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Abstract: High flow generates significant alterations in downstream river reaches, resulting in
physical condition changes in the downstream regions of the river such as water depth, flow velocity,
water temperature and river bed. These alterations will lead to change in fish habitat configuration in
the river. This paper proposes a model system to evaluate the high flow effects on river velocity, water
depth, substrates changes, temperature distribution and consequently assess the change in spawning
and juvenile rainbow trout (Oncorhynchus mykiss) habitats in the downstream region of the Glen
Canyon Dam. Firstly, based on the 2 dimensional (2D) depth-averaged CFD (Computational Fluid
Dynamics) model and heat transfer equation applied for simulation, three indices were simulated,
namely depth, flow velocity and temperature distribution. Then, the spawning and juvenile fish
preference curves were obtained based on these three indices and substrates distribution. After that,
the habitat model was proposed and used to simulate the high flow effects on juvenile and spawning
rainbow trout habitat structure. Finally, the weighted usable area (WUA) and overall suitability
index (OSI) of the spawning and juvenile fish species were quantitatively simulated to estimate the
habitat sensitivity. The results illustrate that the high flow effect (HFE) increased the juvenile rainbow
trout habitat quality but decreased the spawning rainbow trout habitat quality. The juvenile trout
were mainly affected by the water depth while the spawning rainbow trout were dominated by the
bed elevation.

Keywords: fish habitat model; high flow effects; CFD model; temperature distribution; spawning
and juvenile rainbow trout

1. Introduction

River environments are closely related to hydraulic flow velocity, water depth and river water
temperature. Many stream ecological evaluations, integrating hydraulics into the ecological studies,
have been conducted in recent years. These ecological evaluations present rapid development of
the new and effective method [1–3]. High flow effects are the main determinants of physical habitat
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situation in rivers, which is an important determinant of habitat distribution [4]. The high flow
discharge is frequently considered to be a very serious threat to fish, especially spawning fish habitat,
their associated species sustainability and ecological capacity of rivers [4–6]. For instance, Wang et al.
and Yi et al. simulated the different flow effects on spawning Chinese sturgeon habitat in the Yangtze
River [7,8]. Similar approaches have been developed in the US [9–12], Germany [13] and Australia [1].
These approaches can be efficiently applied from one river to another. However, there is scope for
further improvement in the evaluation of the impact of dam operation on the surrounding fish habitats.
The inclusion of high flow scour and temperature effects from reservoir, could offer a more accurate
model for better assessing and analyzing of the fish habitat in rivers [14].

Literature in habitat model provides various methods to describe fish habitat in the river, and
this gives a detailed description of the flow velocity calculation, fish type study, modeling parameters
determination and aquatic habitat equation estimation [13,15]. Physical habitat models have been
used as a tool for river management since the 1980s. For example, the physical habitat simulation
(PHABSIM) model which was the first fish habitat model [16,17], did not consider the hydrodynamics.
Later, another fish habitat evaluation tool named River2D was developed, which did not consider
water temperature [18–20]. Since the 2000s, there is an increasing realization of the role played by
flow scour and flow temperature in characterizing the habitat quality in rivers [14]. While considering
hydraulic indices, it is important to couple both sediment transport and heat transfer equations with a
habitat model so as to obtain a more precise and reliable model to predict river and fish habitat.

The aims of this paper are to (1) develop a habitat model from the perspectives of a 2 dimensional
2D depth-average CFD (Computational Fluid Dynamics) model coupled with a heat transfer equation
and sediment transport equations; (2) use the model to study the impact of the high flow effects (HFE)
in 2008 in the Colorado River on both spawning and juvenile rainbow trout (Oncorhynchus mykiss);
(3) use the simulation results to analyze the weighted usable area (WUA) and overall suitability index
(OSI) of spawning and juvenile rainbow trout in the areas under study.

