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Abstract: In the past decade, extreme and exceptional droughts have significantly impacted many
economic sectors in the US, especially in California, Oklahoma, and Texas. The record drought of
2011-2014 affected almost 90% of Texas areas and 95% of Oklahoma state areas. In 2011 alone, around
$1.6 billion in agricultural production were lost as a result of drought in Oklahoma, and $7.6 billion
in Texas. The agricultural sectors in Oklahoma and Texas rely mainly on groundwater resources
from the non-replenishable Ogallala Aquifer in Panhandle and other aquifers around the states.
The exceptional droughts of 2011-2014 not only caused meteorologically induced water scarcity
(due to low precipitation), but also prompted farmers to overuse groundwater to maintain the
imperiled production. Comprehensive studies on groundwater levels, and thus the actual water
availability /scarcity across all aquifers in Oklahoma and Texas are still limited. Existing studies
are mainly focused on a small number of selected sites or aquifers over a short time span of well
monitoring, which does not allow for a holistic geospatial and temporal evaluation of groundwater
level variations. This paper aims at addressing those issues with the proposed geospatial groundwater
visualization model to assess availability of groundwater resources for agricultural, industrial,
and municipal uses both in Oklahoma and Texas in the time frame of 2003-2014. The model is
an evaluation tool that can be used by decision-makers for designing sustainable water management
practices and by teachers and researchers for educational purposes.
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1. Introduction

Over the past centuries, extreme and exceptional drought events have significantly affected both
surface water and groundwater resources [1-3]. While low surface water levels might be an immediate
indicator of drought, changes to groundwater levels indicate long-term water scarcity. At the same
time, while it is relatively straightforward to monitor and assess surface water changes, measuring
variations in groundwater resources (aquifers) is very challenging and time consuming, which—in
many cases—leads to missing or scattered data sets. However, while surface water resources can
be replenished by adequate precipitation, groundwater aquifers might be non-replenishable once
exploited (like, e.g., the Ogallala Aquifer containing fossil water, especially in the southern parts of
the High Plains) [4] or it may take years for an aquifer to replenish naturally, subject to geological
formations in different regions. While these conditions make groundwater resources extremely
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valuable, groundwater monitoring and measurements have been inconsistent geographically and
over time.

This research aims at developing a model that can serve as an evaluation tool for variations in
groundwater levels in two states, Oklahoma and Texas that have been mostly affected by the recent
drought events. While the model presents a user-friendly way to analyze geographical and temporal
variations in water availability in Oklahoma and Texas aquifers, it also sets a ground for our work on an
integrated drought indicator to serve as a predictor of drought in the future. For the last decade, Texas
and Oklahoma have been exposed to exceptional multiyear droughts, ranking number 1 and number
2 among the driest US states in 2010-2011, respectively (Figure 1). This trend has been recorded by the
National Oceanic and Atmospheric Administration [5], while drought conditions can undoubtedly be
called cyclical events recurring more or less frequently in sinusoidal cycles.
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Figure 1. US statewide precipitation ranks (October 2010-September 2011). Source: National Oceanic
and Atmospheric Administration [5].

Figure 2 shows a temporal overlap of drought events in both states, which is plausible due to
their geographical proximity. In 2011, almost 65% of Oklahoma areas were in exceptional drought,
~95% in extreme drought, and 100% in severe drought. In 2013, even though the area in exceptional
drought decreased to 40%, ~98% of the state areas suffered from extreme drought, and 100% from
severe drought. Oklahoma also experienced severe and moderate droughts in 2006 and 2009; however,
their magnitude was not comparable to the 2011-2014 droughts. A similar situation occurred in Texas,
with ~85% of areas in exceptional drought, ~98% in extreme drought, and 100% in severe drought in
fall 2011. The 2013 drought in Texas was less severe than in Oklahoma; however, Texas experienced
more severe droughts on record in 2006 and 2009.
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Figure 2. Drought index in Oklahoma and Texas in 2000-2016. Source: Drought Monitor [6], NDMC [7].
Legend: This figure shows categorical US Drought Monitor statistics that describe the percent of the
area in a certain drought category, based on precipitation. It excludes areas that are better or worse.
The statistics will add up to 100 percent for a given week.

