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Abstract: The coupled routing and excess storage (CREST) distributed hydrological model has been
applied regionally and globally for years. With the development of remote sensing, requirements for
data assimilation and integration have become new challenges for the CREST model. In this paper,
an improved CREST model version 3.0 (Tsinghua University and China Institute of Water Resources
and Hydropower Research, Beijing, China) is proposed to enable the use of remotely-sensed data
and to further improve model performance. Version 3.0 model’s runoff generation, soil moisture,
and evapotranspiration based on three soil layers to make the CREST model friendly to remote
sensing products such as soil moisture. A free water reservoir-based module which separates three
runoff components and a four mechanism-based cell-to-cell routing module are also developed.
Traditional CREST and CREST 3.0 are applied in the Ganjiang River basin, China to compare their
simulation capability and applicability. Research results indicate that CREST 3.0 outperforms the
traditional model and has good application prospects in data assimilation, flood forecasting, and water
resources planning and management applications.

Keywords: flood simulation; distributed hydrological model; remote sensing; CREST

1. Introduction

1.1. Review of Distributed Hydrological Model

Hydrological models have been successfully invented and applied for decades worldwide. Based on
the structures and configurations of the model, hydrological models can be categorized into three types,
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which include black-box, conceptual, and physically-based distributed models [1]. With the development
of observation and monitoring technologies and computer sciences, distributed hydrological models
have become mainstream in the academic circle of hydrology. Many distributed hydrological models,
such as TOPKAPI (TOPographic Kinematic APproximation and Intergration) [2,3], DHSVM (Distributed
Hydrology Soil Vegetation Model) [4], and VIC (Variable Infiltration Capacity) [5], etc., have been
successfully developed and applied. Distributed models are good at simulating the behaviors of
the highly complex dynamics of the hydrological system [6–8]. They can generate spatiotemporal
distributions of different state variables of the studied catchments. These state variables typically include
soil moisture, evapotranspiration, and land surface temperature, etc., and are of great significance to flood
forecasting, drought monitoring, agriculture cultivation, water resources planning and management,
etc. [9]. The favorable simulation functionality normally cannot be achieved by using black-box and
conceptual models. Therefore, even though the model structures are very complex and the computational
burden is significantly heavy [10–12], distributed hydrological models have still been increasingly popular
and are of great importance in modern hydrological studies.

There are mainly three ways to construct a distributed hydrological model. The first is to construct
the model using conceptually-based modules such as water storage capacity distribution curve method
for runoff generation computation, infiltration curve method for runoff component separation, experience
equation-based evapotranspiration calculation, linear reservoir method for flow concentration, etc. [13,14].
The second way is to construct the model mainly based on the partial differential equations (PDEs)
that finely describe the dynamics of the hydrological processes [15]. These equations usually include
the Richards equation for runoff generation computation, Darcy’s law for soil water movement and
transportation, and shallow water equations (typically Saint-Venant equations) for overland flow and
channel routing. The third way is to construct the model based on both of the above-mentioned
methods [16].

The PDE-based methods are usually based on Newton’s law of motion, and its physical meaning is
clearer than the conceptual methods. However, the application of these kinds of methods in real-world
occasions is still challenging. The PDEs are complex and the analytic solution is non-existent in most
cases. We have to apply numerical solution methods [17] such as finite difference, finite element, or finite
volume, instead of the analytic solution methods. The numerical methods adopted to solve the PDEs
are also faced with some difficulties. The spatiotemporal resolutions that are used to discretize the
PDEs must obey some predefined constraints, such as Courant number criterion, to ensure the stability
of the numerical methods [18]. This limitation makes the solution of PDEs with “non-harmonious”
spatiotemporal resolution—such as a very small spatial resolution combined with a large computational
time step—become impossible. Furthermore, the a-priori model parameters (e.g., saturated hydraulic
conductivity, field capacity, wilting point, etc.) are obtained from laboratory-scale experiments and may
not be effective at a larger-scale, potentially leading to scaling issues [19]. In addition, the numerical
solution of PDEs with high spatiotemporal resolution is a time-consuming computation task and
significantly slows down the application efficiency of the PDE-based models.