2. Study Areas and Mathematical

In this part, we developed a novel two-dimensional habitat model system. The model system
consists of four parts: (1) the dynamic 2D depth-averaged hydraulics model; (2) the heat transfer
model; (3) the physical habitat model based on the aforementioned steps; (4) the sensitivity analysis
based on the WUA and OSI. The flow chart of the model system is shown in Figure 1, and in Figure 1
SI is short for suitability index.
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2.1. Study Areas and Mathematical Description of CFD Simulations

The Colorado River stretch from Glen Canyon Dam to Lees Ferry has been used for the model
application (Figure 2). The river discharge and the river bed substrates during study time are shown
in Figure 3. The sediment grading curve and flow discharge are obtained based on the survey data.
The river bathymetry is based on the cross-section and interpreted in the whole river stretch (Figure 4).
The theodolite was used to survey the river cross-section and more than 100 sampling points were
applied for the substrates. The detailed survey data description on these study areas can be found
in Voichick [21], Vernieu [22], Makinster [23,24] and Yao [25,26]. In the present model system, the 2D
depth-average CFD model equations used for hydraulic simulation in this study are the continuity
equation, the standard k-ε turbulent viscosity model for the Navier–Stokes equation and heat transfer
equations. For the depth calculation in the river, we assume that the velocity in the vertical direction
is almost negligible. The equations present the variations in the mean quantities and are valid in the
computational domain (ΩF). The conservation equations for both mass and momentum are presented
as follows:
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Moment equation

∂U
∂t

+
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∂x
+

∂VU
∂y

= −ρg
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∂x
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(
∂2U
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Heat transfer equation

∂T
∂t

+
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(
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∂y2

)
(4)

For turbulent kinetic energy K

∂K
∂t

+ U
∂K
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∂K
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=
∂

∂x
· (χK

∂K
∂x

) +
∂
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· (χK

∂K
∂y

)− E− Gb + Gk (5)

For the dissipation rate E

∂E
∂t

+ U
∂E
∂x

+ V
∂E
∂y

=
∂

∂x
· (χE

∂E
∂x

) +
∂

∂y
· (χE

∂E
∂y

)− C2E2

K
− C1C3Gb

E
K
+ C1

E
K

Gk (6)

The k − ε turbulence model is based on turbulence kinetic energy (K) and the dissipation rate
(E). The k − ε turbulence model for k is derived from the exact equation, while the k − ε turbulence
model for ε was obtained based on physical reasoning [27–29]. In the kinetic energy and its dissipation
rate equations, quantities Gk and Gb are the turbulent kinetic energy production due to shear and
buoyancy. The Gk and Gb can be written as follows,

Gk = Cµ
K2

E
(

∂Ui
∂Xj

+
∂Uj

∂Xi
)

∂Ui
∂Xj

, Gb = − Gr
Re2

CµK2/E
σT

∂T
∂Xi

eg (7)

The effective diffusion coefficients appearing in the momentum, energy and turbulence equations
are described as follows,

χU = 1/Re + νtur, χT = 1/PrRe + νtur/σT, χS = 1/ScRe + νtur/σS (8)

χK = 1/Re + νtur/σK, χE = 1.0/Re + νtur/σE (9)

The turbulent eddy viscosity, defined as νtur = CµK2/E, was applied to measure the turbulence
strength. The k − ε model constants Cµ, C1, C2, C3, σK, σE, σT and σS respectively and the values were
shown as following,

Cµ = 0.09, C1 = 1.44, C2 = 1.92, C3 = 1.00, σK = 1.00, σE = 1.30, σT = 0.90, σS = 0.70 (10)

Turbulent Prandtl number σT and turbulent Schmidt number σS actually were expressed as function
forms of the ratio of eddy to diffusivities and distance to the boundary condition. As a matter of flow
properties, standard values of turbulent Schmidt and Prandtl numbers could be adopted for use in the
above equations [30].