Although droughts have a significant impact on all economic sectors, including municipal water
provision, industrial operations, and thermoelectric power generation [8], the agricultural sector is
particularly affected. This can be explained with the fact that agriculture is the most intensive user
of water for irrigation among all economic sectors both in Oklahoma and Texas. The 2011 drought
caused considerable economic losses in agricultural production of nearly $1.6 billion in Oklahoma [9]
and $7.6 billion in Texas [10,11], while the entire Texas economy suffered economic losses of around
$17 billion [12].

Even though the presented numbers refer to only a one-year drought event, they represent
the severity of potential economic impacts as a result of extreme drought conditions, which could
potentially recur both in the agricultural sector as well as in other sectors in the future. As the 2011
drought was a record drought, we use this example as a representative data trend for the geospatial
analysis of changing groundwater levels in Oklahoma and Texas in 2003-2014 presented in this paper.

The relevance of conservative groundwater use stems not only from the instant meteorological
water scarcity, but also from long-term predictions regarding future water availability. According to
the Texas Water Development Board (TWDB) [13], Texas’ groundwater supplies are expected to fall by
30% in the next 50 years. Similarly, according to the Oklahoma Water Resources Board (OWRB) [14],
approximately one-third of the river basins in Oklahoma exhibit poor surface water quality, which
may make them unavailable for reliable supply, while bedrock groundwater depletions are anticipated
to occur in 34 basins.

In the face of decreasing water availability and an increasing demand for water due to growing
population (33% increase in the next 50 years) [14], a question arises about the actual levels of available
groundwater resources and possible mitigation/adaptation measures to the current and anticipated
droughts in the future. Due to the relevance and urgency of the problem, a multitude of studies
emphasized the importance of groundwater evaluation and modelling approaches for sustainable
water management [15-21]. Also, some studies applied GIS-based models to address recharge volumes
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of aquifers from the hydrogeology perspective [22] or groundwater potential zones [23,24]. However,
research on geospatial and temporal variability of groundwater resources and a holistic analysis of
groundwater changes is still very limited [25,26]. Missing or inconsistent temporal groundwater
monitoring records have been a restraining factor for comprehensive research in this field; however,
it is common across most US states due to fluctuating human and monetary resources. Figure 3
displays an example in which for the first two wells data on well levels were available only until 2000,
while the third well was monitored throughout 2012. In our study we found this common trend both
in Oklahoma and Texas.
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Figure 3. Water levels from Oklahoma Water Resources Board (OWRB) Mass Measurement Program
wells. Source: Mashburn et al. [27]. (A) Well 9619, (B) Well 9622, (C) Well 9624.
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Furthermore, a multitude of studies analyzed volumetric changes of groundwater resources
in different parts of the world to quantify effects of drought. For instance, Konikow [28] evaluated
long-term cumulative depletion volumes in 40 separate aquifers in the US by means of calibrated
groundwater models, analytical approaches, and volumetric budget analyses. Bhanja et al. [29]
analyzed spatio-temporal groundwater storage anomalies in India to prove strong seasonality, with
annual maxima observed during the monsoon season and minima during pre-monsoon season.
Sakakibara et al. [30] determined comprehensive groundwater recharge processes in a catchment with
large seasonal hydrological variations by means of field surveys in the Wangkuai Reservoir watershed
in North China, while Zhang et al. [31] estimated groundwater storage indirectly from daily streamflow
based on hydraulic groundwater theory. Similarly, Manna et al. [32] used the Chloride Mass Balance
method to obtain long-term recharge values in an upland sandstone aquifer of southern California.
Studies are also known that investigated impacts of crop rotations on groundwater storage and recharge
in agricultural watersheds [33]. Several studies also used GRACE (Gravity Recovery and Climate
Experiment) satellite data [34-36] or a combination of satellite data and in-situ observations [37,38],
as well as geospatial software tools [39].

The research presented with this paper aims at extending literature in the field by proposing a
new model for monitoring groundwater level changes based on a method combination of normalized
in-situ averages (rather than absolute water volumes) and the Palmer Drought Severity Index (PDSI)
values. As opposed to GRACE measuring groundwater levels based on gravity at a large geographical
scale, this model provides a detailed picture of groundwater level changes at each individual well,
thus allowing for higher granularity and geospatial resolution of the results.

