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Abstract: Constructed wetland-coupled microbial fuel cell systems (CW-MFCs) incorporate an
aerobic zone and an anaerobic zone to generate electricity that achieves the oxidative degradation
of contaminants. However, there are few reports on the performance of such coupled systems.
In this study, we determined the optimal configuration of CW-MFCs to characterize their electricity
generation performance. Based on the results using different levels of dissolved oxygen among the
CW-MFCs, we concluded that a 20-cm distance between the anode and cathode produced an optimal
removal of chemical oxygen demand (COD) of 94.90% with a 0.15 W/m3 power density, 339.80 Ω
internal resistance, and 0.31% coulombic efficiency. In addition, a COD of 200 mg/L provided greater
electricity generation (741 mV open circuit voltage, 0.20 W/m3 power density, 339.80 Ω internal
resistance, and 0.49 mA current) and purification ability (90.45% COD removal) to meet system COD
loading limitations than did higher COD values. By adding 50 mM phosphate buffer solution to
synthetic wastewater, relatively high conductivity and buffer capacity were achieved, resulting in
improvement in electricity generation. These findings highlight important aspects of bioelectricity
generation in CW-MFCs.

Keywords: constructed wetland; microbial fuel cell systems; bioelectricity generation; power density;
internal resistance

1. Introduction

Microbial fuel cells (MFCs), which make use of domestic sewage, industrial effluent, leachate,
sediment, and rhizodeposits as biodegradable substrates, offer a technology for electricity generation
in addition to benefits for the environment [1–3]. Organic matter can be used as a renewable resource
to generate electrons and protons via electrochemically active bacteria in MFCs [4–6]. Protons are
released into solution and electrons are produced at the anode; subsequently, at the interface of the
cathode, electrons pass through the outer circuit before they can reach the cathode and combine with
electron acceptors [7,8]. Single-chamber MFCs with an anion exchange membrane (AEM), which
serves to thoroughly separate the aerobic and anaerobic regions, are the most widely studied MFC
systems [9,10].

Numerous studies have focused on exploiting constructions in MFCs [11], and there is a need to
study the systems with electric potential between the anode and cathode. Various MFC systems with
such configurations have been the focus of recent studies. Plant-MFCs and MFC-coupled constructed
wetlands (CW-MFCs) have also been studied [12,13]. In one such system, microbes in the anaerobic
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anode compartment, where the roots of plants were located, were able to use the carbon dioxide fixed
by photosynthesis to convert rhizodeposits (e.g., sugars, organic acids, polymeric carbohydrates, and
enzymes), and achieved a maximum power density of 67 mW/m2 [14]. In fact, roots can release
a lot of oxygen, and the oxygen promoted the electricity generation performance of the cathode.
Chiranjeevi et al. integrated an MFC with a submerged and emergent macrophyte-based system to
harvest energy [15]. The roots do not provide organic carbon to the anode.

The design of the vertical subsurface-flow CW-MFC (VSFCW-MFC) is not drawn from the
empirical design of conventional CWs because it needs to be suitable for electricity generation.
Taking high power density as an example, the system requires low internal resistance, which is
achieved by reducing the distance between the two electrodes and increasing the conductivity of the
electrolyte. Previous studies have suggested that a suitable distance between the anode and cathode
is 18−62 cm. Phosphate buffer solution (PBS) in the MFC contributes to maintaining a neutral pH
for microorganisms, increasing conductivity, and avoiding the transportation limitation of protons
in the biofilm by forming the conjugate acid of the buffer [16]. A concentrated PBS is expected to
improve the performance of the system. Moreover, the rate of biodegradation is limited, in particular
for some complex polymeric organic substrates [17]. Polymeric organic substrate wastewater passing
through the anode flushes the cathode and causes a decrease in the cathode potential, which results in a
decrease in electricity production. Villasenor et al. reported that degradation efficiency decreased with
increasing chemical oxygen demand (COD) and concentration, and correspondingly, the electricity
produced in a horizontal subsurface flow CW-MFC decreased [18].

Most studies have focused on the effects of redox conditions [19], electrode material [20], plants
and bacteria [21], and flow models of organic loading [19]. However, few studies have explored the
effects of the system structure and presence of PBS on performance. Therefore, we investigated the
effects of varying the distance between the electrodes, influent COD loading, and PBS to improve the
electricity generation and pollutant removal of a VSFCW-MFC.

