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Abstract: This study proposes a new method for downscaling ETWatch 1-km actual
evapotranspiration (ET) products to a spatial resolution of 30 m using Landsat8 normalized difference
vegetation index (NDVI) data. The NDVI is employed as an indicator of land-surface vegetation,
which displays periodic spatial patterns on the land surface. A 30-m-resolution ten-day ET dataset
is then calculated primarily using the NDVI and the historical ratio of coarse NDVI and ET that
considers different land cover types. Good agreement and correlations were obtained between the
downscaled data and observations from three flux sites in two study areas. The mean bias (MB) per
ten-day period ranges from 4.21 mm in Guantao to 1.55 mm in Huazhaizi, and the coefficient of
determination (R2) varies from 0.87 to 0.95. The downscaling results show good consistency with
the original ETWatch 1-km data over both temporal and spatial scales for different land cover types,
with R2 values ranging from 0.82 to 0.98. In addition, the downscaled results capture the progression
of vegetation growth well. This study demonstrates the applicability of the new “de-pixelation”
downscaling method in the management of water resources.
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1. Introduction

Evapotranspiration (ET) is one of the major processes in the hydrologic cycle and plays an
essential role in controlling energy and water exchanges between the land surface and the atmosphere.
ET is also a key component in water resource management across multiple scales for agricultural and
ecological applications [1]. ET is the summation of evaporation and transpiration, which consume
water to different degrees in areas with different land cover types; thus, this parameter is significantly
affected by the land-surface characteristics.

Given the dwindling supplies of available water resources due to over-withdrawal of groundwater
and water pollution, water resource management has shifted from traditional large-scale approaches
to approaches that rely on ET to estimate temporal changes, which concentrate to a greater degree on
identifying temporal changes and the spatial distribution of water consumption, especially in intensely
irrigated farming areas [2]. Furthermore, the results of water-saving techniques, such as drip irrigation
and sprinkler irrigation, could be monitored using ET data, thus improving water-use efficiency (WUE)
and enhancing the ability of farmers to efficiently manage available irrigation water supplies [3–6].

Gridded ET from remote sensing (RS)-based methods, however, suffers from the temporal and
spatial limitations from RS sensors. For example, Moderate Resolution Imaging Spectroradiometer
(MODIS) products (which have a spatial resolution of 1 km) can be obtained twice daily,
and approximately 100 images are available each year after the images influenced by clouds are
removed. In contrast, only one Landsat8 image with a resolution of 30 m is taken every 16 days,
regardless of cloud cover. Consequently, trade-offs exist between different RS-based methods, and
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combinations of different ET datasets and methods are required to improve the success of water
resources management [7].

Given the limitations of RS images, a combination of images from diverse sensors can be used to
obtain a complete time series of stable and higher-resolution gridded ET data. Martha C. Anderson
interpolated ET snapshots obtained at the time of clear-sky Landsat overpasses [8]. In this work,
the ratio of actual ET to a reference ET (fRET) obtained from Landsat data after spline interpolation,
ALEXI fRET data obtained by applying the Savitsky–Golay filter [9], and daily meteorological data
were used as inputs. Similarly, many methods employ actual ET (ETa) and potential ET from cloud-free
days and assume that the ratio of fRET or the evaporative fraction (EF) is the same or changes
in an orderly fashion. Such methods include the reference ET fraction [10–13], Todorovic [14–16],
and evaporative fraction [17,18] methods. For Landsat8 data, the effects of clouds and the satellite
repeat interval both contribute to image-sparse areas. Traditional temporal gap-filling methods may
filter out some high-frequency signals, such as irrigation, during these long time intervals.

Another approach involves downloading coarser-scale datasets that combine the benefits of
diverse kinds of remote sensors. Downscaling is defined as an increase in spatial resolution following
disaggregation of the original dataset based on fitting a statistical relationship [19,20], which requires
information at a desired fine resolution [21–23]. Liu and Wu used the spatial and temporal adaptive
reflectance fusion model (STARFM) to downscale 1-km ETa data [24]. Yasir H. Kaheil presented
an algorithm using the discrete wavelet transform (DWT) and support vector machines (SVMs) to
downscale and forecast ET values at a spatial resolution of 15 m, which is similar to the resolution
used by Ke [25,26]. In addition, the U.S. Geological Survey investigated the downscaling potential of
simplified surface energy balance (SSEB)-derived ETa data from 1 km to 250 m by correlating the ET
data with Normalized Difference Vegetation Index (NDVI) values from MODIS [27].

