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Abstract: Because of its nature, lake evaporation (EL) is rarely measured directly. The most common
method used is to apply a pan coefficient (Kp) to the measured pan evaporation (Ep). To reconstruct
the long sequence dataset of Ep, this study firstly determined the conversion coefficients of Ep of
two pans (φ20 and E601, each applied to a different range of years) measured synchronously at the
nearest meteorological station during the unfrozen period through 1986 to 2001, and then Ep was
estimated by the PenPan model that developed to the Class A pan and applied to quantify the EL of
the Juyan Lake, located in the hyper-arid area of northwest China. There was a significantly linear
relationship between the E601 and φ20 with the conversion coefficients of 0.60 and 0.61 at daily
and monthly time scales, respectively. The annual Ep based on monthly conversion coefficients was
estimated at 2240.5 mm and decreased by 6.5 mm per year, which was consistent with the declining
wind speed (U) during the 60 years from 1957 to 2016. The Ep simulated by the PenPan model with
the modified net radiation (Rn) had better performance (compared to Ep measured by E601) than
the original PenPan model, which may be attributed to the overestimated Rn under the surface of
E601 that was embedded in the soil rather than above the ground similar to the Class A and φ20.
The measured monthly EL and Ep has a significantly linear relationship during the unfrozen period
in 2014 and 2015, but the ratio of Ep to EL, i.e., Kp varied within the year, with an average of 0.79, and
was logarithmically associated with U. The yearly mean EL with full lake area from 2005 to 2015 was
1638.5 mm and 1385.6 mm, calculated by the water budget and the PenPan model with the modified
Rn, respectively; the latter was comparable to the surface runoff with an average of 1462.9 mm.
In conclusion, the PenPan model with the modified Rn has good performance in simulating Ep of the
E601, and by applying varied Kp to the model we can improve the estimates of lake evaporation.

Keywords: pan evaporation; pan coefficient; water budget; lake evaporation; arid area

1. Introduction

Lakes are sentinels of climate change and/or human activities [1–3]. Over the past several
decades, serious environmental degradation has occurred in arid northwest of China, in which the
most remarkable event was a vast number of inland lakes drying up and the disappearance of aquatic
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ecosystems [2,4–6]. In order to protect and restore these degraded ecosystems, the Ecological Water
Conveyance Project (EWCP) in the arid inland river basin was implemented by China’s government in
2000 [7,8]. For the operability of management, the EWCP identified that maintaining a certain size of
lake area is an important index of whether this project has succeeded or not [9]. Yet, there has been
considerable debate as to whether it is the waste or utilization for the limited water resource [9–11].
Fundamentally, the question is how much water evaporated from those lakes.

Because of the larger area of natural lakes, lake evaporation (EL) is rarely measured directly.
The most common indirect method is to multiply the measured pan evaporation (Ep) by a pan
coefficient (Kp). There are many measurements of Ep from all over the world. The World Meteorological
Organization [12] recommended the reference equipment as follows: the United States Class A
pan, the GGI-3000 pan, and the 20 m2 evaporation tank of the Russian Federation. However, this
equipment cannot be found in most meteorological and hydrological stations in China; instead, the
φ20 and E601 pan are used during different times and in different districts [13–15]. The E601, a
modified GGI-3000 pan, appears to have consistently good performance when compared to the 20-m2

evaporation tanks [14]. However, E601 has been used for less time than φ20, which was applied at
most meteorological and hydrological stations over the last century in China [13]. Thus, evaporation
datasets collected at different times need to be transformed into uniform times in order to determine
the long-term trend of Ep [15]. Therefore, it is necessary to determine the conversion coefficients
between the different types of evaporation pan.

In addition to the direct measurement by evaporation pan, models have been widely used to
estimate EP [16,17]. Although the multiple factors affect evaporation at different time scales [16,18],
it has been demonstrated that the combination methods have better performance than single-variable
methods when applied to estimate EP [19–21]. However, EL is different from Ep owing to the wall
of the pan intercepts’ additional radiation that enhances heat exchange, the pan edge effect that
increases wind turbulence, and the oasis effect whereby the air mass of a surrounding area with
lower relative humidity crosses a water body’s surface and will take away more water vapor [22].
Therefore, in order to estimate the Ep precisely, Rotstayn et al. [23] developed a physical model, i.e.,
the PenPan model, which coupled the radiative component of Linacre [22] and the aerodynamic
component of Thom et al. [24]. The PenPan model was applied successfully to estimate monthly and
annual Ep of the Class A at sites across Australia [25–27] and the USA [28], and the φ20 at sites across
China [29–31], but there are almost no studies reported for E601. Another alternative model to estimate
EP is reference crop evapotranspiration (ET0) divided by a coefficient (Kc), for which a value of 0.83
was recommended [32].