Figure 4 details the numerical modeling of flow in the river, with appropriate boundary and initial
conditions. The inflowing velocity profile and temperature distribution are set. The geometry of the
river (water depth) and low turbulence intensity (K = 0.3%) are also set as the initial values. The study
river stretch and the bathymetry data are shown in Figure 4.
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In order to solve the aforementioned model numerically, the inlet, outflow boundaries and the
adiabatic wall boundary conditions were applied. The inlet condition was set by the inflow velocities
(Uin), water temperature (Tin) and water depth (Hin) of the inlet boundary layer. The turbulent kinetic
energy and its dissipation rate were calculated based on the following equations,

Kin(Y) = 1.50 × (10% × Uin(Y))2, Ein(Y) = Cµ
0.75Kin(Y)1.5/L(Y), (8)

where L(Y) = 151 × (Y/10)α, which represents the length scale of the velocity components along the
flow direction.

In the outflow boundary, zero gradient is applied for velocities, temperature, turbulent kinetics
and its dissipation rate, it can be written as mathematically.

∂U
∂n

=
∂V
∂n

=
∂K
∂n

=
∂E
∂n

=
∂T
∂n

= 0 (9)

2.2. Sediment Transport

Formula for the sediment transport and river bed deformation is developed. For bed load
sediment, an overall mass balance equation has been employed to ascertain the bed elevation change
Zb [31]:

(1− p′)
∂Zb
∂t

+
∂Qbs
∂x

+
∂Qbn

∂y
= 0 (10)

Many semi-empirical formulae are available to calculate the bed load transport rate such
as Meyer-Peter–Müller, Einstein–Brown, England–Hansen, Van Rijn equations [32–35]. Taking
into account the stability of the formula and the mean diameter of graded sediment of the
Meyer-Peter–Müller equation (0.4 to 29 mm), the Meyer-Peter–Müller equation has been applied:

Qe = 8

[(
C

C90

)3/2
θ − θcr

]3/2(
ρs

ρ
gd3

50

)−1/2
; θcr = 0.047; (14)

θ =
τb

(ρs − ρ)gd50
(15)
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2.3. Habitat Construction

The habitat model is constructed based on the hydraulic variables from the CFD simulation and
fish preference curves. Fish preference curves are, in turn, founded on literature, laboratory studies
and frequency of the field observation (which has certain values within a variable range of values
for fish habitat). The preference curves applied in this study are mainly taken from a specific fish
study on the Colorado River and only four indices which significantly affected fish habitat were
chosen [36–38]. These fish preference curves are specific for spawning and juvenile rainbow trout. The
habitat suitability index value ranges from 1 to 0, with 1 for the highest value and 0 for the lowest
value. The preference curves for study species are show in Figure 5. The habitat model is related to
physical and ecological parameters for evaluating the natural and unpolluted rivers.
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4000.0 mm), 8 = bedrock (solid rock)).
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The physical habitat model was proposed by attributing equal weighting to variables of flow
velocity, depth, water temperature, and the substrates suitability index. The habitat model is used to
assess the habitat changes caused by high flow effects which are caused by the Glen Canyon Dam. The
Habitat Suitability Index (HSI) equation is as follows and in order to further describe the HSI, it is
divided into three classes which are high, middle and low HSI (Table 1).

HSI = (SIv × SId × SIt × SIs)
1/4 (11)

Table 1. High, middle and low classification for HSI.

HSI

High 0.7–1.0

Middle 0.3–0.7

Low 0–0.3

2.4. WUA and OSI Construction Procedure

Founded on the habitat concepts of PHABSIM and River2D [17–19,39], the WUA and the OSI for
the fish species under a given hydraulic condition were also computed [8,40,41]. The WUA is defined
as follows:

WUA =
M

∑
i=1

Ai HSIi (16)

So as to make a comparison between different rivers, the OSI is also set up. The OSI index can be
defined as the ratio of the weighted usable area to the total study area. For the river stretch, the OSI
value is ranged from 1 to 0.