A correlation exists between vegetation and ET. Transpiration through the stomata of plant leaves
accounts for the majority of ET, especially in arid and semi-arid areas, due to the low soil moisture
content. For example, the study by Zhuang [28] concluded that the fractional vegetation cover (fvc)
and canopy resistance (Rc) retrieved from images displaying NDVI values control the sensible heat
flux between the surface and the atmosphere. Additionally, NDVI has also been suggested as a major
factor controlling the inter-annual variations in ET over relatively broad scales [29]. Many studies have
highlighted the advantages of using vegetation indices (VIs) to estimate ET in previous decades [30–36].
Edward P. Glenn summarized correlation coefficients between ET estimates based on VIs combined
with relevant variables and in situ observations [36].

This study aims to introduce Landsat8 30-m NDVI data as a readily available and applicable
source of information on spatial patterns combined with land cover information at the same spatial
scale. In addition, regression coefficients determined only over small areas (one MODIS pixel) were
employed to downscale the ETa data. Three in situ flux sites in two study areas are then used to
compare with the results of the so-called “de-pixelation” method, which disaggregates the ETWATCH
1-km ETa dataset to a resolution of 30 m.

2. Study Area and Data

2.1. Study Area

In this research, three sites within the two study areas, the city of Zhangye and Guantao
County, which feature different climatic conditions, were chosen to validate the performance of
the “de-pixelation” method in semi-arid and semi-moist climate regimes.

1. The Heihe Basin is the second largest river in China. This river flows through Qinghai, Gansu and
Inner Mongolia in China, and the catchment area covers approximately 128,000 km2. The middle
reach (98◦57′–100◦52′ E, 38◦39′–39◦59′ N), which is examined in this research, is near Zhangye
and has an area of approximately 3200 km2. This region includes the main irrigated agricultural
zone and the main water consumption area in the basin and features a semi-arid climate with hot
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summers and cold winters. This area receives an average rainfall of 110.9 mm year−1 (1980–2010)
and has a mean annual temperature of 7 ◦C.

According to the 30-m land cover data from ChinaCover [37] generated using an object-based
method with an accuracy of 94%, irrigated cropland (mainly wheat, cotton and maize) occupies
the largest proportion (approximately 49%) of this region, followed by grassland (32%), bare land
and desert (9%), artificial surfaces (7%), forest (2%), and water areas (1%). The dataset is revised
every five years, and the data from 2010 were used in this research. Detailed percentages
for the diverse land cover types in Zhangye City are given in Table 1. A position and land
cover map of the middle reach (complete with the two flux stations used in this research,
i.e., Daman and Huazhaizi) is shown in Figure 1. The Daman site is cropped with large tracts of
maize (approximately 200 hm2) surrounded by shelterbelts, while the Huazhaizi site is located in
the Gobi desert area that surrounds the Zhangye oasis and features sparse vegetation.
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Table 1. Percentages of different land cover types in Zhangye provided by ChinaCover.

Land Cover Type Code in ChinaCover Percentage/%

Cropland 42 48.86
Sparse grassland 63 and 22 32.07
Artificial surface 51, 52, 53 and 54 6.68

Bare soil and desert 65, 66 and 67 9.32
Forest 62, 102, 110 and 111 2.19

Water areas 35 and 36 0.82

2. Guantao County is located within Heibei Province, China, and within the Haihe Basin
(115◦06′–115◦40′ E, 36◦27′–36◦47′ N). It experiences a semi-moist climate that is mainly influenced
by the monsoon. The climate of Guantao is more humid than that of the Heihe Basin, and this
region receives an average rainfall of approximately 600 mm per year. The relative abundance of
precipitation has led to Guantao being a major agricultural county, and cropland covers nearly
80% of its area. Nearly all of the arable land is cultivated with two crops per year (winter wheat
from October to June and summer maize from June to September). The detailed land cover
percentages obtained using the same classification system as applied in the Heihe Basin can
be found in Table 2. As with the sites in Zhangye, one eddy covariance (EC) station, which is
supported by the Haihe Basin project of the Global Environmental Facility (GEF), is equipped
with automatic weather station (AWS) sensors at an altitude of 15.6 m. A photo of the flux tower
and the land cover map are shown in Figure 2. This site is surrounded by a large area of flat
crop land.

