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Abstract: The emptying procedure is a common operation that engineers have to face in pipelines.
This generates subatmospheric pressure caused by the expansion of air pockets, which can produce
the collapse of the system depending on the conditions of the installation. To avoid this problem,
engineers have to install air valves in pipelines. However, if air valves are not adequately designed,
then the risk in pipelines continues. In this research, a mathematical model is developed to
simulate an emptying process in pipelines that can be used for planning this type of operation.
The one-dimensional proposed model analyzes the water phase propagation by a new rigid model
and the air pockets effect using thermodynamic formulations. The proposed model is validated
through measurements of the air pocket absolute pressure, the water velocity and the length of the
emptying columns in an experimental facility. Results show that the proposed model can accurately
predict the hydraulic characteristic variables.

Keywords: air-water; air pocket; air valve; hydraulic model; pipeline; emptying; water supply;
water hammer

1. Introduction

The emptying procedure in a pipeline generates hydraulic events that can cause problems if air
valves are not well sized. In practical applications, engineers follow typical recommendations from
the American Water Works Association (AWWA) [1] or manufacturers about sizing and location of
air valves along a pipeline in order to avoid subatmospheric pressure that can cause the collapse of
the system. It is recommended in a pipeline that the air volume admitted by air valves should be
the same as the water volume drained [2]. Consequently, air valves should work in subsonic flow
conditions. Air valves should be located at high points, in long horizontal pipe branches, long descents,
long ascents, at the decrease in an up-slope and increase in a down-slope of a pipeline, and on the
discharge side of deep well pumps and at vertical turbines/pumps [1]. An inappropriate selection of
the air valve size and location produces not only subatmospheric pressure but also a slow drainage of
the system.

Presently, there are only few studies related to the emptying process in the literature, but they
are not focused on practical applications because they do not consider a pipeline with an irregular
profile [3] and air valves [4,5].
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The analysis of an emptying process is not trivial because it requires the study of a two-phase
flow [6–9]. This problem can be studied using one (1D) [10,11], two (2D) [12] or three-dimensional
(3D) [13] models. The water phase in the 1D model can be analyzed considering two types of
models [14]: (i) elastic models [15,16], which consider the elasticity of the pipe and the water; or
(ii) rigid models [17], which ignore the elasticity of them. Normally, elastic models are solved by
using the method of characteristics [18,19] and rigid models by using the numerical solutions of
ordinary differential equations [3,11,17,20]. In pressurized systems, the air effect can be analyzed as
a single-phase flow, where the absolute pressure of the air pocket is computed between two water
columns [10,11,21]. Regarding the analysis of 2D and 3D CFD modeling of air-water interface in closed
pipes, they are still unyielding in the application of pipeline draining because length and time scales
are not appropriate.

This research develops a general 1D mathematical model that can be used for analyzing the
behaviour of the main hydraulic variables during the emptying process in a pipeline with an
irregular profile and with several air valves installed along it based on formulations of previous
works [3,10,11,17,20,22,23]. The proposed model can give important information in real systems about:
(i) the risk of collapse of pipeline installations, by checking in a pipe manufacturer characteristics if the
stiffness class is appropriate to support the subatmospheric pressure reached during the hydraulic
event depending on the type of soil in natural conditions, the type of backfill and the cover depth;
(ii) the appropriate selection of the air valve during the emptying process; (iii) the size and the
maneuver time of the drain valves; and (iv) the estimation of the drainage time of a pipeline.

2. Mathematical Model

Figure 1 shows a typical configuration of an irregular profile in a pipeline which consists of n
entrapped air pockets, d air valves, p pipes, and o drain valves located at low points for draining the
system, D being the internal pipe diameter (m); A being the cross section area of the pipe (m2); f being
the Darcy–Weisbach friction factor; and g being the gravity acceleration (m/s2). Lj (j = 1, 2, ..., p) is
the total length of each pipe, AVm (m = 1, 2, ..., d) are the air valves, and Ks (s = 1, 2, ..., o) represents
the flow factor for each drain valve. The emptying process starts when the drain valves are opened,
thus air valves start to admit air into the pipeline. After that, the air pocket i will begin to expand
generating subatmospheric pressure. At the same time, the drainage of the water column starts
until the entire pipeline is completely emptied. Figure 1 gives the evolution at time t, the length of
the emptying column Le,j (j = 1, 2, ..., p), the absolute pressure of the air pocket p∗i (i = 1, 2, ..., n),
and the water velocity ve,j (j = 1, 2, ..., p). The expansion of the air pocket i can be computed as
xi = Lj − Le,j + Lj+1 − Le,j+1.