2. Materials and Methods

2.1. Construction of the Fuel Cell

The MFC was integrated with a vertical organic glass pipe (internal diameter, 30 cm; height,
50 cm) with sampling outlets every 5 cm along its length and was filled with sections consisting of a
gravel layer (gravel diameter, 3 mm, Nanjing Zhongdong Chemical Glass Instrument Co., Ltd, Nanjing,
China), the anodic electrode layer (thickness, 10 cm), a second gravel layer, and the cathode layer
(thickness, 2.5 cm), as shown in Figure 1a. Both electrodes consisted of granular activated carbon
(GAC; 3–5 mm in diameter and 500–900 m2/g in specific area, Jiangsu Zhuxi Activated Carbon Co.,
Ltd., Nanjing, China) pretreated according to previous methods [22]. A stainless steel mesh current
collector (304SS; 30-cm total diameter, 3-mm thickness, 1.7-mm mesh size, and 0.42-mm wire diameter,
Nanjing Zhongdong Chemical Glass Instrument Co., Ltd., Nanjing, China) buried in the electrode
was linked to the external circuit with an insulated titanium wire; the circuit was connected to a data
acquisition module to measure the voltage (V) data (DAM-3058R and DAM-3210, Art Technology
Co. Ltd., Beijing, China). The total volume of the system was 35.3 L, with a total effective working
volume of 12.4 L, compared to an effective volume of 2.1 L for the anode. After they had been planted
for 1 month at an ambient temperature of 28 ◦C, 10 Phragmites australis were transplanted in the
cathode layer. To culture the microorganisms, anaerobic sludge (mixed liquor suspended solids,
60 g/L) was collected from the East City Municipal Wastewater Treatment Plant, Nanjing, China.
Condensed anaerobic slurry (GAC: Sludge volumetric ratio, 2.5:1) was added to the VSFCW-MFC,
and synthetic wastewater (SW) was transported using a peristaltic pump (BT100-1L, Baoding Longer
Precision Pump Co., Ltd., Baoding, China). The nutrient solution used in the start-up phase contained:
Glucose, 200.00 mg/L; KNO3, 252.50 mg/L; K2HPO4·3H2O, 26.32 mg/L; NaHCO3, 336.00 mg/L;
NaCl 330.00, mg/L; and 10.00 mL micronutrients [1]. Based on our pre-experiment, the hydraulic
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retention time was estimated to be 48 h, and the flow rate of the system was 6.36 mL/min (surface
loading rate: 0.0055 m3/(m2·h)). The VSFCW-MFCs were covered with black adhesive tape to prevent
algae growth. All experiments were operated continuously for 3 months indoors at 28 ± 2 ◦C with
a relative humidity of 55%–70%. The nutrient solution (first trial: SW with PBS, Table 1) was used
during the stable period.
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Figure 1. Schematics of the vertical subsurface-flow wetland-coupled microbial fuel cell systems
(VSFCW-MFCs). (a) Experimental set-up and (b) VSFCW-MFCs with distances ranging from 10 to
40 cm between the electrodes.

Table 1. Concentrations and components of synthetic domestic wastewater in the VSFCW-MFCs.

First Trial: Synthetic Wastewater (SW)
with Phosphate Buffer Solution (PBS) Second Trial: SW without PBS Third Trial: SW without PBS

Ingredient Concentration (mg/L) Ingredient Concentration (mg/L) Ingredient Concentration (mg/L)

Glucose 200.00 Glucose 200.00 Glucose 200.00
Carbamide 10.00 KNO3 252.50 KNO3 252.50

NH4Cl 310.00 KH2PO4 26.32 KH2PO4 26.32
NaH2PO4 4970.00 NaHCO3 336.00 NaHCO3 336.00
Na2HPO4 2750.00 MgSO4·7H2O 200.00 NaCl 330.00

KCl 130.00 CaC12 15.00 MgSO4·7H2O 200.00
NaHCO3 3130.00 FeC13·6H2O 1.00 CaC12 15.00