Table 2. Percentages of different land cover types in Guantao County provided by ChinaCover.

Land Cover Type Code in ChinaCover Percentage

Cropland 42 79.80
Artificial surface 51, 52, 53 and 54 16.15

Bare soil and desert 65, 66 and 67 0.46
Forest 62, 102, 110 and 111 2.49
Water 35 and 36 1.09
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2.2. ETWATCH 1-km ETa Dataset

ETWATCH is a robust method for calculating actual evapotranspiration that combines surface
energy balances and the Penman Monteith (P–M) method and has been calibrated and validated in
the Heihe and Haihe basins [18,38,39]. In this research, absolutely cloud-free Aqua MODIS images
from 87 days in the Heihe Basin and 142 days in the Haihe Basin were used for ET calculation,
with the time interval ranging from one day (dry season) to a maximum of eight days (wet season).
The instantaneous energy balance and evapotranspiration fraction (EF) are calculated by the “residue
approach” using MODIS data on clear days. In the process of transpiration, the energy exchange
between the land surface and the atmospheric boundary layer (ABL) was simulated based on the
ABL conditions using a separate aerodynamic roughness length method, which combines information
on vegetation, topography and the radar-based roughness that describes the surface structure [40].
This method was used instead of the traditionally used lookup table method. Gap-filled daily MOD07
atmospheric profile dataset combined with the Feng approach were employed to detect ABL height.
There is an abrupt decrease of the water vapor mixing ratio (MR) profile at the height of ABL, by
which air temperature, dew-point temperature and air pressure were extracted at the certain layer [41].
Once the instantaneous net radiation, soil heat flux and sensible heat flux (Rn, G and H) are derived,
the latent heat (LE) flux is calculated as the residual according to the energy balance equation.

The LE for the whole day is then based on the extended EF from instantaneous data and net
radiation data without the energy from the daily soil heat flux (Rn–G0), assuming that the EF is constant
throughout the day [42]. During this step, calculation of daily net radiation is based on the traditional
method recommended by the UN Food and Agriculture Organization (FAO) for meteorological data
that considers topography [38,43,44]. Daily interpolated meteorological data provided by the China
National Meteorological Bureau, together with sunshine hour data derived from the FengYun-2D/E
(FY-2D/E) satellite with empirically determined parameters for different kinds of clouds, are also used.
Moreover, this study introduces an improved approach for estimating instantaneous and daily soil
heat flux that includes the surface parameters of vegetation indices, shortwave infrared reflectance,
solar zenith angle, surface temperature, and soil moisture content. This approach has been verified at
six sites within the Heihe Basin and two sites within the Haihe Basin [45,46]. The resulting datasets
have exhibited high accuracies.

The resistance on a clear day was then calculated using the P–M method based on the weather
conditions measured using routine AWS observations (maximum, minimum and average temperature,
air humidity, wind speed, and number of sunshine hours from the FY2 dataset) [47]. To obtain a
complete set of daily ET data using the P–M method, this work used a temporal gap-filling model
for surface resistance that contains information including smoothed leaf area index (LAI) values, soil
moisture content, and daily constraint functions describing the response of stomatal apertures to the
minimum air temperature (Tmin) and the vapor pressure deficit (VPD) [18].

In this research, ETWatch data from the Heihe Basin over two years (2012–2013) were analysed.
However, only data from 2013 were downscaled for validation due to the lack of in situ observations.
Data from Guantao Country from 2013 are also used. All datasets are given as ten-day intervals and
then combined into month-scale values for comparison and mapping.

2.3. Landsat8 Data

The oasis of Zhangye, which lies in the middle reach of the Heihe Basin, is covered by only one
Landsat8 image at path 133 and row 33. First, Landsat8 data for the study area during the growing
season (April to October) in 2013 were downloaded from the Earth Explorer web site [48]. Images with
sparse clouds or, at a minimum, clouds that did not cover the croplands were chosen for pre-processing.
Two months of Landsat8 images (August and September) were not used due to cloud contamination.
Thus, data collected by the HuanJing (HJ-1A and HJ-1B) satellites were used as a substitute source of
NDVI data. These data were obtained from the website of the China Center for Resources Satellite Data
and Application [49] to achieve the goal of one image per month. HJ images have the same spatial
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resolution (30 m) as Landsat images but have a shorter time interval (two days). A comparison of the
spectral and revisiting characteristics of the two satellites is provided in Table 3. Peer-reviewed studies
have investigated the normalization of images from these two satellites [50].