Although the physical meanings of the conceptually-based distributed hydrological models
are not as strong as their PDE-based counterparts, conceptually-based distributed hydrological
models still survive during the history of hydrological model development due to their simplicity,
good accuracy, agile spatiotemporal resolutions, higher computational efficiency, etc. The adaptability
of spatiotemporal resolutions of conceptually-based models is better than the PDE-based models to
some extent. This merit enables the conceptually-based models to freely couple with retrieved remote
sensing data with different and irregular spatiotemporal resolutions. For the purpose of studying
climate change, the requirement of better global hydro-meteorological simulation has sharply increased.
The conceptually-based models can fully adopt the useful information contained in the remote sensing
retrieved big data with larger spatiotemporal resolutions, and usually perform satisfactorily in global
water cycle modeling and simulation [20–22].
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1.2. Brief Introduction of the Coupled Routing and Excess Storage (CREST) Model and Motivation of
Model Improvement

The coupled routing and excess storage (CREST) model was jointly developed by the University of
Oklahoma and NASA SERVIR, and is a conceptually-based distributed hydrological model developed
to simulate the spatial and temporal variations of land surface, and subsurface water fluxes and storage
by cell-to-cell simulation [23–27]. CREST’s distinguishing characteristics include: (1) distributed
rainfall–runoff generation and cell-to-cell routing; (2) coupled runoff generation and routing via three
feedback mechanisms; and (3) representation of sub-grid cell variability of soil moisture storage
capacity and sub-grid cell routing (via linear reservoirs). The coupling between the runoff generation
and routing mechanisms allows detailed and realistic treatment of hydrological variables such as soil
moisture. Furthermore, the representation of soil moisture variability and routing processes at the
sub-grid scale enables the CREST model to be readily scalable to multi-scale modelling research at
local, regional, and global scopes [28].

The version history of the CREST model can be traced back to the original 1.x version developed
by Wang and Hong in 2011 [23]. After that, the model has been continuously updated from CREST
1.6c to a modular designed 2.0 Fortran version with embedded SCE-UA (Shuffled Complex Evolution
developed in the University of Arizona) automatic parameter optimization by Xue and Hong [24,25].
Recently, the Fortran version has been updated to 2.1 and has been successfully applied regionally
and globally. In addition to the Fortran version, there is another CREST 2.1 implementation using
MATLAB and GDAL libraries with additional input/output functionalities [26]. Versions 2.0 and 2.1
are noted as 2.x for simplicity in this paper.

The CREST 2.x has been widely applied and has been proved to be easy and effective.
However, with the development of remote sensing technology, CREST 2.x is faced with some
new challenges. There are many remotely-sensed products that provide a huge amount of useful
and valuable spatiotemporal information of the studied area, such as soil moisture (from satellite
products such as AMSR-E (Advanced Microwave Scanning Radiometer-EOS), SMAP (Soil Moisture
Active Passive), SMOS (Soil Moisture and Ocean Salinity), and Sentinel-1) [29–31], potential and
actual evapotranspiration (from satellite products such as MODIS (MODerate-resolution Imaging
Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer), and FY (Fengyun)),
land surface temperature (from satellite products such as MODIS), total water storage (from satellite
products such as GRACE (Gravity Recovery and Climate Experiment)), etc. [32]. However, CREST 2.x
has some limitations which prevent further and deeper applications of remotely-sensed products to
assist model calibration, simulation, and validation. The frequently used CREST 2.x supports only one
soil layer to describe the tension water storage. Using one soil layer to mimic the hydrological processes
cannot be applied to all types of watersheds, and may lead to accuracy deterioration. Especially, this
phenomenon may become severe when applying the CREST 2.x model globally. Additionally, one
soil layer model structure or configuration cannot make use of the remotely-sensed soil moisture
products to assist the model calibration and validation. The remotely-sensed soil moisture products
usually describe the volume water content corresponding to 5–10 cm soil depth. However, the depth
of soil layer in CREST 2.x is usually much larger than 5–10 cm. Furthermore, the runoff generated
by CREST 2.x is separated into two components, including surface and subsurface runoff, based on
saturated hydraulic conductivity. CREST 2.x does not consider the free water storage and ignores the
runoff generation and flow concentration processes of the ground water. This limits the effectiveness
of model application to watersheds in which the ground water plays an important role. The surface
flow, subsurface flow, and river channel flow generated by CREST 2.x are routed down by using a
three-mechanism cell-to-cell routing method. The flow concentration module of CREST 2.x does not
consider the ground water routing, and may tend to under-estimate the water quantity in long-term
and long computational timestep hydrological simulations.
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1.3. Content of This Paper