(NH4)2SO4 560.00 MnSO4·H2O 28.00 FeC13·6H2O 1.00
MgSO4·7H2O 200.00 CoCl2·6H2O 2.40 MnSO4·H2O 28.00

CaC12 15.00 Na2Mo4·2H2O 0.40 CoCl2·6H2O 2.40
FeC13·6H2O 1.00 − − Na2Mo4·2H2O 0.40
MnSO4·H2O 28.00 − − − −
CoCl2·6H2O 2.40 − − − −

Na2Mo4·2H2O 0.40 − − − −

2.2. Electrochemical and Chemical Monitoring

A variation of output voltage of approximately 10% per day indicated stabilization in the
CW-MFCs. The voltage between the anode and cathode was recorded automatically every 5 min using
a data acquisition module (DAM-3058R and DAM-3210, Art Technology Co. Ltd., Beijing, China).
The current density was calculated following Ohm’s Law based on the effective working volume (2.1 L)
of the anode and the power density equation given below:

P = I·U/V (1)
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where P is power density, I is current, U is the voltage, and V the effective working volume (2.1 L) of
the anode.

Pt = I·U/V (2)

where Pt is power density, I is current, U is the voltage, and V the total effective working volume
(12.4 L) of the VSFCW-MFC.

The polarization profile [23] was obtained 1 week after a period of stable operation (after 20 days
of operation), during which the resistance load increased from 5 to 105 Ω. The open circuit voltage
was not measured until the system had been kept open for 12 h.

The coulombic efficiency resulting from the redox reaction was calculated from the following
equation [1]:

ηCE =
I

F × 4
32 × Qin × ∆COD

(3)

where ηCE is coulombic efficiency, F represents the Faraday constant, Qin represents the water flow of
influent (L/s), and ∆COD is the variation in effluent and influent COD.

The dissolved oxygen (DO) of the wastewater from the sampling outlets was measured using a
DO instrument (DO-31P; DKK-TOA, Tokyo, Japan) during the period of stable operation. The standard
potential of calomel reference electrode was made by the Shanghai INESA Scientific Instrument Co., Ltd.
(323-01; Shanghai, China). COD was monitored according to the American Public Health method [24].
Linear regression was used to analyze the correlation between voltage and DO concentration with
Microsoft Excel 2010.

2.3. Operating Parameters

To determine the effects of changing the distance between the two electrodes, the anode was
positioned 10, 20, 30, and 40 cm from the cathode in the period of stable operation (Figure 1b).
The components of the SW with and without PBS are shown in Table 1 [1,25,26].

3. Results and Discussion

3.1. Effects of DO on Voltage in the VSFCW-MFC System

The average voltages of the different distances between the two electrodes, except for the start-up
stage, are shown in Figure 2a. The 20-cm spacing had a voltage of around 560 mV throughout the
experiment, while the 30-cm spacing yielded a voltage of 520 mV. However, the 10-cm and 40-cm
spacings produced voltages of only about 440 mV and 420 mV, respectively.

Organic matter in wastewater is degraded and consumed by DO, and thus forms anoxic conditions
suitable for catalytic exoelectrogens. Oxygen demand in the wastewater decreased and DO was
gradually replenished, entering the cathode compartment at a high concentration compared to other
studies [18]. In addition, the macrophytes raised the DO concentration and simultaneously produced
negligible rhizodeposits.

The variation in DO was measured at the sampling outlets along the VSFCW-MFCs (Figure 2b).
When the same SW was fed into the system and electron accepters were neglected, the cathode potential
was determined primarily by the DO concentration in the MFCs [27]. The anaerobic condition was
related to the concentration of the exoelectrogens acting as efficient catalysts, which suggests that
electricity production was closely related to the DO level. First, DO decreased to a minimum, and then
increased starting about halfway along the length of the system. Comparing the four systems, the
minimum DO (0.43 mg/L) occurred in the 20-cm electrode spacing, and the maximum (4.73 mg/L) was
unexpectedly observed in the cathode. The electrode spacings of 10, 30, and 40 cm yielded minimum
DO concentrations of 0.60, 0.54, and 0.52 mg/L, respectively, and maximum DO concentrations of
4.30, 4.47, and 3.75 mg/L, respectively. In addition, the DO in the anode zones was 0.60−1.23 mg/L,
0.77−1.135 mg/L, and 0.79−1.37 mg/L, respectively. The variation in DO between the anode and
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cathode of the systems with different electrode spacings was significantly (Linear regression, r = −0.991,
p < 0.001) negatively correlated with the difference in voltage (Figure 2c).
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Figure 2. Effects of dissolved oxygen (DO) on voltage in VSFCW-MFCs. (a) Average voltages of
different electrode spacings in the experimental system (mean ± SE, n = 4); (b) Variation in DO
concentration from the bottom to the top of the reactors (mg/L) (mean ± SE, n = 4); (c) Correlation
of voltage with DO concentration at a single time point in the four reactors (The voltage and DO
measurement was taken at three time points respectively).
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3.2. Bioelectricity Generation with Different Electrode Spacings