Table 3. Band comparison of Landsat8 with HJ 1 A/B.

Items Landsat8 OLI 1 HJ 1A/B Spatial Resolution

Band Blue 0.45–0.515 0.43–0.52 30-m
Band Green 0.525–0.60 0.52–0.60 30-m
Band Red 0.63–0.68 0.63–0.69 30-m

Band NIR 2 0.845–0.885 0.76–0.90 30-m
Revisit Interval 16 Days 2 Days –

Notes: 1 Operational Land Imager. 2 Near Infrared.

To maintain consistency between the two data sources, HJ data were transformed into the same
coordinate system as that used by Landsat8. The root mean square error (RMSE) of this rectification is
less than one pixel.

Similar to the conditions in Zhangye, the Landsat8 image at path 123 and row 35 was collected for
Guantao County during the same period in 2013 (April to October). Fortunately, a sufficient number of
Landsat images were obtained, and the substitution of HJ data was not required. Detailed acquisition
dates of the Landsat data for both sites can be found in Table 4.

Table 4. Acquisition date of 30-m images.

Month Acquisition Date in Zhangye Visit Date in Guantao

April 2013 16 April 26 April
May 2013 2 May 12 May
June 2013 3 June 13 June
July 2013 21 July 31 July

August 2013 4 August (from HJ) 16 August
September 2013 21 September (from HJ) 17 September

October 2013 9 October 19 October

2.4. MOD16 ET Data

For coarse ET, there are currently multiple ET products with diverse scale, such as the
MOD16 [51,52] global ETa product [53], which has a 1-km spatial resolution and an 8-day or one-month
temporal resolution, which is similar to ETWatch. This product, with the applied P–M equation,
has been validated in several countries and continentals. Details on the method and global validation
results can be found in the literature [51,52,54–56]. Hence, in this research, a comparison of downscaled
results using MOD16 monthly data and ETWatch inputs was performed. The MOD16A2 dataset was
processed following the scale factors and added offsets in the original HDF file.

3. Method

In principle, the ETa values within a given coarse pixel (usually a MODIS 1-km pixel) should be
nearly the same for homogeneous surface conditions, given that meteorological factors typically remain
constant over short distances. However, due to the heterogeneity of the land surface, which contains
different land cover types and topography, ET values vary among small patches.

One type of output downscaling that is currently widely used can be called the “correlation”
approach. This process uses the relationship between ETa data from two MODIS images (or other
high temporal resolution datasets) separated by a given time interval [7,23,57]. To advance this type of
strategy by building relationships based on Landsat ET over small areas, in this study, spatial patterns
from NDVI data within individual fine pixels are highlighted. Assuming that the 1-km ETa data used
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in this research provide a good representation of the actual conditions, the following equation can
be used:

ET30m = ET1km ×
p30m

P1km
(1)

where ET30m is the downscaled ET result at a resolution of 30 m; ET1km is the ETa calculated from
MODIS data at a resolution of 1 km (ETWatch in this research); and P1km and p30m are driving factors
calculated from the 30-m resolution images. Downscaling using this scheme can ensure that the sum
of the downscaled ET will be the same as that of the entire coarse pixel.

A monthly 30-m NDVI image is combined with the land cover map at the same spatial resolution
to calculate the indicators P1km and p30m. The transpiration associated with vegetation is greater than
the evaporation associated with soil during the growing season, and the magnitude of the transpiration
varies among different vegetation types. Hence, the historical ratio of NDVI/ETa was used to diminish
the potential deviation because of heterogeneity in the land surface.