The above-mentioned limitations of the CREST 2.x model motivate us to further develop and
improve the model into a new version (3.0). In this research, we make four improvements to the
traditional CREST 2.x model:

1. Separating the soil layer into three layers and considering tension water, soil moisture,
and evapotranspiration computations.

2. Adding a free water storage computation module with a free water distribution curve to
describe the sub-grid variations of free water storage.

3. According to free water storage, separating runoff into three components, including overland
flow, interflow, and ground water.

4. Improving the flow concentration module into a four-mechanism cell-to-cell routing,
including overland flow, interflow, ground water, and river channel flow routings. Based on the
arrival time of each upstream grid cell to its downstream outlet grid cell, the generated runoff is routed
down along the flow concentration path generated according to the eight-flow-direction method.

The improved CREST 3.0 model and the traditional 2.x model were applied in the Ganjiang
River basin, China to test the characteristics of model calibration, simulation, and validation.
These improvements make the CREST model easier to combine with the remotely-sensed data such as soil
moisture and actual evapotranspiration to decrease the uncertainty problems in distributed hydrological
model calibration and validation, and provide the possibility to improve the model simulation capability
in regional and global applications.

2. Methodology

2.1. Traditional CREST Model—Version 2.x

The CREST model was initially designed to provide real-time regional and global hydrological
predictions by simultaneously modeling over multi-basins with significantly cost-effective computational
efficiency [23]. It is also applicable for small-to-medium-size basins at very high-resolutions [24,26].
CREST simulates the spatiotemporal variations of water fluxes and storage on a regular grid with the grid
cell resolution being user-defined, thereby enabling multi-scale applications. The scalability of CREST
simulations is accomplished through sub-grid-scale representation of soil moisture storage capacity (using
a variable infiltration curve) and multi-scale runoff generation processes (using multi-linear reservoirs).
The representation of the primary water fluxes such as infiltration and routing are physically related to
the spatially variable land surface characteristics (i.e., vegetation, soil type, topography, etc.). The runoff
generation process and routing scheme are coupled, thus providing more realistic interactions between
lower atmospheric boundary layers, terrestrial surface, and subsurface water. The above flexible modeling
features and embedded automated calibration algorithms make CREST a powerful yet cost-effective tool
for distributed hydrological modeling and implementation at global, regional, basin, and small catchment
scales [25].

The principles of the traditional CREST 2.x model can be found in relevant
literature [23,24,26,33,34]. The brief principles and calculation processes of the CREST 2.x
model are demonstrated in Figure 1 [25] and in the following paragraphs. As we can see in
Figure 1a, the CREST 2.x model requires grid-based precipitation, potential evapotranspiration
(PET), and watershed characteristics (such as DEM (Digital Elevation Model), flow direction,
flow accumulation, slope, etc.) as forcing data or model inputs. After the canopy interception,
infiltration, runoff generation, evapotranspiration (ET) computation, and cell-to-cell routing,
the model generates discharge, actual ET (AET), soil moisture, runoff, etc. As demonstrated in
Figure 1b, the model is composed of a variable infiltration curve-based runoff generation module,
a saturated hydraulic conductivity-based runoff component separation module, a soil moisture
computation module, and a cell-to-cell routing module.
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Figure 1. (A) The framework of the coupled routing and excess storage (CREST) model version 2.x 
and (B) vertical profile of hydrological processes in a grid cell [25]. AET: actual evapotranspiration; 
PET: potential ET; FDR: flow direction; FAC: flow accumulation; SCE-UA: shuffled complex evolution 
developed in the University of Arizona; RS: surface runoff; RI: interflow runoff. 