We undertook a study at Juyan Lake, a typical terminal lake that is located in the lower Heihe
River Basin (HRB), in the arid northwest of China [9]. It comprises the East Juyan Lake (also referred
to as Sogo Nur, where the study was focused) and West Juyan Lake (also referred to as Gaxun Nur,
this dried up in 1961), respectively [33]. It was famous for the discovery of a large number of Juyan
bamboo slips of the Han dynasty by Sven Hedin and his partner in 1930 while they mapped the lower
HRB, including Juyan Lake. To estimate EL, the Ep of the nearest meteorological station has frequently
been used [10]; however, previous studies showed drastic differences in Ep: some reported more than
3500 mm [7,34,35], but others reported less than 2500 mm [36–38]. The cause of this discrepancy was
the diversity of equipment used at different times. Recently, the measured EL by Liu et al. [10] showed
that the yearly EL was 1183.3 mm during the unfrozen period in 2014 and 2015, which suggests an
overestimation of EL using the directly measured Ep. The objectives of our study were to (1) construct
a long-term and good temporal dataset of Ep by linking different types of pans through conversion
coefficients; (2) identify the most appropriate model to estimate Ep; (3) quantify the magnitude of EL

to improve the management of the lake’s water resources in the hyper-arid climate, northwest China.
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2. Study Area

The study area was located at the lower HRB (39◦30′–42◦30′ N; 99◦00′–102◦00′ E, 890–1200 m a.s.l.),
normally referred to as the Ejin Oasis/Delta owing to the surrounding extensive Badain Jaran and
Gobi Deserts, in northwest China (Figure 1). The lower HRB starts at Zhengyixia (ZYX) hydrological
station, passes through Ejin Delta, and ends at the Juyan Lake, having a length of 190 km and an area
of 30,000 km2 [39]. Geologically, it belongs to the Mongolian Plateau. The southwestern and northern
parts of the basin are mainly formed of an alluvial plain and aggraded flood area, while the central
basin consists of an alluvial plain and a lake plain. The southeastern part of the basis borders the
Badain Jaran Desert [36]. The land type in the basin is similar to that of the Gobi desert except for
adjacent rivers and an oasis, distributed along the Heihe River on the alluvial fan (Figure 1).
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Figure 1. The schematic diagram of the Heihe River Basin, hydrological (Zhengyixia, ZYX; Shaomaying,
SMY; Langxinshan, LXS; East Juyan, EJY) and meteorological station (Ejin station that located at Dalain
Hob, Ejin County), the Juyan Lake and land coverage surrounding the lake.

3. Methods

3.1. Meteorological Data Collection

The Ejin County National Reference Meteorological Station (41◦57′ N, 101◦04′ E, 940.5 m a.s.l.,
hereafter referred to the Ejin station) is situated in Dalain Hob, Ejin county, Inner Mongolia, about
40 km from East Juyan Lake (Figure 1). It was established in December 1956. Air temperature (Ta, ◦C),
precipitation (P, mm), relative humidity (RH, %), wind speed (U, m·s−1), actual sunshine duration (Sd,
h), and atmospheric pressure (Pa, kPa) have been collected here since 1957. Before 2002, the Ep (mm)
was measured by the φ20 (20 cm diameter and 10 cm depth) in the whole year, and after 2002 by the
E601 (61 cm diameter and 60 cm depth cylinder plus 8.7 cm depth circular cone) during the unfrozen
period between April and October and by the φ20 during the frozen period between November and
March of the next year, with a freeze–thaw transition period similar to that of the lake.
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To determine the relationship between φ20 and E601, the Ep of two pans was measured
synchronously during the unfrozen period from 1986 to 2001. Based on these observations, the
daily and monthly φ20 and E601 datasets were used to estimate the conversion coefficient of two pans
using the linear regression model following Xiong et al. [13]. After that, the Ep measured by the φ20
before 2002 was recalculated using the conversion coefficient to obtain the long-term Ep of the E601
from 1957 to 2016. The monthly variation of annual averaged P, Ep, Ta, RH and U, collected from the
Ejin station, is shown in Figure S1.