A lower ratio of NDVI/ETa (usually occurring within cropland) may lead to an increase
in the downscaled ET using NDVI only for cropland inside individual mixed 1-km pixels.
Therefore, the NDVI obtained directly from Landsat8 must be modified to eliminate this deviation.
The relevant equation can be written as follows:

Ra(i,m) =
NDVI(i,m) / ETa(i,m)

∑ NDVI(m) / ETa(m)
(2)

p30m = NDVI(30m, m) + Ra(m) (3)

where Ra(i,m) is the factor that offsets the NDVI due to the different NDVI/Eta ratios, which depend on
the land cover type i and the month m. NDVI(i,m) is the average NDVI value for land cover type i and
month m, ETa(i,m) is the average ET value for land cover type i and month m, and ∑ NDVI(m) / ETa(m)

is the summation of NDVI/ET for all land cover types in month m. In Equation (3), p30m is the
downscaling indicator used in Equation (1), NDVI(30m,m) is derived from satellite data from month m,
and Ra(m) is the offset factor in Equation (2) for month m. In this strategy, a lower ratio of NDVI/ETa
leads to a lower offset factor of Ra within a given area. This difference may lead, in turn, to a lower
fine-scale ET value compared with the NDVI-downscaled result because the offset was added to the
NDVI. This effect is especially pronounced within mixed pixels.

This study assumes that the vegetation conditions described by the NDVI do not change greatly
within individual months. Thus, monthly NDVI information is used to represent the spatial pattern of
the land surface and estimate the ten-day ET. Therefore, ten-day 30-m ET data can be obtained at the
same temporal scale as the 1-km ETa data with the following model, which is similar to Equation (1):

ET30m,ten−day = ET1km,ten−day ×
p30m,monthly

p1km,monthly
(4)

where p30m,monthly and p1km,monthly are the monthly NDVI data after offsetting them by Ra;
ET30m,ten−day represents the ten-day 30-m ET data; and ET1km,ten−day represents the ten-day 1-km
ET data in a given month. A ten-day temporal interval is chosen because a ten-day period is close to
the 8-day sampling interval of the MODIS evapotranspiration product (MOD16). In addition, ten-day
data can easily be converted into 30-day data, which agrees with the sampling frequency of the NDVI
data source.

Given the needs of water resource management for data on cropland in particular areas and to
meet the demand for data high temporal and spatial resolutions, the evaluation of the downscaling
method is performed in terms of accuracy using in situ data (EC) and in terms of consistency with the
original ETWATCH ETa dataset in the following section.
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4. Results

In this research, the ratio of historical NDVI/ETa was calculated from the original 1-km dataset.
Differences exist among the different land cover types; however, these differences remain stable over
time (2012–2013 in the Heihe Basin). Comparisons of the ratios of the two main land cover types in
the two study areas are provided in Figure 3. Based on these comparisons, the differences are more
obvious in Zhangye City than in Guantao County because Zhangye is an oasis that relies on irrigation
and is surrounded by desert and bare soil. Thus, the water consumption of Zhangye cropland differs
from that of the surrounding plant-sparse area. However, the difference diminished considerably in
the semi-moist area, where precipitation is relatively abundant. These favourable moisture conditions
ensure the growth of green plants in towns and villages, leading to a small difference between the
NDVI and ETa values for the cropland.
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(b) Zhangye.

A lookup table for the Ra values calculated based on ETWatch data in the two study areas is
provided in Table 5. Only two main land cover types were considered in Guantao County because
cropland and artificial surfaces together occupy over 95% of the entire county; thus, other types
were ignored in this study. Therefore, the NDVI values in areas of forest, bare soil and water are
not modified.

Table 5. List of Ra values used in this research (Calculated by historical data).

Area Land Cover April May June July August September October

Zhangye

Cropland 0.08 0.09 0.18 0.20 0.16 0.12 0.08
Sparse grassland 0.16 0.17 0.30 0.27 0.25 0.18 0.14
Artificial surface 0.10 0.11 0.18 0.21 0.18 0.13 0.10

Bare soil 0.11 0.12 0.22 0.25 0.22 0.17 0.12
Bare rock 0.21 0.23 0.38 0.32 0.29 0.22 0.18

Desert 0.16 0.16 0.30 0.28 0.24 0.21 0.16
Forest 0.07 0.08 0.17 0.19 0.16 0.12 0.08

Guantao
Artificial surface 0.47 0.50 0.51 0.50 0.49 0.53 0.51

Cropland 0.53 0.50 0.49 0.50 0.51 0.47 0.49

Using the Ra lookup table above, 1-km ET was then decomposed into 30-m ET for the two regions
in 2013 with a ten-day time interval. Figure 4 shows the spatial distribution of the downscaled results
and the ETWatch 1-km ETa map for the entire growing season (interpolated to the same resolution).
The downscaled results show good spatial consistency with the original ETWatch coarse data. There is
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a valley in the northeast of the middle section of the Heihe Basin (Figure 4a,b). The ET in the valley
is relatively higher due to the efficient water supply. This tendency is reflected in the downscaled
result. Finer-scale details, such as highways and field patches, can be recognized in the downscaled
map as well. This phenomenon is more obvious in Guantao Country. A small village in this region
surrounded by cropland is shown in the downscaled map but is obscure in the coarse map. The spatial
patterns provided by Landsat images are therefore suitable for downscaling.
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4.1. Comparison with the Original ETWATCH Dataset