The proposed geospatial and temporal model for Oklahoma and Texas is used as a case study to
explain the benefits of this methodological procedure. The selection of those regions was determined
by continued drought events in both states (as described above) and data availability. While Oklahoma
has the highest quality weather monitoring network in the world (the Oklahoma Mesonet) [40], Texas
has a more comprehensive database with regular groundwater measurements. Those variations in
data availability, and statistical calculations conducted for this study, allowed for inference analyses
providing a holistic and interactive model of geospatial and temporal groundwater level changes
in 2003-2014.

It needs to be emphasized that this paper does not address the groundwater exploitation,
total storage, water balances, or policy issues related to aquifer exploitation. Even though those are
relevant issues, this research is focused on evaluating spatio-temporal variations in groundwater
well levels and developing a tool that can be used for decision-making regarding sustainable
water management.

2. Research Objectives

The main goal of this paper is to analyze changes in groundwater well levels in 2003-2014 and
determine potential long-term indicators of drought in Oklahoma and Texas. To achieve this goal
we developed a geospatial and temporal visualization model with the aim to: (a) identify regional
differences in groundwater level changes (geospatial dimension); (b) evaluate changes in groundwater
wells over time (2003-2014) (temporal dimension); and (c) emphasize practical benefits of the model by
pinpointing potential impacts of those changes in the future as well as potential locations of concern
for decision-makers in their efforts to design sustainable water management programs.

As sampling and monitoring of groundwater well levels across US states and regions is often
irregular and inconsistent (in some cases it occurs once per year only), the proposed model visualizing
normalized changes in groundwater levels over time can also be used for mitigating data paucity.
Analyzing past and current groundwater availability is essential for determining water scarcity in the
short, mid, and long term. By developing an evaluation tool this research can help decision-makers,
water managers, and scientists to recognize geospatial and temporal patterns in groundwater level
changes. It can further be used to predict anticipated regional groundwater changes in the future,
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as well as potential impacts of those changes, thus providing a tool for emergency planning, especially
in times of extreme and exceptional droughts.

3. Methods and Data

To evaluate changes in groundwater well levels in different regions of Oklahoma and Texas over
time, we developed a four-dimensional (4D) visualization model based on the Ternary Visual Shape
Logic introduced for the first time by Ziolkowska and Reyes [41] (Figure 4).

. 2011-2014
. o 2007-2010
L

. 2003-2006

9
J

discernible discernible no discernible
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Figure 4. Ternary Visual Shape Logic diagram for the analyzed groundwater changes in 2003-2014.
Source: Ziolkowska and Reyes [41].

The model offers a visual representation of temporal changes in groundwater wells. It uses
normalized in-situ averages that are further validated with the Palmer Drought Severity Index values.
This research does not address absolute water volume changes and balances, as commonly addressed
in the literature. Rather, it proposes a more holistic approach of monitoring groundwater level changes
even in situations when consistent in-situ measurements are compromised or scattered over time, as is
the case with the presented case studies for Oklahoma and Texas. In both states, there is a significant
variability in groundwater measurements at the respective wells across the state over the analyzed
time span of 12 years. Accordingly, some wells were monitored more frequently (and thus consistent
data sets are available for the entire time series), while other wells were monitored less frequently
(which resulted in scattered data sets during that time period). For that reason, a comprehensive
analysis of water balances is not possible to generate statistically robust results. To mitigate this
problem, and provide a comprehensive pattern of groundwater level changes over time, this paper
estimates a statistical trend of temporal changes at each well included in the analysis. To validate the
correctness of this approach and the robustness of the groundwater model, the trend results have been
compared and correlated with the Palmer Drought Severity Index values.

The model was developed for the time span of 12 years (2003-2014), with three-year sections:
2003-2006, 2007-2010, and 2011-2014, which facilitated a temporal analysis of the trends in
groundwater levels and drought severity. The time period for this research was selected based
on data availability. Data measurements of groundwater well levels before 2002 were very sparse,
while the year 2003 was a breakthrough point in terms of the number of monitored wells across
Oklahoma and Texas. We attribute this change to technological development and new monitoring
instruments that allowed for more frequent and precise groundwater level measurements. Thus,
including any analyses before the year 2003 would compromise the robustness of the results, and thus
was forgone for the purpose of this study.