Figure 1. Scheme of entrapped air pockets in a pipeline with irregular profile while water empties.

The one-dimensional (1D) proposed model has the following assumptions: (1) water column
has been modeled by the rigid model; (2) the Darcy–Weisbach equation was considered to evaluate
friction losses; (3) the thermodynamic behaviour of the air pocket is analyzed using a polytropic model;
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and (4) the air–water interface is perpendicular to the pipe direction. The proposed model can be
used for pipelines with small diameters and with hydraulic slopes enough to prevent downstream air
intrusion where open-channel flow does not occur [20,24].

Under these hypotheses, the problem is modeled by the following set of equations.

2.1. Equations for the Water Phase

• Mass oscillation equation:

The rigid model was used in order to compute the evolution of the water column [11,25],
considering that the elasticity of the air is much higher than the elasticity of the pipe and the
water [12]. Applying the rigid model to the emptying column j and considering that the drain
valve s joins pipes Lj and Lj−1, which is a common point in a pipeline, then:

dve,j

dt
=

p∗i − p∗atm
ρwLe,j

+ g
∆ze,j

Le,j
− f j

ve,j|ve,j|
2D

−
gA2(ve,j + ve,j−1)|ve,j + ve,j−1|

Le,jK2
s

, (1)

where ∆ze,j is the elevation difference (m), ρw is the water density (kg/m3), p∗atm is the atmospheric
pressure (101,325 Pa) and g is the gravity acceleration (m/s2).

The expression hm,s = Q2
w,s/K2

s was used to estimate the local loss of the drain valve s in
Equation (1). Ks is the flow factor and Qw,s is the water discharge.

If the drain valve only connects pipe Lj, thus ve,j−1 = 0.

• Air–water interface position:

The position of the air–water interface is considered perpendicular to the pipe direction [11,18,26].
The continuity equation for the moving air-water interface j is:

dLe,j

dt
= −ve,j

(
Le,j = Le,j,0 −

∫ t

0
ve,jdt

)
, (2)

where subscript 0 refers to the initial condition.

2.2. Equations for Air Pockets

• Continuity equation [3,17]:

dma,i

dt
= ρa,ncva,nc,m Aadm,m (3)

and by deriving:

dma,i

dt
=

d(ρa,iVa,i)

dt
=

dρa,i

dt
Va,i +

dVa,i

dt
ρa,i, (4)

where ma,i is the air mass and Va,i is the air volume of the air pocket i.

Due to the air pocket i located between pipes Lj and Lj+1, then Va,i = (Lj − Le,j)A + (Lj+1 − Le,j+1)A
and dVa,i/dt = −(dLe,j/dt)A− (dLe,j+1/dt)A = A(ve,j + ve,j+1), thus:

dρa,i

dt
=

ρa,ncva,nc,m Aadm,m − (ve,j+1 + ve,j)Aρa,i

A(Lj − Le,j + Lj+1 − Le,j+1)
, (5)
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where ρa,i is the air density of the air pocket i, ρa,nc is the air density in normal conditions
(1.205 kg/m3), Aadm,m is the cross section area (m2) of the air valve m and va,nc,m is the air velocity
in normal conditions admitted by the air valve m.

• Expansion equation for the air pocket i:

the thermodynamic behaviour of the air pocket [27] is treated by using a polytropic model [22,28]

dp∗i
dt

= −k
p∗i

Va,i

dVa,i

dt
+

p∗i
Va,i

k
ρa,i

dma,i

dt
. (6)

Considering the equations presented before, then:

dp∗i
dt

=
kp∗i

A(Lj − Le,j + Lj+1 − Le,j+1)

(ρa,ncva,nc,i Aadm,m

ρa,i
− A(ve,j+1 + ve,j)

)
, (7)

where k is the polytropic coefficient: if k = 1.0, then the process is isothermal, but, if k = 1.4, the
process is adiabatic.