Downscaled ET values over all three sites show good agreement with the original ETWATCH
dataset (Figure 5). The R2 values resulting from this comparison range from approximately 0.98 at
Daman (DM) and Guatntao (GT) to 0.82 at Huazhaizi (HZZ). This good agreement demonstrates
that the accuracy of the downscaled dataset depends primarily on the quantity of coarse ETa data
available, especially within relatively homogeneous areas. Considering that many of the crop fields in
the study area are relatively homogenous (i.e., not many sparsely distributed, fine-scale crop pixels
are present) and have similar NDVI values, this good agreement is consistent with our expectations.
The smallest R2 value and the lowest degree of temporal agreement are obtained for site HZZ because
of the irregular distribution of bare soil, rock and plants near the site, resulting in abrupt changes in
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the NDVI (site HZZ lies within a sparse grassland that is located 150 m from a sand-covered area and
800 m from cropland).

The analysis given above suggests that the accuracy of the fine dataset after the “de-pixelation”
method depends strongly on the coarse ETa data because of the high degree of correlation,
especially within homogenous areas, and partly on the complexity of the land surface.
Generally, lower vegetation cover fractions and more complex land cover distributions result in
lower accuracy.
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4.2. Validation Using In Situ Observation

The ten-day dataset obtained by applying the “de-pixelation” method at three flux sites
(DM, HZZ and GT), as summarized in Section 2.1, has been extracted for comparison with the in
situ observations. The ET results obtained after “de-pixelation” for all three sites show good agreement
with the in situ data, whereas the R2 values range from 0.87 (GT) to 0.95 (DM) and the RMSE ranges
from 2.28 (HHZ) to 5.34 (GT) per ten-day interval (Figure 6). The model performs well, especially at
the HZZ and DM sites (after eliminating one abnormal EC record of 33 mm in the first ten-day period
of April, which contrasts with the values of only 10 mm obtained for the other two ten-day periods in
the same month). The model also performs well at the GT site, which is positioned within a relatively
uniform crop field. Maize is planted at the DM site, and two-season crops are planted at the GT
site. Compared with the other two sites, the HZZ site shows little overestimation of the ET values
compared with the observations (Figure 7). Therefore, the “de-pixelation” model displays better
performance within crop fields with relatively broad and homogeneous areas than in areas of bare soil
and sparse vegetation.
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A comparison of the 1-km dataset and the 30-m product with the in situ observations is shown
in Table 6. At all three sites, the 30-m dataset shows good consistency, in terms of its R2 value,
when compared with the original 1-km product. This finding agrees well with the conclusion given in
Section 4.1, which states that the downscaled dataset strongly resembles the original coarse dataset.
The progression of the time series effectively captures the different trends (one seasonal crop at the DM
site, a similar trend at the HZZ site but without crop cover, and two seasonal crops with two peaks in
the ET curve at the GT site). Little improvement was observed at Huazhaizi Site. The reason is mainly
because the mixing of coarse data was decomposed by 30-m surface information.

Table 6. Comparison of the 1-km dataset and the 30-m product with the in situ values.

Site R2 of 1-km Dataset R2 of Results RMSE 1 of Results MB of Results

Daman 0.94 0.95 3.26 3.09
Huazhaizi 0.81 0.90 2.28 1.55
Guantao 0.86 0.87 5.34 4.21

Note: 1 Root Mean Square Error.

4.3. Comparison among the Results from Different Data Sources

There are two types of input data in the downscaling model, coarse ETa (1 km) and fine NDVI
data (30 m). In this section, to evaluate the performance of the “de-pixelation” method under different
data-input circumstances, MOD16A2 monthly ETa data are combined with 30-m NDVI data for use in
the same downscaling experiment as the ETWatch data. Comparisons of the scatter and progression
are shown in Figure 7. The analysis was not performed for the HZZ site because MOD16A2 data did
not cover the bare soil type at this site.