3.2. PenPan Model

To estimate the Ep, the PenPan model following Rotstayn et al. [23] was used:

EPenPan =
∆

∆ + apγ

Rn,Pan

λ
+

ap∆
∆ + apγ

f (u)(es − ea), (1)

where EPenPan is the calculated Ep (Ep,cal, mm·day−1) for the Class A (unscreened), ∆ is the slope
of the vapor pressure curve at Ta (kPa·◦C−1), γ is the psychrometric constant (kPa·◦C−1), ap is a
constant adopted as 2.4 [22], which accounts for the additional energy exchange due to the walls of
the pan, and Rn,Pan is the daily net radiation (Rn) at the pan (MJ·m−2·day−1), λ is the latent heat of
vaporization (MJ·kg−1), (es − ea) is vapor pressure deficit (kPa), f (u) is the function of U at 2 m height
(u2, m·s−1) [24]:

f (u) = (1.202 + 1.621u2). (2)

To estimate Rn,Pan, we refer to Rotstayn et al. [23]; the calculation is also provided in the
Supplementary Material 6 of McMahon et al. [27]:

Rn,Pan = (1− αA)Rs,Pan − Rnl (3)

Rs,Pan = [ fdirPrad + 1.42(1− fdir) + 0.42αss]Rs, (4)

where αA is the albedo for a Class A pan given as 0.14 [23], Rs,Pan is the total shortwave radiation
received by the pan (MJ·m−2·day−1), Rs and Rnl are incoming solar radiation and net outgoing
long-wave radiation, MJ·m−2·day−1, respectively [32]. fdir is the fraction of Rs that is direct, and was
defined as:

fdir = −0.11 + 1.31
Rs

Ra
, (5)

where Ra is the extra-terrestrial radiation (MJ·m−2·day−1). Prad is a pan radiation factor defined as:

Prad = 1.32 + 4× 10−4lat + 8× 10−5lat2, (6)

where lat is the absolute value of latitude in degrees. The equations to estimate the ∆, γ, λ, (es − ea), Rs,
Ra and Rnl was following FAO [32].

3.3. FAO Penman–Monteith Model

To compare with the PenPan model, the FAO Penman–Monteith model [32] was applied to
calculate the ET0:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + (1 + 0.34u2)γ
, (7)

where G (MJ·m−2·day−1) acted as the heat storage term of water bodies that can be negligible at a
daily time scale. The Rn can be calculated as

Rn = (1 − α)Rs − Rnl, (8)
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where α is the albedo or canopy reflection coefficient, fixed at 0.23 for the standardized reference
surface (dimensionless). To compare, the relationship between Rn and Rn,pan is shown in Figure S2.
ET0 is an alternative method that applies a Kc (a value of 0.83 was recommended) to estimate Ep

following the FAO [32]:
ET0 = Kc × Ep. (9)

3.4. Pan Coefficient and Lake Evaporation

Despite the short distance between Juyan Lake and Ejin station (Figure 1), distinct differences
between their meteorological variables have been documented previously [10]. To calculate EL, the
meteorological variables Ta, RH, and U measured at the Ejin station were first recalculated according to
the relationship between the two sites [10] and Ep was estimated by the selected models. Secondly, the
monthly Ep was related to the measured EL (mm·month−1) at the surface of the lake approximately
150 m from the bank during the unfrozen period of 2014 to 2015 by Liu et al. [10], and a coefficient (Kp)
was calculated following Abtew [40]:

Kp = EL/Ep. (10)

Finally, the long-term EL was calculated by applying the Kp to the estimated Ep.

3.5. Water Budget of Lake

In addition to the pan method, a water budget approach can be applied as a simple method to
estimate EL [40,41]. Because Juyan Lake is a closed lake and there is no outlet, the water budget for the
lake can be written as follows:

∆S = P + Qs + Qg − EL, (11)

where ∆S is the change in lake storage (S, m3) and Qs and Qg (m3·day−1) are the surface and ground
runoff flow into the lake, respectively. The water budget was applied on an annual time scale to
estimate EL.

The Qs inflow into Juyan Lake was measured by the weir and water level sensor that has been
located at the lake inlet since August 2003 (Figure 1). To convert the unit of Qs, m3·day−1 to mm
and calculate the ∆S, the lake area (AL, km2) and S was acquired using the relationship between lake
elevation and AL and S developed by the Wuhai Hydrographic and Water Resources Survey Bureau in
2003 (Figure S3). The lake elevation has been measured at 10-day intervals since 2002 at the northeast
of Juyan Lake. The maximum lake elevation was about 903.5 m and the maximum area was 42.7 km2

in 2011. The temporal variation of 10-day measurements of S, AL, ∆S, and Qs was used to calculate EL

for Juyan Lake from 2002 to 2015, as shown in Figure S4.