OSI =
∑M

i=1 Ai HSIi

∑M
i=1 Ai

(17)

3. Numerical Model Setup and Implementation

The whole model was set up and the Finite Volume Method (FVM) was applied to solve the
staggered grid system on partial differential equations. The third-order deferred correction QUICK
scheme, SIMPLE iteration, tri-diagonal matrix algorithm (TDMA) and the successive over relaxation
(SOR) were also applied in the CFD model [42,43].

After the turbulence and energy model is resolved by the CFD model, the parameters including
flow velocity, depth and temperature distribution, and substrates are obtained. The sediment transport
equations are also solved by the FVM. By coupling the HSI function and the fish preference curves
together, on the grounds of computed results from the CFD module, the HSI for the fish species under
study is obtained. Similarly, the WUA and OSI are also obtained based on Equations (15) and (16) on
each mesh volume.

The convergence criterion is based on the maximum permissible errors in global mass and energy
imbalances, which are defined as 10−9 in this model system [42]. Significance tests were conducted for
the accuracy of the model system and also the dependency of solutions for grid size. More detail can
be found in Yao et al. [26,44,45].

4. Results and Discussion

The site of spawning and juvenile rainbow trout living in Colorado River—stretching from
downstream of the Glen Canyon Dam to Lees Ferry—was analyzed to verify the high flow effects on
flow velocity, water depth, temperature and substrates on the tail water of the dam and the habitat
suitability quality. The river stretch is shown in Figure 4. A mesh of 300 × 20 was used in the model
system with geographic data being interpolated from a surveyed cross-section (2,550,000 m2).
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4.1. High Flow Effects on Velocity and Temperature

Figure 6 show simulated velocity, water depth and temperature before and after the HFE. From
the simulation, we can notice that the velocity is relatively slow after the HFE and the highest velocity
occurs in the middle of the river; the values being 1.5 m/s and 1.3 m/s, which happened at the curved
and narrowest part of the river. The velocity prior to HFE ranges from 0.4 m/s to 1.5 m/s and post
HFE, it ranges from 0.3 to 1.3 m/s (Figure 6b).
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HFE = high flow effect).

The flow temperature simulation outcomes are also depicted in Figure 6. From the simulation, we
can interpret that prior to the start of the HFE, the temperature distribution is mostly uniform in the
river (11 ◦C) except for the areas near to the inlet of the computational domain which has low water
temperature (9.5 ◦C). The reason for this is that the cold water from the Glen Canyon Dam affects
these areas which are near to the inlet of the river. The distance of the cold-water temperature effects is
5 km and 10 km for before HFE and during HFE respectively. Subsequent to the HFE, the temperature
distribution is in no manner different than before the HFE.

4.2. Hydrodynamic Simulation Results

4.2.1. High Flow Effects on River Bed Elevation and Water Depth

Simulation results have been portrayed for the river bed elevation in Figure 7. It can be understood
easily that after 1 day, the river bed elevation was minimal, covering almost the whole reach with
positive elevation values ranging from 0.1 m to 0.25 m in the middle portions of the river. At the inlet
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which is also the narrowest part of the computational domain, some negative values of bed elevation
were also observed with values around−1.3 m. Thereafter, positive bed elevation increased in terms of
both values and area. The negative bed elevation affected areas also increased in size at the inlet and in
several small patches of the computational domain with minimum values being around−1.8 m. At the
end of the HFE, it can be noted that the positive bed elevation was mainly emphasized on the middle
and downstream of the computation domain with a maximum value of 2 m. In contrast, negative bed
elevation spread in the upstream area and near to inlet areas with a minimum value of −2.1 m.
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Comparing the water depth simulation results, it appears that water depth changed on a par
with river bed elevation. Before the HFE, the mean water depth in the middle of the river was 3.5 m
while after the HFE, the water depth significantly increased near the inlet with a value of 4.5 m
(Figure 6). The simulated velocity results are reasonable and fitted with the method proposed by
Graf [46]. The simulated water depth is fitted with the previous study [47] and the simulated results of
the temperature distribution are also in line with the previous study [48,49].