In Equations (5) and (7), if the air pocket i is only located in pipe Lj, then ve,j+1 = 0 and
Lj+1 = Le,j+1 = 0.

• Air valve characterization:

The formulation proposed by Wylie and Streeter [23,29] was used to represent the air admission
into the system for air valves. Ideally, the air valve m should be working in subsonic flow
(p∗atm > p∗i > 0.528p∗atm), then:

Qa,nc,m = Cadm,m Aadm,m

√
7p∗atmρa,nc

[( p∗i
p∗atm

)1.4286
−
( p∗i

p∗atm

)1.714]
, (8)

where Qa,nc,m is the air discharge in normal conditions admitted by the air valve m and
Qa,nc,m = va,nc,m Aadm,m.

When air valves are not located in high points of the system, then the position of them should be
specified. When the air–water interface reaches an air valve, then it starts to admit air inside the system.

In summary, a set of 2p + 2n + d equations describes the whole system. Together with
the corresponding boundary conditions, it can be solved for the 2p + 2n + d unknowns
ve,j, Le,j, p∗i , ρa,i, va,nc,m(j = 1, 2, ..., p; i = 1, 2, ..., n; m = 1, 2, ..., d).

2.3. Initial and Boundary Conditions

When the pipeline is at rest, the initial conditions are described as follows:
ve,j(0) = 0(j = 1, 2, .., p), Le,j(0) = Le,j,0(j = 1, 2, .., p), p∗i (0) = p∗i,0(i = 1, 2, .., n), ρa,i(0) = ρa,i,0(i = 1, 2, .., n),
and va,nc,m(0) = 0(i = 1, 2, .., d).

The upstream boundary condition is given by p∗i = p∗i,0, the downstream is given by the flow
factor Ks of the drain valve s, and the atmospheric pressure p∗atm due to the free discharge.

2.4. Gravity Term

Figure 2 describes the evolution of the gravity term (see Equation (1)) along the emptying column j.
Lj,r (r = 1, 2, ..., h) is the length of the pipe reach r, and Lj is the total pipe length j (Lj = ∑r=h

r=1 Lj,r).
Subscript u is used to identify the pipe reaches (1 to h) where the air–water interface is located.



Water 2017, 9, 98 5 of 15

Figure 2. Evolution of the gravity term of the emptying column j.

The gravity term of the emptying column j is computed by:

• When the air–water interface has not arrived the last reach (r 6= h):

∆ze,j

Le,j
=

∑r=h
r=u+1 Lj,r sin(θj,r)

Le,j
+
(

1−
∑r=h

r=u+1 Lj,r

Le,j

)
sin(θj,u). (9)

• When the air–water interface is located on the last reach (r = h):

∆ze,j

Le,j
= sin(θj,h). (10)

3. Application to Two Emptying Columns

Figure 3 presents a case of two emptying columns. More complex systems can be treated in the
same way based on the proposed model.

Figure 3. Two emptying columns in a pipeline.

The corresponding equations of the pipeline are:
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1. Mass oscillation equation applied to the emptying column 1

dve,1

dt
=

p∗1 − p∗atm
ρwLe,1

+ g
∆ze,1

Le,1
− f1

ve,1|ve,1|
2D

−
gA2

1ve,1|ve,1|
K2

1 Le,1
. (11)

2. Emptying column 1 position

dLe,1

dt
= −ve,1

(
Le,1 = Le,1,0 −

∫ t

0
v1dt

)
. (12)

3. Mass oscillation equation applied to the emptying column 2

dve,2

dt
=

p∗1 − p∗atm
ρwLe,2

+ g
∆ze,2

Le,2
− f2

ve,2|ve,2|
2D

−
gA2

2ve,2|ve,2|
K2

2 Le,2
. (13)

4. Emptying column 2 position

dLe,2

dt
= −ve,2

(
Le,2 = Le,2,0 −

∫ t

0
ve,2dt

)
. (14)