3.6. Assessments of Model Performance

Many statistical methods, including adjusted coefficient of determination (Radj
2) and root mean

square error (RMSE), are used to assess Ep model performance.

Radj
2 =

∑n
i=1
(
Xi − X

)(
Yi −Y

)([
∑n

i=1
(
Xi − X

)]0.5[
∑n

i=1
(
Yi −Y

)]0.5
) , (12)

where Xi is measured daily or monthly Ep, Yi is estimated daily or monthly Ep, X and Y are mean of
measured and estimated Ep, respectively. The RMSE was computed as follows:

RMSE =

√
∑n

i=1(Xi −Yi)
2

n
. (13)
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Regardless of the method used to compute the standard errors, the confidence intervals are
computed using the following formula:

b̂± ta,n−pSE(b̂), (14)

where b̂ is the best-fit value for parameter b, n is the number of observations, p is the number
of parameters, SE(b̂) is the standard error of b̂, and ta,n−p is the 100(1 − a/2)th percentile of the
t-distribution with n− p degrees of freedom. The value a is chosen so the confidence level is 100(1 − a)%.
One can actually compute these statistical methods and confidence intervals in SigmaPlot (Systat
Software, Inc., San Jose, CA, USA).

4. Results

4.1. Pan Evaporation of Two Types of Evaporator

During the unfrozen period from 1986 to 2001, the daily Ep measured synchronously by E601
and φ20 was ranged from 0.4 to 20.1 mm·day−1 and 0.6 to 31.0 mm·day−1 (Figure 2a), with an
average of 9.0 mm·day−1 and 13.9 mm·day−1, respectively. The monthly Ep ranged from 27.9 to
361.2 mm·month−1 and 41.8 to 625.9 mm·month−1(Figure 2b), with an average of 266.7 mm·month−1

and 413.8 mm·month−1, respectively. Whether at a daily or monthly time scale, there was a significant
linear relationship between E601 and φ20 with a slope of 0.60 and 0.61 (referring to the conversion
coefficients, Cp), respectively; there was less scatter at the monthly than the daily time scale within the
95% prediction band (Figure 2), which suggested that the monthly Cp may be better for reconstructing
the long-term series of Ep.

Based on the estimated monthly Cp (E601/φ20 = 0.61), the Ep from 1957 to 2001 measured by φ20
was converted to the E601 during the unfrozen period by multiplied by the Cp and adding the φ20
during the frozen period, and, along with the Ep measured by E601 from 2002 to 2016, the long-term
Ep dataset by E601 over the past 60 years from 1957 to 2016 was established. The monthly variation of
Ep and other climatic variables at Ejin station from 1957 to 2016 is summarized in Table 1. Based on the
records, the annual Ep (E601) is 2240.5 mm, a figure that is greater than P (37.5 mm) by a factor of 60
(i.e., the aridity index equal to 0.02). The mean, maximum, and minimum annual Ta are 8.9 ◦C, 17.0 ◦C
and −9.5 ◦C, respectively. The mean annual U is 3.2 m·s−1 with a relatively high value in the spring.
The lowest RH occurred in May with an average of 33.9%, which is the opposite of the variation of U
(Figure S1). The mean annual Sd ranged from 3000 h to 3600 h, with an average of 3382 h.

Table 1. Monthly change of climatic variables included the mean (Tmean, ◦C), maximum (Tmax, ◦C),
minimum (Tmin, ◦C) of air temperature, precipitation (P, mm), relative humidity (RH, %), sunshine
duration (Sd, h), wind speed (U, m s−1), and pan evaporation (Ep, mm) at Ejin station over the past
60 years (1957–2016).

Month Tmean Tmax Tmin P RH Sd U Ep

1 −11.5 −3.3 −16.9 0.3 48.7 227 2.5 35.5
2 −6.2 2.6 −12.9 0.2 36.4 231 2.8 68.4
3 2.3 10.5 −5.2 1.2 27.9 272 3.3 181.3
4 11.5 19.9 3.5 1.8 22.8 298 4.0 212.0
5 19.2 27.1 10.6 2.7 21.7 335 4.0 301.5
6 24.9 32.4 16.6 6.2 25.4 335 3.8 333.6
7 27.0 34.6 18.9 10.0 32.0 332 3.5 338.8
8 24.9 32.5 17.2 7.5 34.0 321 3.3 299.1
9 17.8 26.2 10.4 4.5 32.7 300 2.9 211.5
10 8.4 17.2 1.5 2.5 34.7 283 2.8 130.0
11 −1.7 6.4 −7.8 0.5 40.6 231 3.0 89.6
12 −9.7 −2.0 −14.9 0.3 49.5 216 2.7 39.1