Due to the presence of cloud cover, this analysis used HJ images, which have a revisit period
of two days, as a substitute for the Landsat8 data in Zhangye. The data from these two satellites
have the same 30-m spatial resolution. Research on the performance of these two sensors shows a
good agreement for the measured reflectances in the red and near-infrared (NIR) bands. Data from
these bands are needed to calculate the NDVI, especially within areas of cropland and bare soil [58].
In addition, the existence of this data source with a short repeat interval is one of the reasons why
NDVI data are used as the driving factor in the model. To assess the performance of the “de-pixelation”
method using NDVI data from different satellites, rather than spectral features, Figure 8 compares the
two datasets obtained using different sensors with the in situ observations.

There is an obvious underestimation of ET in the original MOD16 data and, consequently, in the
downscaled results (Figure 8). As proposed in Section 4.1, there is a strong correlation between the
downscaled results and the original datasets. The mean bias (MB) per month ranges from 41.57 mm
at the GT site to 54.62 mm at the DM site, which could lead to serious errors when estimating the
actual water consumption. Hence, it is better to choose more accurate coarse ET data or to calibrate the
dataset specifically for the research area in order to obtain a better downscaled result.

Based on the comparison of different fine NDVI inputs (Figure 9), Landsat 8 and HJ, both datasets
show good agreement with the ETa from EC. Similar coefficients of determination were obtained
(0.96 and 0.93), and the RMSE changes only slightly, from 2.92 to 3.53 per ten-day period. Thus, the HJ
satellite may represent a reliable source of NDVI data. This comparison indicates that the NDVI
values from different satellites affect the spatial pattern; thus, they influence the ET results.
However, this effect has little effect on the ET results, according to the EC validation. This result
enables the construction of a stable and continuous downscaled and finer-resolution dataset, based on
further research into the normalization of the two sensors.
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4.4. Comparison of Different Downscaling Approaches

To evaluate the performance of different models, similar experiments were carried out in the
same study area using two other methods, specifically the subtraction method and the LinZi method.
The same coarse ETa dataset covering the same time interval was used as the input. In principle,
the 30-m Landsat ETa data are needed for both methods as the basic data used to evaluate the
correlation between the coarse ETa data at different times. To evaluate the performance of the two
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approaches on a site-by-site basis, several in situ observations of ET are employed instead of the
fine-scale ETa values. The comparison is shown in Table 7.

Table 7. Comparison among the results of the three downscaling methods using in situ data from the
study areas.

Site “De-Pixelation”
R2

Subtraction
R2

LinZi
R2

“De-Pixelation”
MB

Subtraction
MB

LinZi
MB

Daman 0.95 0.94 0.94 3.09 4.14 3.23
Huazhaizi 0.90 0.81 0.81 1.55 2.35 5.36
Guantao 0.87 0.81 0.81 4.21 6.00 4.00

Table 7 shows that all three methods display better performance for the relatively homogeneous
cropland site (DM) than for the other two sites. In addition, due to the similarities between the
subtraction method and the LinZi method, the R2 results are nearly the same at the three sites.
The values of the coefficient of determination obtained at Daman and Guantao using the “de-pixelation”
method are slightly higher than those obtained using the other two methods. However, an obviously
higher accuracy is observed at the Huazhaizi site. The R2 value is 0.90 (0.81 for the other two methods),
and the MB is 1.55 mm (2.35 for the subtraction method and 5.36 for the LinZi method) at this site.
This pattern occurs mainly because the correlation methods concentrate only on the average difference
between coarse ETa images, which may filter out some of the extremely high-frequency vegetation
signal within semi-arid areas. Therefore, the “de-pixelation” method is more suitable for crop-sparse
areas than other downscaling methods.

In regard to the differences in the MB obtained using the three methods, the “de-pixelation”
method exhibits the most robust performance among the three methods, with the exception of the
LinZi results at Guantao (4.21 mm compared with 4.00 mm). The subtraction method performs well at
the Huazhaizi site but poorly at the other two. With several in situ ETa measurements substituting for
the fine-scale Landsat ETa input, poorer results are expected for the two correlation methods.