4.2.2. High Flow Effects on Spawning and Juvenile Rainbow Trout Habitat Suitability

Figure 8 shows the calculated HSI distribution for spawning and juvenile rainbow trout. The
results illustrate that the HSI values for the spawning and juvenile fish are different, which is mainly
due to the geomorphology changes.

More specifically, (1) before the HFE, the majority parts in the middle of the river had a high
habitat suitability index for juvenile rainbow trout, except the areas near the inlet and the center of the
river which had a higher value than the river sides (Figure 8a). The low HSI near the inlet is mainly
because of cold water released from the bottom of the reservoir and the maximum affected distance is
10 km during the HFE. The proportion of the high, middle and low HSI for juvenile rainbow trout
are 44.6%, 5.51% and 49.8% respectively (Figure 9). For the spawning stage of rainbow trout, the HSI
situation is even worse than juvenile rainbow trout as only five small segments of areas have suitable
habitat for spawning rainbow trout (Figure 8b). The percentage of the high, middle and low HSI
for spawning rainbow trout are 18.9%, 0.02% and 81.1% respectively (Figure 9). The reason behind
this is that the spawning fish require a very limited velocity range and water depth which cannot be
provided in high flow situation even though the water temperature is very suitable for the spawning
fish; (2) After HFE, the HSI situation for the juvenile life stage is different. To be specific, the HSI values
decreased in some small fragments of areas in the middle of river while the HSI values in the river
side increased in the majority of the river parts (Figure 8). The proportion of middle HSI increased to
13% while the low HSI decreased to 43.3% and the high HSI remain unchanged (Figure 9). For the
spawning life stage of rainbow trout, the HFE has caused a decline in spawning habitat suitability and
the percentage of high HSI declined from 18.9% to 15.8% (Figure 9).
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4.3. Weighted Usable Area and Overall Usable Area Analyses

The spawning and juvenile rainbow trout habitat qualities have been carried out as per the WUA
and OSI based on equations 15 and 16. For juvenile rainbow trout with HFE, it is noted that the WUA
increased from 2.41 × 106 m2 to 2.61 × 106 m2 and the OSI increased from 0.48 to 0.51 correspondingly.
However, the WUA and OSI values for spawning rainbow trout are smaller than juvenile rainbow
trout. With the HFE, the WUA for spawning rainbow trout were 9.46 × 105 m2 and 7.91 × 105 m2 and
the OSI declined from 0.19 (before HFE) to 0.16 (after HFE) (Figure 10).
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Table 2 displays high, middle and low WUA spawning and juvenile rainbow trout response
to the HFE in the river reach from the Glen Canyon Dam to Lees Ferry in March 2008. It can be
noticed that the spawning and juvenile rainbow trout effects have a huge disparity when they face
the same HFE. According to Table 2, before HFE, the juvenile high and middle WUA values are more
than the corresponding spawning rainbow trout WUA values with the values being 2.23 × 106 m2,
2.75 × 105 m2 for juvenile rainbow trout and 9.46 × 105 m2, 1.03 × 103 m2 for spawning rainbow trout
respectively. After the HFE, the high WUA for spawning rainbow trout decreased to 7.90 × 105 m2

while the middle and low WUA increased to 3.10× 103 m2 and 4.21× 103 m2. The high, middle and low
WUA values for juvenile rainbow trout are 2.19× 106 m2, 6.51× 105 m2 and 2.16× 106 m2 respectively.

Table 2. Description of the spawning and juvenile rainbow trout weighted usable area with the habitat
suitability index larger than 0.7, 0.3–0.7 and 0–0.3 (Total area is 2,550,000 m2).