Average/Sum 8.9 17.0 −9.5 37.5 33.9 3382 3.2 2240.5
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Figure 2. Relationship between pan evaporation of φ20 (Ep_φ20) and E601 (Ep_E601): (a) Daily
(mm·day−1); (b) Monthly (mm·month−1) time scale for Ejin station during the unfrozen period from
1986 to 2001. The linear fitting, 95% confidence band, prediction band line, and value of regression
analysis are shown.

4.2. Pan Evaporation Calculated by the Two Models

The relationship between the Ep observed by the evaporation pan (E601 and φ20) and calculated
by the original PenPan model and modified PenPan model with the Rn recomputed following the
FAO at daily and monthly time scale is shown in Figures 3 and 4, respectively. Whether at a daily or
monthly scale, the Ep calculated by the original PenPan model was overestimated compared to the
E601 (Figures 3a and 4a), but underestimated compared to the φ20 (Figures 3c and 4c). The calculated
Ep by the modified PenPan model showed very good consistency with the Ep measured by the E601
for both of daily (Figure 3b) and monthly time scales (Figure 4b), but underestimated the Ep by the φ20
(Figures 3d and 4d). In addition, whether for the original or modified PenPan model, the calculated
Ep was closer to the fitting line for the φ20 (Figures 3b,d and 4b,d) than for the E601 (Figures 3a,c
and 4a,c), which was also supported by the higher Radj

2 and lower RMSE for the former than the
later. The scattered points were identified, focusing on the transition between the frozen and unfrozen
periods, i.e., April and October (Figure 4). Similarly, Ep calculated by the FAO Penman–Monteith
model was also consistent with the Ep measured by the E601 (Figure 5a), but obviously underestimated
the Ep measured by the φ20 (Figure 5b). Compared to the two models, the Rn calculated by the original
PenPan model was higher than by the Penman–Monteith model (Figure S2). In summary, the results
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suggested that the Ep calculated by the modified PenPan model has a better performance than the
original PenPan and Penman–Monteith model.
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Based on the above, the reconstructed dataset of Ep measured by the E601 and calculated by the
modified PenPan model, its radiative and aerodynamic components, and associated meteorological
variables VPD and U from 1957 to 2016 are shown in Figure 6. There is an obvious declining trend of
Ep, with a rate of −6.5 mm·year−1. There are four distinct phases (highlighted by the vertical dotted
lines in Figure 6): (1) increase in Ep from 1957 to 1972, at a rate of 19.0 mm·year−1; (2) decline from
1973 to 1991, at a rate of −27.5 mm·year−1; (3) another increase from 1992 to 2009, at a rate of 24.4 mm
year−1; and (4) decrease in Ep at a rate of −46.4 mm·year−1 during recent years. The oscillation period
is roughly 18 to 20 years (Figure 6a). The yearly variations of Ep were more closely associated with the
aerodynamic rather than the radiative component (Figure 6b). Specifically, the variation in Ep was
consistent with U (with a linear relationship (Radj

2 = 0.63, p < 0.001)) rather than with VPD (Figure 6c).
On the whole, the U, VPD, calculated Ep, and its two components lagged behind the Ep of the E601.Water 2017, 9, 952  10 of 18 
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prediction band line, and value of regression analysis are shown.
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Figure 6. The reconstructed time series of (a) the observed pan evaporation (Ep, mm) by the E601
and calculated Ep by the modified PenPan model, and (b) its two components: radiative (Ep,Radi) and
aerodynamic (Ep,Aero), and (c) associated meteorological variables include the vapor pressure deficit
(VPD, kPa) and wind speed (U, m·s−1) for the Ejin station from 1957 to 2016. The trend line (solid) of
the observed Ep by the E601 with distinctively different periods is shown in (a). The vertical (dotted)
lines are the transition period of the observed Ep.