The presented model was developed through large data processing, and encompasses four major
variables: latitude represented on the x-axis, longitude on the y-axis, time on the z-axis, and the
extent of groundwater scarcity (groundwater well levels) as color-shaded spheres. While latitude
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and longitude allow for displaying geographical dimension, the time variable represents temporal
dimension of groundwater level changes.

The model utilizes the US Geological Survey (USGS) water database containing 20,162 wells in
Oklahoma and a database from Texas Water Development Board on ~140,000 monitored water wells
in Texas. Due to data disparities and missing data points for all wells, we ‘cleaned’ the data set by
determining selection criteria for each well to be included in the model, as follows: (a) wells sampled
at least once in each of the three time sections: 2003-2006, 2007-2010, 2011-2014; and (b) wells with at
least five samples minimum in the entire time frame. In this way, we specified 7211 water wells in Texas
and 390 water wells in Oklahoma. The data was further normalized in order to provide a data-based
benchmark and comparison basis for all groundwater data entries. Normalization of the groundwater
well levels in both states was conducted for each well separately in two steps. First, minimum and
maximum values in the entire raw data set were determined and averaged. In order to provide a more
detailed distribution and precise analysis, the sampled values that fell between the minimum and the
average value were averaged, thus generating the low-average value. Similarly, the sampled values
that were observed between the maximum and the average value were averaged, thus generating the
high-average value. This specification provided five hard values (minimum, low-average, average,
high-average, and maximum) and categories to constitute a histogram with four bins that were further
used to determine distribution of groundwater well levels over time (Figures 5 and 6).

200

150

100
- 2011-2014

50 T 2007-2010

2003-2006
Low Avg Mid Low Mid High High Avg
Avg Avg

Figure 5. Distribution and categorization of normalized groundwater levels in Oklahoma in 2003-2014.
Source: Authors’ calculations and visualization.
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Figure 6. Distribution and categorization of normalized groundwater levels in Texas in 2003-2014.
Source: Authors’ calculations and visualization.
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Second, the raw data set was analyzed for temporal changes by averaging the values for the
three time sections: 2003-2006, 2007-2010, and 2011-2014, respectively and assigning them to the
corresponding bins. In this way, four values were generated that are represented with four categories of
spheres of different colors and different sizes: small cyan spheres (representing the lowest groundwater
levels), small medium light blue spheres, big medium blue spheres, and big dark blue spheres
(representing the highest groundwater levels). The spheres closest to the ground surface display the
years 2003-2006, the spheres second in height from the ground surface display the years 2007-2010,
while the spheres highest from the surface represent the most recent years 2011-2014.

In a next step, we used the C++ language to develop computer code and generate KML
(Keyhole Markup Language) data files that allow model users to interact with the results both in Google
Earth or Cesium and Google Maps (or other platforms) [41]. The model shows three categories of
regional trends and variations in groundwater well depletion over the analyzed time span: increasing,
decreasing, and inconclusive trends (no change in water levels) in different regions of Oklahoma and
Texas. The trends indicate regions of current water scarcity and potential limited water availability in
the future.

Due to its interactive feature, the model allows for an analysis of groundwater level changes
from a close and a broader perspective in all counties in Oklahoma and Texas over the analyzed time
span 2003-2014. The model can be used as a decision-support tool to instantly recognize groundwater
scarcity and derive potential socio-economic implications. The strength of the model stems from its
ability to visually represent changes in all analyzed groundwater wells in all regions in two states,
emphasizing well level gains and losses in different time frames. The large number of raw data
is beneficial for a visual representation as discussed with this paper. However, it is overwhelming
(due to the large number of data points) for a one-dimensional representation of time series.

To validate the model results and the robustness of our methodological approach, we applied the
Palmer Drought Severity Index (PDSI) [42] that has been used extensively in the US and acknowledged
as one of the most comprehensive indicators of drought. It incorporates water supply, water demand,
temperature, and precipitation. Even though there is a multitude of drought indicators, and PDSI is
not the universal measure to evaluate drought [43], we use this indicator due to its reliable and most
comprehensive methodology as of today [44]. For validation purposes and geospatial visualization,
we represented the Palmer Drought Severity Index as a gradient indicator for the analyzed regions.
To prepare the basis for correlation analysis, the PDSI raw data were assigned to the respective drought
categories for the three time spans (2003-2006, 2007-2010, and 2011-2014) (Figures 7 and 8) in the same
way as for groundwater levels (Figures 5 and 6).
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Figure 7. Categorization of averaged drought severity in Oklahoma in 2003-2014. Source: Authors’
calculations and visualization.
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Figure 8. Categorization of averaged drought severity in Texas in 2003-2014. Source: Authors’
calculations and visualization.