The polarization and power density profiles with different external resistances are shown in
Figure 3. The maximum open circuit voltage of 741 mV was achieved for the 20-cm spacing with a
maximum current density of 0.49 A/m3 and maximum power density of 0.20 W/m3 (Pt = 0.034 W/m3)
with an external resistance of approximately 400 Ω. An open circuit voltage of 717 mV was measured
in the 30-cm spacing system, which obtained a maximum current density of 0.45 A/m3 and maximum
power density of 0.17 W/m3 (Pt = 0.029 W/m3) with an external resistance of approximately 400 Ω.
Lower performances were observed when the electrode spacing was 10 cm and 40 cm, with a
maximum open circuit voltage of 671 and 635 mV, respectively, maximum current density of 0.37 A/m3

and 0.36 A/m3, and maximum power density of 0.12 W/m3 (Pt = 0.020 W/m3)and 0.11 W/m3

(Pt = 0.019 W/m3). The internal resistance (Rint) was 385.80, 339.80, 367.68, and 406.32 Ω for a spacing
of 10, 20, 30, and 40 cm, respectively, using the linear part of the polarization curve (the external
resistance varied between 100 and 1000 Ω).
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Figure 3. Polarization curves and power density–current density curves for different electrode spacings
in VSFCW-MFCs.

Without distinguishing the resistance from different sources, the internal resistance consisted of
the activation resistance in the electrodes, the ohmic resistance, and the diffusion resistance. Fan et al.
proposed an equation to quantify the distribution of the internal resistance, and showed that the
distance between the anode and cathode was inversely proportional to the power generation [28].
However, except for the 10-cm spacing system (DO present in the system also affected the resistance
distribution), the resistance decreased when the spacing of the two electrodes decreased from 40 to
20 cm. The maximum current density and minimum internal resistance were achieved simultaneously
with an electrode spacing of 20 cm. However, the resistance of the VSFCW-MFC was high, consistent
with a previous report (internal resistance 188 Ω) [15]. This might be attributable to the poor contact
between the GAC and the steel mesh as well as the large distance between the two electrodes, which
caused a decrease in the power density compared to the 9.8 W/m3 with SW [18,29].

The variation in COD with different electrode spacing versus reactor height is shown in Figure 4,
and the performance of the VSFCW-MFC energy output is summarized in Table 2. The reactors were
operated with consecutive flow and an external resistance of 1000 Ω.
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Figure 4. Chemical oxygen demand (COD) removal efficiencies of different electrode spacings in
VSFCW-MFCs (mean ± SE, n = 4).

Table 2. Energy output of the VSFCW-MFCs. (mean ± SE, n = 4).

Electrode
Spacing (cm)

Current
Generation (mA)

Power Density
(W/m3)

COD Removal (%)
in Effluent

Coulombic
Efficiency (%)

10 0.44 ± 0.05 0.09 ± 0.01 89.60 ± 3.21 0.26 ± 0.03
20 0.56 ± 0.06 0.15 ± 0.02 94.90 ± 2.44 0.31 ± 0.02
30 0.52 ± 0.04 0.13 ± 0.02 93.31 ± 2.75 0.30 ± 0.03
40 0.42 ± 0.04 0.08 ± 0.01 85.42 ± 3.54 0.26 ± 0.01

The COD removal efficiency decreased with increasing electrode spacing in the VSFCW-MFCs
(Table 2). In addition, the electrical current does not enhance COD removal but the COD removal
results in an electrical current [30]. However, varying the position of the anodic compartment did not
affect DO.