5. Evolution of the air pocket

dp∗1
dt

= −k
p∗1(ve,1 A1 + ve,2 A2)

A2(L2 − Le,2) + A1(L1 − Le,1)
+

p∗1ρa,ncva,nc,1 Aadm,1

A2(L2 − Le,2) + A1(L1 − Le,1)

k
ρa,1

. (15)

6. Continuity equation of the air pocket

dρa,1

dt
=

ρa,ncva,nc,1 Aadm,1 − (ve,1 A1 + ve,2 A2)ρa,1

A2(L2 − Le,2) + A1(L1 − Le,1)
. (16)

7. Air valve characterization

Qa,nc,1 = Cadm,1 Aadm,1

√
7p∗atmρa,nc

[( p∗1
p∗atm

)1.4286
−
( p∗1

p∗atm

)1.714]
. (17)

This set of seven differential-algebraic equations (Equations (11) to (17)), together with the initial
condition given by ve,1(0) = 0, Le,1(0) = Le,1,0, ve,2(0) = 0, Le,2(0) = Le,2,0, p∗1,0 = p∗atm = 101,325 Pa,
ρa,1,0 = ρa,nc = 1.205 kg/m3 and Qa,nc,1(0) = 0, allow for describing the whole problem. The Simulink
Library in Matlab ( The MathWorks, Inc., Natick, MA, USA) was used in order to compute the seven
unknown functions: ve,1, Le,1, ve,2, Le,2, p∗1 , ρa,1 and Qa,nc,1.

3.1. Experimental Model

In order to study the emptying process in a pipeline, an experimental facility was developed
(see Figure 4) at the Civil Engineering, Research and Innovation for Sustainability (CEris) Center, in the
Hydraulic Lab of Instituto Superior Técnico (IST), University of Lisbon, Portugal. The experimental
facility consisted of a set of transparent PVC pipes with 7.3 m length and nominal diameter of 63 mm
(DN63). An air valve (AV1) was installed at the highest point of the pipeline with a pressure transducer
(PT1) to measure the absolute pressure. The air valves S050 and D040 (manufacturer A.R.I.) and
different air pocket sizes were tested for showing the effect on the hydraulic behaviour. There were
four ball valves (BVs). BV1, BV2 and BV4 were opened, consequently permitting the movement of the
water column. BV3 and manual valve (MV1) were closed and represented the system configuration
extremities. The two manual ball valves (MBVs) identified as MBV1 and MBV2 with nominal diameter
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of 25 mm (DN25) at the downstream ends were used to control the outflow conditions. These valves
have the same level as the horizontal pipes L1,2 and L2,2. Two free-surface small tanks were used
to collect the drainage water. The PicoScope system was used for absolute pressure data recording.
The frequency of the pressure data collection was 0.0062 s. The length of the emptying columns
were measured by using a Sony Camera DSC-HX200V (Sony Corporation, Minato, Tokyo, Japan)
for decomposing frames for each second. The water velocities were measured with an Ultrasonic
Doppler Velocimetry (UDV) device with a transducer for 4 MHz frequency (MET FLOW, Lausanne,
Switzerland). The transducer was located on the horizontal pipe with an angle of 20◦. To measure
the water velocities, all other facilities were turned off in the Hydraulic Lab to avoid the noise, and
seeding was used inside the water in order to get appropriate measurements.

Figure 4. The pipe system and its components.

The emptying process of the experimental facility was started by an opening maneuver at the same
time as valves (MBV1) and (MBV2). Consequently, the two emptying columns started the emptying
procedure until reaching the horizontal pipes when the drainage is practically stopped, and part of the
two water columns remain inside the installation because the gravity term is zero in both pipe reaches.

Equations (8)–(14) were used to simulate the emptying process of this experimental facility.
The gravity terms were computed for the two emptying columns. For the emptying column 1,
it depends on:

• If the air-water interface located on the sloped pipe reaches θ = 30◦ (Le,1 ≤ L1,1 + L1,2 and
Le,1 > L1,2), then:

∆ze,1

Le,1
=
(

1− L1,2

Le,1

)
sin(θ1,1). (18)

• If the air–water interface located on the horizontal pipe reaches θ = 0◦(Le,1 > 0 and
Le,1 ≤ L1,2), then:

∆ze,1

Le,1
= 0. (19)

The gravity term for emptying column 2 is similar in emptying column 1.