Data from the Drought Monitor was evaluated for each week in the entire analyzed time period
of 2003-2014. A total of 206,544 samples for all counties in Texas and Oklahoma were used for
the analysis. The samples represent drought indexes [D0—abnormally dry, D1—moderate drought,
D2—severe drought, D3—extreme drought, and D4—exceptional drought] reflecting the percent of
the county in each of the drought conditions, respectively (compare with Figure 2). It needs to be
mentioned that the presented categorization of groundwater levels (Figures 5 and 6) and drought
severity (Figures 7 and 8) has low regional granularity, as it refers to the entire state of Oklahoma
and Texas, respectively. The following geospatial distribution offers a more accurate picture of given
conditions at a very detailed scale of specific groundwater wells or at the county level. Moreover,
a follow-up analysis resonating from this research will allow us to evaluate these correlations for each
climate region in both states.

4. Results and Discussion

The model allows for the estimation of the extent of water shortages as a result of droughts in
all three analyzed time spans of 20032006, 2007-2010, and 2011-2014. It also provides a basis for
revealing potential lingering uncertainty resulting from water scarcity and socio-economic implications
of groundwater shortages in the future.

The groundwater well levels are represented with the blue-colored spheres (Figure 9) that
are clickable and bring up a balloon information window with statistical information (including
groundwater levels) in addition to a link to the original well data. Representing all time periods
simultaneously is recommended in a model view to interactively navigate/fly through the wells and
analyze time series changes over time (Figure 10).

The model shows that groundwater levels in most of the wells have been decreasing since 2003,
reaching the peak in the number of wells with the lowest water levels in 2011-2014—the period
of exceptional and extreme droughts in Oklahoma and Texas. Only a minority of the wells were
inconclusive about the direction of change in groundwater well levels over time. As there is no clear
pattern to these inconclusive data points, they can be explained either as outliers or deviating from the
trend due to geological formations, rock type, and porosity in the given geographic location. Moreover,
there are only a few wells with increasing water levels in both states in that time period. While there is
a clear pattern of decreasing groundwater well levels in general, differences also exist from well to
well over time. A comprehensive analysis of each well in different time periods can be viewed in the
interactive model accessible at: http:/ /www.hitechmex.org/OK_TX/index.html.
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Figure 9. Screenshot of groundwater well levels in 2011-2014 in Oklahoma and Texas. Source: Authors’
calculations and visualization.

Figure 10. Screenshot of groundwater wells in a Texas region in 2003-2014. Source: Authors’
calculations and visualization.

To validate the model results visually, the Palmer Drought Severity Index was applied at this stage
as a correlation variable for each county in Oklahoma and Texas. The results of the Palmer Drought
Severity Index representation visibly show drought severity in 2011-2014 and weather variations
in the three analyzed time spans (compare with Figure 2). By overlapping the PDSI gradient map
with the interactive 4D groundwater well model a distinct visual correlation of those two variables
unfolds. Figure 11 represents the PDSI gradient in Oklahoma and Texas and also a selection of wells
with the lowest water levels in the analyzed time period. It clearly shows that in 2003-2006 the Palmer
Drought Severity Index gradient indicated mostly abnormally dry conditions in both states, while
the groundwater model shows a low number of wells with the lowest water levels. In 2007-2010,
the Palmer Drought Severity Index showed a change in drought severity to moderate drought in
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some regions, while the number of wells with the lowest water levels either did not change in some
regions or increased in regions shadowed with the light orange color (moderate drought according
to PDSI). A statistical breakthrough is visualized in the last time period of 2011-2014, with PDSI
indicating exceptional and extreme drought in many Oklahoma and Texas regions. At the same time,
the number of wells with the lowest water levels spiked markedly. The correlation of the groundwater
well model with the independently calculated Palmer Drought Severity Index is a strong indicator of
the methodological robustness and validity of our model. While this model is a visual representation
of groundwater level changes over the time span of 12 years, it was not the goal of this study to present
differences in aquifer storage coefficients across monitored regions or the relationship between water
extraction and changes in groundwater levels.