4.3. Lake Water Budget and Evaporation

The monthly water budget of Juyan Lake during the unfrozen period between 2014 and 2015 is
shown in Table 2. Because the water allocation to the lower HRB was mainly focused in the summer
(July) and autumn (September), Qs and ∆S increased at the same time; inversely, ∆S decreased when
there was no surface flow. The EL of the two assessment years was approximately equivalent owing
to the same lake (e.g., AL) and meteorological (e.g., Ta, RH, and U) conditions, but the ratio of EL to
Qs for 2015 (1.6) was twice as high as for 2014 (0.8). The Kp initially decreased and then increased
with an average of 0.79 for both years, which was opposite to the variation of Ep. The calculated Qg

was associated with Qs, i.e., discharge from the groundwater with surface flow and recharged into
the groundwater without surface flow, and it was positive in 2014 but almost balanced in 2015, which
suggests that Qg can be neglected in the water budget at a yearly time scale.
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Table 2. The water budget of Juyan Lake and corresponding lake and meteorological conditions
during the unfrozen period in 2014 and 2015. The surface runoff (Qs, mm), precipitation (P, mm),
lake evaporation (EL, mm), and water storage change (∆S, mm) were directly measured and ground
runoff (Qg, mm) was calculated as a residue of the water budget. Mean of lake area (AL, km2), air
temperature (Ta, ◦C), relative humidity (RH, %), wind speed (U, m·s−1), pan evaporation (Ep, mm),
and the coefficient (Kp) of Ep to EL are also given.

Year Months Qs P EL
1 ∆S Qg AL Ta RH U Ep Kp

2014

4 0.0 0.0 152.7 −43.2 −109.5 39.5 13.9 20.5 3.0 200.9 0.76
5 13.1 0.0 208.7 −62.6 −133.1 39.2 19.9 18.0 3.5 277.3 0.75
6 0.0 8.5 201.0 −75.9 −116.6 38.2 24.2 30.6 3.0 245.4 0.82
7 519.3 2.4 216.7 124.5 180.5 39.8 28.1 29.7 2.8 293.2 0.74
8 0.0 1.2 219.6 −136.6 −81.8 39.2 25.4 28.3 2.4 266.1 0.83
9 866.7 0.0 180.2 345.5 341.0 38.2 18.9 30.6 2.5 207.1 0.87

Sum/Average 1399.1 12.1 1178.9 151.7 80.6 39.0 21.7 26.3 2.9 1490.0 0.79

2015

4 0.0 26.2 149.9 −156.5 32.8 40.3 13.2 26.4 2.8 175.8 0.85
5 0.0 0.1 204.9 −127.7 −77.1 39.2 20.2 18.6 3.1 268.3 0.76
6 0.0 3.8 209.4 −109.9 −95.7 38.2 24.4 27.6 3.3 280.4 0.75
7 739.6 12.7 217.6 259.0 275.7 39.8 27.2 30.1 3.0 298.8 0.73
8 0.0 0.0 224.2 −166.0 −58.2 39.2 25.9 25.2 2.9 303.9 0.74
9 0.0 25.7 177.7 −75.9 −76.1 38.2 18.0 36.1 2.6 189.9 0.94

Sum/Average 739.6 68.5 1183.7 −376.9 1.3 39.2 21.5 27.3 2.9 1517.1 0.79

Note: 1 Data are cited from Liu and Yu [10], and the value for April 2014 was calculated as the product of evaporation
in May and the proportion of April to May in 2015.

There is a significant linear relationship (t-test, p < 0.001) between the measured monthly EL and
Ep during the unfrozen period, but the slope was less than 1 and the intercept was non-zero (Figure 7a),
suggesting that Kp cannot be directly applied to calculate EL by multiplying Ep. In fact, Kp varied
within the year (Table 2), and was associated with U (Figure 7b). The yearly EL from 2005 to 2015 with
full lake area calculated by the water budget and the modified PenPan model ranged from 1380.5 mm
to 2135.7 mm and 1206.5 mm to 1462.1 mm with an average of 1638.5 mm and 1385.6 mm, respectively
(Table 3). The Qs ranged from 309.0 mm to 2364.5 mm with an average of 1462.9 mm, which was
comparable to the EL estimated by the modified PenPan model. In addition, the EL calculated by
the modified PenPan model was consistent with the measured EL in 2014 and 2015. The yearly EL

calculated by the water budget varied more drastically than that calculated by the modified PenPan
model, especially when high surface runoff was observed (Figure 8).
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Figure 7. Relationship between (a) measured monthly lake evaporation (EL, mm·month−1) and
observed pan evaporation (Ep, mm·month−1) and (b) pan coefficient (Kp = Ep/EL) and wind speed
(U, m·s−1) during the unfrozen period in 2014 and 2015. The data can be found in Table 2. The linear
fitting, 95% confidence band, prediction band line, and value of regression analysis are shown.
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Figure 8. The yearly change of lake evaporation (EL, mm) calculated by the water budget method (Wb)
without considering the ground runoff and by the modified PenPan model (Cal) and observed EL (Obs,
2014 and 2015) and surface runoff (Qs, mm). The mean of EL (straight line) calculated by the modified
PenPan model is also shown.