3.2. Experimental Results and Model Verification

Ten experimental tests are selected as shown in Table 1, where two different air valves and five
air pocket sizes were defined. The air valve D040 admits large quantities of air during the emptying
process, and it has a diameter of 9.375 mm and Cadm of 0.375 according to the vacuum curve presented
by the manufacturer. The air valve S050 is not recommended for vacuum protection because it has
a smaller orifice of 3.175 mm. The manufacturer does not present a vacuum curve because it is used
specially for relief in pressurized systems. Consequently, the Cadm was calibrated during the tests
with a value of 0.303. The selection of the appropriate air valve size is of utmost importance. The initial
air pocket lengths were 0.001, 0.540, 0.920, 1.320 and 2.120 m. To avoid a numerical problem in the
proposed model, a minimum air pocket size around of 1 mm is imposed instead of 0 mm.
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Table 1. Characteristics of tests.

Test No. Air Valve Model Air Pocket Length (m)

1 S050 0.001
2 S050 0.540
3 S050 0.920
4 S050 1.320
5 S050 2.120
6 D040 0.001
7 D040 0.540
8 D040 0.920
9 D040 1.320
10 D040 2.120

In the model, a constant friction factor of f = 0.018 was used. Valves MBV1 and MBV2 were
modeled by using a synthetic maneuver, with a flow factor of K1 = K2 = 1.4× 10−3 m3/s and a valve
maneuvering time (Tm) of 1.6 s. The flow factor represents the local losses due to the opening of the
valve and the reduction from DN63 to DN25. The expansion of the air pocket was modeled by using
a polytropic model in adiabatic conditions (k = 1.4) because the event occurs very quickly.

According to the results, there are two types of behaviours that depend on the air valve: (1) air
valve S050 (see Figure 5) and (2) air valve D040 (see Figure 6). In all tests, the proposed model can
predict the subatmospheric pressure pattern. Test No. 1 and Test No. 6 were selected in order to
compare results.

Figure 5. Comparison between computed and measured absolute pressure oscillation patterns
(air valve S050): (a) Test No. 1; (b) Test No. 2; (c) Test No. 3; (d) Test No. 4; (e) Test No. 5.
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Figure 5a shows Test No. 1 (air pocket size of 0.001 m) where the absolute pressure quickly reaches
the minimum subatmospheric pressure of 9.61 mH20 at 1.69 s. Then, the absolute pressure pattern
starts to increase slowly until it reaches the atmospheric condition. The duration of the hydraulic
event is 40.3 s. In contrast, when the air valve D040 is used, small troughs of subatmospheric pressure
occur and the hydraulic event is very short. Figure 6a shows the results for Test No. 6 (air pocket size
of 0.001 m) where the absolute pressure decreases quickly until it reaches the minimum subatmospheric
pressure of 10.16 mH20 at 1.82 s and then increases again until it reaches the atmospheric condition
(10.33 mH20). The duration of the hydraulic event is 8.13 s. Figures 5 and 6 show that the pressure
drop is linear due to the opening of the valves MBV1 and MBV2. Then, subatmospheric pressure is
presented and the water flow starts to decrease since the air valve can admit a better ratio of the air
flow. Consequently, the pressure pattern rises.

Figure 6. Comparison between computed and measured absolute pressure oscillation patterns
(air valve D040): (a) Test No. 6; (b) Test No. 7; (c) Test No. 8; (d) Test No. 9; (e) Test No. 10.

In more complex and large systems, an air valve similar to S050 cannot be recommended as
a protection device during the emptying process because, depending on the conditions of the installation,
the subatmospheric pressure can reach excessively low values. Engineers should select an air valve
similar to D040 for minimizing problems associated with the pressure drop to subatmospheric value.