Drought Drought with
Average low below
Palmer average wells

2003 - 2006
2007 - 2010
2011 - 2014

Figure 11. Palmer Drought Severity Index (PDSI) and groundwater wells with the highest water
scarcity in 2003-2014. Source: Authors’ calculations and visualization.

The visual correlation was further tested statistically according to the formula:

1 X=X\ (y—Yy
T_n—1z( sx)< sy> @
where r—correlation factor; n—number of observations; x—groundwater well levels; y—Palmer
drought severity; Xx—mean of groundwater level values; y—mean of drought severity values;

Sy—standard deviation of groundwater level values; S,—standard deviation of drought
severity values.
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Accordingly, the correlation indicator for Oklahoma amounted to 0.75, while it was 0.95 for Texas,
which indicates very strong correlations between the groundwater levels and severity of drought,
and thus validates our hypothesis.

The visual model is an interactive tool that can be used for decision-making processes and
designing sustainable water management measures. The interactive feature of the model allows the
user to learn by navigating though the respective wells, clicking on the respective spheres to retrieve
detailed statistical information about temporal variability of groundwater levels at the respective
wells and in different regions as a whole, as well as context switching to display temporal correlations
between the groundwater level changes and the Palmer Drought Severity Index. However, the model
results are only a first step in deriving conclusions on potential mid- and long-term socio-economic
impact as a result of drought and decreasing groundwater levels. As accentuated by the model results,
the most impacted regions are in the Oklahoma and Texas Panhandle, which are the main agricultural
production areas applying water from the Ogallala Aquifer in the southern parts of the High Plains.
As discussed at the beginning of this article, the Ogallala Aquifer is non-replenishable, as it contains
fossil water. Thus, low groundwater levels displayed by the model are an indicator of severe aquifer
depletion (as a combined effect attributed to excessive water withdrawals and insufficient aquifer
replenishment), which can lead to unexpected repercussions for the agricultural sector itself, as well as
for other economic sectors (municipalities, industry sector, tourist facilities, etc.). Those changes can
also further impact the production output, water prices, social welfare, and finally the economic growth
in both states. Another question that arises in this context is the extent of drought and its impacts
on employment levels and wages in the agricultural sector and beyond. Consequently, the length of
drought will determine the scope of the enumerated socio-economic impacts in the mid and long term.

5. Conclusions

The results of this study show a correlation between decreasing groundwater levels and the
Palmer Drought Severity Index. Both in Oklahoma and Texas, a significant decrease in groundwater
levels has been found in 2001-2014 that correlates with the biggest drought on record. While regional
differences have been detected in different regions in both states over time, the general trend of
changing groundwater levels corresponds with the recorded regional and state-wide drought severity.

The results were generated and visualized with a geospatial model that allows for an interactive
analysis of those trends and patterns in different geographic locations and regions in both states,
and over time. In this way, past and current groundwater availability (and water scarcity) at the state,
regional, and local level was evaluated holistically with a consistent methodology. The results and
the model can be used as a decision-making support tool to assess potential regional groundwater
changes in the future, and to analyze potential impacts of those changes. Finally, the outcomes of this
research can be useful for long-term planning of emergency situations related to water scarcity.

Furthermore, the results of this study generated a methodological basis for future drought
predictions. The positive correlation between the groundwater levels (measured by OWRB, TWDB,
and USGS less frequently) and the Palmer Drought Severity Index (measured frequently on a weekly
basis) provides a benchmark for determining future groundwater levels (aquifer depletion) even
in situations of missing or inconsistent data from in-situ groundwater measurements. Accordingly,
in such cases, the Palmer Drought Severity Index could be used as a predictor of groundwater well
levels based on statistical inference.

The results and the interactive model can help decision makers with discussions on potential
restrictions to water use to be placed on different sectors or users (e.g., farmers, municipalities,
industries), as well as with sustainable water allocation. Model access: http://www.hitechmex.org/
OK_TX/index.html.
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