Table 3. The yearly water budget of Lake Juyan with full water area from 2005 to 2015. The surface
runoff (Qs, mm), precipitation (P, mm), change of storage (∆S, mm), and estimated lake evaporation by
water budget (Eb, mm, equal to Qs + P − ∆S), pan evaporation (Ep, mm), coefficient (KL) of Eb to Ep,
and calculated lake evaporation (EL, mm) by the variable Kp are shown.

Year Qs P ∆S Eb EP KL EL

2005 1329.1 27.2 −97.6 1453.9 2253.5 0.65 1462.1
2006 2364.6 27.9 256.8 2135.7 2258.7 0.95 1390.7
2007 1658.9 28.0 3.0 1683.9 2301.5 0.73 1431.3
2008 309.0 63.0 −1008.5 1380.5 2346.6 0.59 1430.0
2009 1249.4 9.2 −368.0 1626.6 2394.9 0.68 1486.4
2010 1243.2 25.4 −390.7 1659.4 2348.9 0.71 1439.0
2011 2101.2 36.9 708.7 1429.4 2274.6 0.63 1455.3
2012 1558.9 32.1 −167.4 1758.4 2211.1 0.80 1391.4
2013 1213.4 34.2 −431.3 1678.9 1996.9 0.84 1206.5
2014 1949.3 16.2 152.6 1812.9 2061.8 0.88 1271.9
2015 1115.2 70.1 −218.9 1404.2 2089.5 0.67 1277.5

Mean 1462.9 31.7 −141.9 1638.5 2218.7 0.74 1385.6

5. Discussion

5.1. Pan Evaporation

For a long time, Ep has been used to gauge the evaporative demand of the atmosphere for various
practical applications [27,32]. Fu et al. [14] compared Ep from numerous evaporation tanks and pans
and concluded that the yearly Ep from a 100-m2 evaporation tank has a distinct relationship to that of a
20-m2 tank, which was about 0.99, 0.87, and 0.60 times that of the E601, Class A, and φ20, respectively.
The results suggested that Ep measured by the E601 was a better approach to measuring potential
evaporation than φ20. Given that, we thought the potential evaporation might be overestimated by the
φ20, in which a conversion coefficient, Cp, is needed for long-term trend estimation. The monthly Cp

between the E601 and φ20 (0.61, Figure 2) was comparable with that in the central region of Northern
China (0.61) [15], where the study site was located for the short-term dataset. Based on the monthly
Cp, the annual mean Ep (E601) was 2240.5 mm from 1957 to 2016, which was far less than the 3500 mm
from 1957 to 2001 measured by the φ20 [7,34,35]. In addition, Ep estimated by the modified PenPan
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model (Figures 3 and 4) and Penman–Monteith model (Figure 5) has a closer fit to the E601 than to the
φ20, which suggests that the Ep measured by the E601 better represents the potential evaporation.

Because lake evaporation is different from the Ep [22], models developed for the lake evaporation
are not always applicable [16,20,21]. Thus, some researchers are devoted to developing special Ep

models, among which the PenPan model [22,23] was confirmed as providing better performance across
Australia and the USA for Class A [25,26,28] and China for the φ20 [29–31]. Our results show that
the PenPan model developed for Class A [22,23] overestimated the E601, but underestimated the φ20
(Figures 3 and 4). We thought this inconsistency was caused by the difference in estimation of Rn

(Figure S2), which is the driving force of lake evaporation and a key input variable to Penman-type
combination equations [42]. The consistent performance of Ep calculated by the FAO Penman–Monteith
model further confirms that the Rn following the FAO was better (Figure 5). In contrast to the Class A
and φ20, the E601 was embedded into the soil with its rim 30 cm above the ground and surrounded
by four arc water troughs 20 cm in width that reduce the edge effects of turbulence generated by
the rim of the pan [14,43]. Thus we thought the Rn above the surface of the E601 was overestimated.
Irmak et al. [42] evaluated the performance of Rn estimation methods for ET0 and reported that
the FAO Penman–Monteith model (similar to Model 6) performed well against the ASCE-EWRI Rn

estimating method. Therefore, we thought the better performance at estimating the Ep of the E601
by the modified PenPan model than the original PenPan and Penman–Monteith models could be
attributed to the appropriate estimation of Rn above the surface of the E601.