The density of the air pocket is validated with the measurements of the absolute pressure, since
these variables are related, because the temperature of the air pocket remains practically constant.
Therefore, the results are similar considering an isothermal process (k = 1.0).

Figure 7 presents the evolution of the length of emptying columns 1 and 2 for Test No. 2 and Test
No. 7. Figure 7a shows the results for Test No. 2 (air valve S050) where the emptying column 1 reached
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the horizontal pipe at 28 s, while the emptying column 2 reached it at 29 s. This difference of 1 s was
caused because the valves MBV1 and MBV2 were not opened exactly at the same time. In contrast,
Figure 7 shows the results for Test No. 7 (air valve D040), where practically the two emptying column
reached the horizontal pipe in 5 s because the hydraulic event in this case is faster. In both tests, the
proposed model predicted the length of emptying columns. It is important to note that when the
emptying column reaches the horizontal pipe θ = 0◦, the proposed model cannot be applied because
air–water interface is parallel to the horizontal pipe direction (as a stratified flow).

Figure 7. Comparison between computed and measured length of emptying columns: (a) Test No. 2
(air valve S050); (b) Test No. 7 (air valve D040).

Figure 8 shows the comparison between computed and measured water velocity for Test No. 3 and
Test No. 8. In both tests, the water velocity in emptying column 1 is practically the same as in emptying
column 2 (ve,1 ≈ ve,2). In addition, in all tests from 0 s to 1.6 s, the water velocity is induced by the
opening of the valves MBV1 and MBV2. In this range of values, the measurements are not adequate
because the system starts resting and the UDV cannot detect the suspended small seeding particles
because of no reflection. However, after 1.6 s, the proposed model can predict adequately and give
information about the system behaviour. Figure 8a presents the results for Test No. 3 (air valve S050)
where the maximum water velocity is rapidly reached at 1.39 s, with a value of 0.076 m/s. According to
the measurements, the maximum value is 0.0775 m/s at 1.30 s, which is very close to the proposed
model. After the maximum value is attained, the water velocity decreases linearly until it reaches
a value of 0 m/s at 34 s. The oscillations around 2 s are caused after the complete opening of valves
MBV1 and MBV2. The water velocity range is very low during the emptying procedure with the
air valve S050. Consequently, the UDV device with a transducer of 4 MHz frequency cannot detect
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appropriately the evolution of the water velocity. It records water velocity with intervals of 0.015 m/s.
Figure 8b shows the comparison between computed and measured water velocities for the air valve
D040 where the water velocity reaches its maximum value of 0.324 m/s at 1.77 s. According to the
measurements, the maximum value is 0.32 m/s at 1.78 s, which is quite similar to the proposed model.
After this maximum, the water velocity starts to decrease until the end of the event. During this
range, the UDV device can measure appropriately the evolution of the water velocity. The volume
of admitted air by D040 is almost the same as the water volume drained by valves MBV1 and MBV2

since the minimum subatmospheric pressure is 10.22 mH20, practically the atmospheric pressure.

Figure 8. Comparison of water velocity between computed and measured values: (a) Test No. 3
(air valve S050); (b) Test No. 8 (air valve D040).

3.3. Sensitivity Analysis

3.3.1. Effect of Air Pocket Sizes

It is important to identify the great influence of the size of the entrapped air pocket on the
minimum of the subatmospheric pressure. Figure 9 shows the results taking different air pocket lengths
(0.001, 0.540, 0.920, 1.320 and 2.120 m). The smaller the air pocket size, the lower subatmospheric
pressure is obtained. Equation (15) shows this situation with the comparison between the gradient
of the absolute pressure (dp∗i /dt) and the air pocket volume (A2(L2 − Le,2) + A1(L1 − Le,1)). For the
air valve S050, subatmospheric pressures are found in the range of 9.61 mH20 and 10.11 mH20, while,
for the air valve D040, small variations are found between 10.16 mH20 and 10.32 mH20, showing the
adequacy of this air valve for the emptying process. It also shows the importance of the air valve size
since it can induce critical conditions associated with the subatmospheric pressure occurrence.
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Figure 9. Effect of the air pocket sizes on the minimum pressure attained.