In this study, the 20-cm electrode spacing achieved the maximum COD removal efficiency
of 94.90%, which resulted in a higher energy output with a power density of 0.0045 W/m2

(Pt = 0.025 W/m3) and fairly low coulombic efficiency of 0.31%. This might be because acetoclastic
methanogens compete with exoelectrogens for the same electron donor (acetate) and consume excess
biodegradable carbon [31–33]. In addition, electron acceptors such as nitrate, sulfate, and oxygen may
have caused the low efficiency.

3.3. Effect of Influent COD on Bioelectricity Generation

The COD concentration in influent affects the performance of the VSFCW-MFC reactor. The COD
concentration should satisfy the microorganisms’ requirements so that sufficient numbers of electrons
are released for electricity production in the system.

The COD removal with the 20-cm electrode spacing at different influent COD concentrations
is shown in Figure 5. With concentrations of 800, 400, and 200 mg/L, the average COD removal
efficiencies reached 90.76%, 90.99%, and 90.45%, respectively.
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Figure 5. COD removal along the VSFCW-MFC with a 20-cm electrode spacing at different influent
COD concentrations (mean ± SE, n = 4). PBS and glucose were added to make SW with CODs of 200,
400, and 800 mg/L with organic loadings of 0.30, 0.71, and 1.38 kg COD/(m3·d), respectively. The gray
area represents the projected anode area.

The maximum power densities and coulombic efficiencies for different influent COD
concentrations are illustrated in Table 3. When the concentration increased from 200 to 800 mg/L,
negative open circuit potentials of the anode varying from −500 to −526 mV (vs. SCE) were observed.
These results suggest that a higher COD concentration was beneficial for enhancing the active catalysis
of exoelectrogens. This was because microorganisms consumed more oxygen to degrade the increased
organic matter or SW with complex compounds with negative potential, and thus caused the open
circuit potential to decrease. The anode potential varied from −0.25 to 0.21 V, which increased the
maximum current, suggesting that an anode potential in the range of −526 to −500 mV might enhance
current generation [34]. The cathode open circuit potential simultaneously decreased from 241 to
101 mV (vs. SCE). This marked decrease resulted in a decrease in the open circuit voltage from 741
to 627 mV. Previous studies have reported no improvement in COD removal efficiency by increasing
the COD concentration. However, the organic matter was consumed when the cathode was exposed
to diverse Methanobacterium [35]. The oxidation-induced consumption of overflow organic matter
from the upper cathode compartment decreased the cathode potential. While the anode potential also
decreased, the cathode controlled the performance of the VSFCW-MFC [18]. Power generation was
limited by the cathode, although the exoelectrogens also significantly affected the performance of the
system [28]. In addition, the coulombic efficiency and the maximum power density indicated that
electron transfer to the external circuit was affected by overabundant COD, and that increases in the
COD concentration did not increase the power density of the system, while oxygen was utilized as an
electron accepter for the degradation of overflow SW by bacteria, rather than reacting with the electrons
from the cathode. Based on the polarization curve, the internal resistance varied with different influent
COD concentrations (Ro, 200 = 339.80 Ω; Ro, 400 = 360.50 Ω; and Ro, 800 = 395.55 Ω). Despite the
variation in electrolyte resistance, our results suggest that the accumulation of microorganisms feeding
on higher COD concentrations can block electron conduction on the interface of the activated carbon
acting as an electrode, which results in higher internal resistance. Therefore, COD is a key parameter
in the VSFCW-MFC, and it is critical to control its optimal range in the influent to optimize power
generation and the treatment of wastewater.
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Table 3. VSFCW-MFC energy extraction with different influent COD concentrations (mean ± SE, n = 4). PBS and glucose were added to make SW with CODs of 200,
400, and 800 mg/L with organic loadings of 0.30, 0.71, and 1.38 kg COD/(m3·d).