Despite variable trends in Ep all over the world over the past 50 years [44], a decline in Ep from
the 1950s to the early 1990s has been acknowledged in the arid northwest of China [13,29,45]; however,
the decreased rate of Ep measured by the E601 (−11.7 mm·year−1, 1958–1991) was higher than the
mean of the northwest (−6.0 mm·year−1) measured by the φ20 [29]. Similarly, the increased rate of
Ep (24.4 mm·year−1, 1992–2009) was higher than the mean for the northwest (10.7 mm·year−1) [29].
While potential explanations for the decreased trends in Ep are diverse [44], our results support the
conclusion that the decreased Ep was mainly induced by the weakening U [26,29,30]. This site-specific
decrease in U was also confirmed at the larger spatial scale across China [46,47].

5.2. Lake Evaporation

Because of its nature, EL is rarely measured directly, except at relatively small spatial and temporal
scales [48]. Hence, the most common approach used by hydrologists or meteorologists is to apply
a Kp to the measured Ep [27,40,49]. Although numerous values of Kp have been reported in the
literature [32,40], most apply to Class A [20,41]. Because of the similarity of conversion coefficients of
the E601 and Class A to the 20-m2 evaporation tank [14], our Kp value (0.79) of the E601 (Table 2) was
comparable with Class A. For example, for the second-largest completely contained freshwater lake,
Lake Okeechobee in Florida, USA, Abtew [41] report monthly Kp values from 0.64 to 0.91, with an
average of 0.76. For a semi-arid region like India, Ali et al. [20] reported yearly Kp values ranged from
0.65 to 0.73 with an average of 0.69. However, the fact that Kp varied seasonally (Table 2) suggests that
applying a constant Kp to estimate EL will induce large errors. It is interesting that the Kp was related
to the U (Figure 7). Even though it had poor performance with a Radj

2 of 0.42, it provided a way to
calculate the KP for the long term without assuming it is constant.

The yearly EL from 2005 to 2015 with the full lake area was 1638.5 mm and 1385.6 mm, calculated
by the water budget and the modified PenPan model with the variable Kp estimated by the U,
respectively, i.e., the lake evaporation calculated by the modified PenPan model with the variable Kp

was less than that calculated by the water budget without considering the ground runoff. The reasons
for this inconsistency are: (1) the KP can vary depending on the local environment of the pan, including
pan operations or management [22], suggesting that a simple empirical relationship (Figure 7b) was
insufficient to estimate EL; (2) the dynamic change of discharge and recharge to the groundwater may
be enormous and non-ignorable, and has a large influence on the water budget of a small lake in arid
and semi-arid land. Both of these reasons require further exploration.
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6. Conclusions

Our study has confirmed that the PenPan model, which was developed for Class A, overestimated
the Ep measured by the E601, which attribute to the overestimation of Rn. The modified PenPan model
with the Rn calculated following the FAO has a better performance compared to the Ep measured by
the E601. The EL calculated by the modified PenPan model with the variable Kp was less than that
calculated by the water budget method without considering the ground runoff, but consistent with the
EL measured in the short term. In summary, the linking of best pan evaporation and the best model
can improve the estimation of lake evaporation and therefore water management.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/12/952/s1,
Figure S1: The monthly variation in mean annual meteorological variables included precipitation (P, mm),
pan evaporation (Ep, mm), air temperature (Ta, ◦C), relative humidity (RH, %) and wind speed (U, m·s−1),
Figure S2: The relationship between net radiation (Rn, MJ·m−2·day−1) calculated by the Penman–Monteith model
(Equation (8)) and Rn of pan (Rn, Pan, MJ·m−2·day−1) calculated by the original PenPan model (Equations (3)–(6))
from 1957 to 2016, Figure S3: The relationship between lake elevation (m) and area (AL, km2) and storage
(S, million m3) of Juyan Lake, as surveyed by the Wuhai Hydrographic and Water Resources Survey Bureau,
Inner Mongolia, China, in 2003, Figure S4: The time series of ten-days measured (a) lake storage (S, mm) and area
(AL, km2), (b) change of S (mm) and surface runoff (Qs, mm) for Juyan Lake, and (c) observed pan evaporation
(Ep, mm) by the E601 (Obs) and calculated by the modified PenPan model (Cal) from 2002 to 2015.
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