3.3.2. Maximum Water Velocity

Figure 10 shows a comparison between computed and measured maximum water velocities.
The proposed model predicts the maximum values of the water velocity for all tests. For the air valve
S050, maximum values of water velocity are found in the range of 0.049 to 0.079 m/s, while, for the air
valve D040, water velocities are found in the range of 0.193 to 0.397 m/s.

Figure 10. Comparison between computed and measured maximum water velocities.

4. Conclusions

Subatmospheric pressures occur during the emptying process in pipelines with undulating
profiles, which is a typical and common operation that engineers have to face. A rigid two-phase
flow model was developed for analyzing it, considering n possible air pockets, d air valves, p pipes,
and o drain valves. The proposed model is validated using an experimental facility of an irregular
profile of 7.3 m long and nominal diameter 63 mm (DN63), with an air valve located at the high point
and several drain valves along the pipeline. The main hydraulic variables could be measured such
as flow (both phases), pressure and air-water front position. Comparisons between computed and
measured values of the absolute pressure, water velocity and the length of the emptying columns show
that the proposed model can predict accurately not only the extreme values but also their patterns.
According to the results, the following conclusions can be drawn:

1. The proposed model can be used for planning the emptying operations in pipelines with
undulating profiles, considering their limitations.



Water 2017, 9, 98 13 of 15

2. The expansion of the air pocket produces minimum subatmospheric pressure. In order to control
these effects, air valves should be installed in pipelines.

3. It is very important to have a correct selection of air valves for vacuum protection for emptying
pipelines. An inadequate selection produces both lower values of subatmospheric pressure and
a slower drainage of the system. On the other hand, a larger air valve orifice size reduces the
lowest values of subatmospheric pressures.

4. Engineers should consider the initial condition in which the pipeline is completely filled,
which is the most critical condition, since the smallest air pocket sizes produce the lowest
subatmospheric pressures.

In real hydraulic pressurized systems, the proposed model can be used for: (i) checking the risk
of a system collapse considering factors such as stiffness class, the soil in natural conditions, the type
of backfill and the cover depth; and (ii) selecting the air valve sizes depending on the characteristics of
each hydraulic system.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/2/98/s1:
The following videos show the emptying process for emptying column 1. Videos: Test No. 1, Test No. 2,
Test No. 3, Test No. 4, Test No. 5, Test No. 6, Test No. 7, Test No. 8, Test No. 9, and Test No. 10. The behaviour for
emptying column 2 is similar to emptying column 1.
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Abbreviations

The following abbreviations are used in this manuscript:

A Cross sectional area of the pipe (m2)
Aadm,m Cross section area of the air valve m (m2)
Cadm,m Inflow discharge coefficient of the air valve m (–)
D Internal pipe diameter (m)
f Darcy–Weisbach friction factor (–)
g Gravity acceleration (m/s2)
Le,j Length of the emptying column j (m)
Lj Total length of the pipe j (m)
k Polytropic coefficient (–)
Ks Flow factor of the drain valve s (m3/s) with a pressure drop of 1 mH20
hm,s Local loss of the drain valve s (m)
ma,i Air mass of the air pocket i (kg)
p∗i Absolute pressure of the air pocket i (Pa)
p∗atm Atmospheric pressure (Pa)
t Time (s)
Tm Valve maneuvering time (s)
Qa,nc,m Air discharge in normal conditions admitted by the air valve m (m3/s)
Qw,s Water discharge by the drain valve s (m3/s)
Va,i Air volume of the air pocket i (m3)
ve,j Water velocity of the emptying column j (m/s)
va,nc,m Air velocity in normal conditions admitted by the air valve m (m/s)
xi Length of the air pocket i (m)
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∆ze,j Elevation difference (m)
ρa,i Air density of the air pocket i (kg/m3)
ρa,nc Air density in normal conditions (kg/m3)
ρa Water density (kg/m3)
BV Ball valve
MBV Manual ball valve
PT1 Absolute pressure transducer
Superscripts
∗ Absolute values
Subscripts
a Refers to air
i Refers to air pocket
j Refers to pipe
m Refers to air valve
nc Normal conditions
w Refers to water
0 Initial condition
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