Habitat Category Spawning Juvenile

WUA

Before
High 9.46 × 105 2.23 × 106

Middle 1.03 × 103 2.75 × 105

Low 4.05 × 106 2.49 × 106

After
High 7.90 × 105 2.19 × 106

Middle 3.10 × 103 6.51 × 105

Low 4.21 × 106 2.16 × 106

It should be noted that there are some differences between the habitat model proposed here and
the other habitat models. In the habitat model proposed in this paper, the sediment transport module is
included in the model and the heat transfer equation is incorporated. Both heat transfer and sediment
transport modules make the habitat model much more closed to physical reality. The temperature can
be moderated by hypothetic exchange flow and the flux increased by the HFE for the habitat model
predictions. Notably, the indexes including the SI, HSI, WUA, and OSI are simulated simultaneously
in this paper, which could provide useful information for optimizing their choices.
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The features and the application of the fish habitat model indicated that the HFE was beneficial for
the juvenile rainbow trout habitat, but declined the spawning rainbow trout habitat quality. In addition,
during the HFE, the poor habitat quality reached 10 km. This information could help the river manager
to pay special attention to these sensitive areas and also pay attention to the fish tolerance to low
temperature. The habitat model used here could be used to determine whether the rainbow trout
habitat construction has been affected by the HFE and what proportion of the habitat structure has been
affected. This approach could also help to determine the habitat assessment standard on both natural
rivers and rivers with dams. It provides guidelines for ecological monitoring status and provides
inputs for the eco-hydraulic population model [50]. It should be noted that the habitat model could
easily adapt to other study rivers including both HFE and non-HFE rivers. Based on the habitat model
simulation, the long-term habitat quality can also be predicted.

5. Conclusions

The two-dimensional habitat models, linking the suitability curves of rainbow trout, permitted a
better understanding of parameters influencing and enhancing both ecological and habitat creation.
The ecological experiences integrated with the hydraulic parameters were used for calculation and
calibration of the eco-hydraulics modeling. The numerical model showed encouraging outputs
regarding the flow velocity, water depth and water temperature distribution. This eco-hydraulics
habitat model system can be used for other fish species as well as other river stretches and/or river
stretches separated by dams.

To summarize, the HFE is beneficial for the juvenile rainbow trout, but declines the habitat quality
for spawning rainbow trout. It is to be noted that one potential strategy for the up-gradation of this
model involves rescaling Colorado River hydrology and trying to manage key physical processes and
the resulting habitat characteristics.

Acknowledgments: The work was financially support by CSC funding support (No. 201163003), China water
key project plan (2016YFC0502004-4), and CAS project (Y6V60222YZ). We also thank the editor Evelyn Ning and
two anonymous reviewers. They comments and suggestions help to improve the paper quality significantly.

Author Contributions: This paper has proposed by Weiwei Yao and Yuansheng Chen. This manuscripts was
wrote by Weiwei Yao and Yu Zhong. The authors named Huaxian Liu, Wenyi Zhang, Haiyan Fan and Linkai Li
gave constructive suggestions. Sudeep Bamal helps to improve the English expression.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Ai The area of the mesh i
Ceq Suspended load mass concentration at reference lever under equilibrium conditions
CFD Computational Fluid Dynamics
Cre f Suspended load concentration at reference lever
χt Turbulence diffusivity scalar
θ Non-dimensional skin friction number/shields number
θcr Critical shields value
vt The eddy viscosity
C Chezy friction coefficient
d50 Particle size parameter in 50 percent
fcor The Coriolis parameter
g Gravitational acceleration
Gr Grashof number
h Fluid column height
HFE High Flow Effect
HSI Habitat suitability index
M The total number of grid mesh
OSI Overall suitability index
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P’ The non-cohesive bed porosity
Qbs, Qbn Bed-load flux
Re Reynolds number
SIv, SId, SIs, SIt Suitability index for velocity, water depth, substrates and temperature
t Time
T Temperature
U, V Depth average velocity components in x and y directions respectively
WUA Weighted usable areas
Z-Z0 Water depth
η Water surface elevation
τb Bed shear stresses
τxx τxy τyx, τyy Depth-average Reynolds (turbulent) stresses
ρs Sediment density
ρw Water density
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