Substrate
Concentration (mg/L)

Bv (kg COD/
(m3·NAC·d)) Eoc (mV) Eoc,an (mV) Eoc,cat (mV) Pmax (W/m3)

Current
Generation (mA)

COD
Removal (%)

Coulombic
Efficiency (%)

Glucose COD = 200 296.88 ± 26.45 741 ± 34 −500 ± 39 241 ± 28 0.20 ± 0.02 0.49 ± 0.04 90.45 ± 4.14 1.30 ± 0.23
Glucose COD = 400 706.05 ± 38.62 698 ± 57 −511 ± 47 187 ± 24 0.17 ± 0.02 0.45 ± 0.03 90.99 ± 3.52 0.50 ± 0.04
Glucose COD = 800 1378.17 ± 121.23 627 ± 48 −526 ± 61 101 ± 13 0.13 ± 0.01 0.40 ± 0.03 90.76 ± 3.34 0.23 ± 0.03

Notes: Bv is the COD loading of the anode working volume; Eoc represents the open circuit voltage; Eoc,an is the open circuit potential of the anode; Eoc,cat is the open circuit potential of
the cathode; Pmax is the maximum power density calculated at an external resistance of 400 Ω; and current density and coulombic efficiency are consistent with Pmax.
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3.4. Electrical Performance with the Addition of PBS

A VSFCW-MFC with an external resistor of 1000 Ω was assembled to investigate the electrical
performance with the addition of PBS. Based on the previous experiment, the electrode spacing and
the influent COD concentration were controlled at 20 cm and 200 mg/L, respectively. The experiment
was separated into three periods. The systems were operated at stable conditions for about three weeks
for each period.

As shown in Figure 6a, the system reached a stable current density of 0.261 A/m3 with the
addition of 50 mM PBS. After dosing with PBS was stopped, the current density was maintained at
about 0.187 A/m3. Subsequently, the system was switched to 330 mg/L with the addition of sodium
chloride, and the stable current density was approximately 0.204 A/m3. Electrical conductivity was
measured at 8.25, 1.24, and 2.38 mS/cm, in Periods 1, 2, and 3, respectively. The conductivity of adding
50 mM PBS was almost seven-fold that of the system with no PBS. Due to the increased conductivity
accelerating the transfer of protons in solution, the system current density increased accompanied by
increased conductivity of the SW.
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Figure 6. Electrical performance with the addition of PBS to the VSFCW-MFC (Period 1, SW was mixed
with 50 mM PBS to enhance the conductivity and buffer capability; Period 2, only SW was fed into the
system; Period 3, sodium chloride was added to improve the conductivity of the SW). (a) Evolution of
voltage against time. (b) Polarization curves and power density–current density curves.
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The polarization curves and the power densities for the different periods are shown in Figure 6b.
The open circuit voltage reached 856, 706, and 741 mV for Periods 1, 2, and 3, respectively.
The maximum power density was 0.37 (Pt = 0.063), 0.17 (Pt = 0.029), and 0.20 W/m3 (Pt = 0.034 W/m3),
and the current density was approximately 0.94, 0.45, and 0.49 A/m3, respectively. As already
mentioned, the internal resistances were 209.78, 397.23, and 339.80 Ω during the three periods.
The wastewater had the maximum conductivity and minimum internal resistance when PBS was
added. Hence, electricity generation was enhanced by increasing the conductivity and buffer capability.

Ohmic resistance is related to wastewater conductivity and electrode conductivity [17]. Zhu et al.
showed that typical domestic wastewater and industrial effluent have a conductivity of 1 mS/cm,
while the electric conductivity was lower in a vertical subsurface flow constructed wetland [7]. Because
the internal ohmic losses of our system were high, increasing the solution conductivity to reduce the
internal resistance of the artificial wetlands was beneficial. Compared to the original wastewater,
the maximum current density increased by 48.90% with the addition of sodium chloride. Due to the
limitation of anode proton transfer, which constrained electricity production, 50 mM PBS was added
to regulate the biofilm pH and increase the conductivity, and a 2.1-fold increase in the current density
was obtained relative to the current density in Period 1. Torres et al. showed that current was linearly
proportional to the concentration of the buffer solution at a constant potential [16]. The accurate
injection of different concentrations of buffer solution to control the anode biofilm pH could be
investigated in future studies.

4. Conclusions

In this study, the maximum current density, coulombic efficiency, and COD removal rate
were obtained with an electrode spacing of 20 cm. The variation in DO between the anode and
cathode for different electrode spacings was significantly negatively correlated with the difference in
voltage. A comparatively low COD concentration (200 mg/L) helped to enhance electricity generation.
Furthermore, 50 mM PBS added to the SW decreased the internal resistance and ohmic loss. To increase
the use of CW-MFCs, optimum electrode materials for enhancing catalytic activities and electron
transfer properties should be investigated in future studies.
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