5. Discussion

In this study, a new downscaling approach named “de-pixelation” method, which employs NDVI
data and a land cover map with high spatial resolution, is introduced to downscale the ETWatch
1-km ETa data product to a spatial resolution of 30 m. There is a kind of downscaling strategy named
“correlation” approaches that are currently widely used, which relies on the relationship between ETa
data from two MODIS images (or other high temporal resolution datasets) separated by a given time
interval. This relationship is evaluated pixel by pixel or over a small area using either a first-order linear
correlation or the difference after subtraction. The linear correlation or the difference is then applied to
the fine-scale resolution ET data retrieved from Landsat images. Every Landsat pixel is related to the
MODIS pixel it falls inside [7,23,57]. This kind of strategy, including both subtraction and regression
(slope-intercept and LinZi) schemes, focuses to a greater degree on the differences among coarse pixels
and assumes that all of the finer-scale ET pixels within a given coarse pixel (or within a small area for
the slope-intercept method) share the same correlation. These methods do not distinguish between
different land cover types; thus, to some extent, they weaken the differences among different land
cover types, especially in areas with complex surfaces. Thus, based on the comparison in Section 4.4,
our newly proposed method performs better and more robustly than the other two methods (the two
correlation approaches) in crop-sparse areas, such as the HZZ site. Therefore, the new “de-pixelation”
method is more suitable for areas with complex land cover distributions.

In this study, monthly Landsat8 NDVI images are used to represent the condition of vegetation
at a spatial resolution of 30 m × 30 m. ET products with finer spatial resolutions can be obtained
from multi-spectral satellites, such as RapidEye, and additional research is required. Such advances
could make it possible to monitor the water use of every land parcel [59]. In addition, our future work
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will concentrate on improvements in temporal resolution using the STARFM downscaling method
to extend the model to a daily scale by including information from the MODIS 8-day NDVI product.
This method could provide additional temporal detail over crop areas [26,60].

For the three EC sites within the two study areas examined in this study, representing semi-arid
and semi-humid climate types, NDVI saturation did not have an appreciable influence during the
growing season because of the limited amount of irrigation water in the Heihe Basin and the two short
growing periods in the Haihe Basin. However, further research should be carried out to address the
NDVI saturation effect in areas where such conditions occur (especially for crops).

6. Conclusions

Monitoring evapotranspiration using RS-based methods could improve the level of water
planning and management through the generation of datasets with both fine temporal and spatial
scales. In this paper, a new ET downscaling strategy which combines images from different resolution
is proposed. The downscaled results obtained using the “de-pixelation” method show good agreement
with the original ETWatch 1-km dataset in terms of temporal changes. Based on the R2 values between
the ETWatch data and the results of the “de-pixelation” method, which range from 0.98 to 0.82,
the accuracy of the fine-scale dataset is mainly determined by the corresponding coarse dataset,
similar to the findings of other researchers [26].

Output results also show good agreement with in situ flux observations at three sites, indicating
that the new approach represents a reliable substitute for the 30-m ETa dataset in areas with poor
coverage by Landsat8 data or other data resources. The new “de-pixelation” method performs well at
two relatively homogeneous sites, DM and GT, achieving similar R2 values with respect to the original
1-km ETWatch dataset. However, an obvious improvement occurs at the HZZ site because the original
coarse dataset may mix and eliminate some information at the boundaries between vegetation and
bare soil.

A comparison between the results obtained using different coarse ETa data sources, MOD16 and
ETWatch, is presented based on the analysis of the influence of the accuracy of the coarse data sources.
The ETWatch dataset used in this study has been effectively adapted for the two study areas and has
been well calibrated; therefore, it performs well. For other data sources, such as the MOD16A2 ET
product, improving the adaptability of the original ET dataset to particular regions is expected to
increase the accuracy of the downscaled product [61,62]. Because the accuracy of the coarse input ET
data influences the accuracy of output downscaled dataset, using low-accuracy ET data as an input
may cause errors.

Additionally, because of the degree of cloud contamination, two HJ satellite images were
substituted for the Landsat8 images in August and September at the two Zhangye sites. A comparison
of the results from the two sensors is proposed to provide a validation of this substitute data source.
The substitute NDVI data from the HJ satellite does not exert much influence on the final results.
This finding makes it possible to generalize the method to areas where Landsat8 images are often
affected by clouds through the substitution of other satellite data. Finally, a comparison between
“De-pixelation” method and two correlation methods was proposed. The new method performs better
at the HZZ site with more complex land cover surrounded. Above all, new downscaling method is
suitable for heterogeneous area, to provide robust fine evapotranspiration dataset.
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