Crate
of 0.6 and (CDI, MDI) of (2.0, 0.5) and (20, 20) resulted in the best performance. The greatest number
of global Pareto solutions (mean SQM = 13.9) was found in the case (CDI, MDI) of (20, 20), and the
best convergence (mean COM = 0.006) was observed in the case (CDI, MDI) of (2.0, 0.5). These results
are different from those of Zhang et al. [28], who found the best performance with a Crate of 0.9
and (CDI, MDI) of (0.5, 0.5) in the calibration of a spatially distributed hydrological model. Therefore,
sensitivity analysis on the algorithm parameters should be conducted to identify the best parameter set,
particularly when an algorithm for use has not been previously combined with a hydrologic model.
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The overall best balancing approach was determined from the comparison of the nine static
approaches and 12 variable approaches. Twelve cases of the variable approaches were generated
from the combinations of Crate of 0.6, 0.75, and 0.9 (three cases) and four approaches for variable
CDI and MDI (Approaches 1 to 4). Although the variable approaches with Crates of 0.6 and 0.9 and
Approaches 3 and 4 outperformed other approaches, the greatest number of global Pareto solutions
was found from the variable cases with a Crate of 0.6 and Approach 3 and with a Crate of 0.9 and
Approach 4. Approaches 3 and 4 migrate the focus of exploration and exploitation differently for
SBX and PM, which results in better performance than that with Approaches 1 and 2 using the same
variable balancing scheme.

Finally, the parameter ranges of the global Pareto solutions were examined to determine which
differences in model parameter values result in different objective function values. The global Pareto
parameter set with two quick flow reservoirs resulted in low PB and high TPFD, whereas that with a
single quick flow reservoir had irregular parameter values. In addition, three representative simulated
hydrographs and the observed hydrograph were compared. Greedy blind searching characteristics
of the automatic calibration were detected from the global Pareto solutions with a single quick
flow reservoir. That is, the error at neighboring times of peak flow days was increased in order
to minimize TPFD. The low PB solutions sacrificed the accuracy of the smallest of the three peak
flows. It is recommended that the sum of the absolute error at the peak flow days and the error at
their neighborhood time intervals at both sides of the rising and falling limbs be considered when
formulating peak flow accuracy measures.
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