2.2. Improved CREST Model—Version 3.0 

2.2.1. Tension Water Storage Capacity Distribution Curve-Based Runoff Generation 

For each grid cell, the total runoff generated by the CREST 3.0 is computed by using a tension 
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relationship with the amount of net rainfall and tension water storage. The runoff does not generate 
until the tension water storage reaches the field capacity. Before the runoff generates, the rainfall 
replenishes the tension water storage after deduction of the evapotranspiration. CREST 3.0 adopts a 
tension water storage capacity distribution curve, which is also adopted in previous versions of 
CREST model, to describe the sub-grid inhomogeneity of the tension water storage capacity. The 
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Figure 1. (A) The framework of the coupled routing and excess storage (CREST) model version 2.x
and (B) vertical profile of hydrological processes in a grid cell [25]. AET: actual evapotranspiration;
PET: potential ET; FDR: flow direction; FAC: flow accumulation; SCE-UA: shuffled complex evolution
developed in the University of Arizona; RS: surface runoff; RI: interflow runoff.

2.2. Improved CREST Model—Version 3.0

2.2.1. Tension Water Storage Capacity Distribution Curve-Based Runoff Generation

For each grid cell, the total runoff generated by the CREST 3.0 is computed by using a tension
water storage capacity distribution curve. CREST 3.0 supposes that the runoff generation has a close
relationship with the amount of net rainfall and tension water storage. The runoff does not generate
until the tension water storage reaches the field capacity. Before the runoff generates, the rainfall
replenishes the tension water storage after deduction of the evapotranspiration. CREST 3.0 adopts a
tension water storage capacity distribution curve, which is also adopted in previous versions of CREST
model, to describe the sub-grid inhomogeneity of the tension water storage capacity. The equation of
the distribution curve is [23]:

f
F
= 1−

(
1− WM′

WMM

)b

(1)

where f /F represents the proportion of the pervious area of the grid cell whose tension water storage
capacity is less than or equal to the value of WM’; WM’ represents the tension water capacity at a point;
WMM represents the maximum value of WM’; b is a model parameter that reflects the inhomogeneity
degree of the tension water storage capacity in the vadose zone. The areal mean tension water capacity,
WM, can be computed as

WM =
WMM(1− IM)

1 + b
(2)

where IM is the proportion of the impervious area of the grid cell. The total runoff, R, is generated on
the pervious area of the grid cell as:

If P − KC × EM + A is less than WMM, then

R = P − KC × EM −WM + W + WM × [1 − (P − KC × EM + A)/WMM]1+b (3)

Otherwise
R = P − KC × EM −WM + W (4)
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where P represents precipitation; EM represents potential evapotranspiration; W represents tension
water storage; KC represents model parameter used to modify the potential evapotranspiration; and A
is an index indicating the saturation degree of the grid cell, and is computed as

A = WMM × (1 − (1 −W/WM)1/(1+b)) (5)

2.2.2. Three Soil Layers-Based Soil Moisture and Evapotranspiration Computation

In CREST 3.0, evapotranspiration is related to potential evapotranspiration through a three-layer
soil moisture module depending on parameters KC, WUM, WLM, and C. Until the storage WU of the
uppermost layer is exhausted, evaporation occurs at the potential rate, equal to KC times the potential
evaporation as [23]:

EU = KC × EM (6)

Upon exhaustion of the upper layer (capacity WUM), any remaining potential evapotranspiration
is applied to the lower layer, but the efficiency is modified by multiplication by the ratio of the actual
storage WL to the capacity storage WLM of that layer as

EL = (KC × EM − EU) ×WL/WLM (7)

When the lower layer storage WL is reduced to a proportion C of WLM, evapotranspiration is assumed
to continue, but at a further reduced rate, and the evapotranspiration ED is given by

ED = C × (KC × EM − EU) − EL (8)

2.2.3. Free Water Reservoir-Based Separation of Three Runoff Components

The total runoff, R, is separated into three components including RS, overland runoff, RG,
the ground water contribution, and RI, a contribution to interflow. The concepts of free water storage S
and free water storage capacity SM are used. The latter is assumed to be distributed between zero and
a point maximum SMM in a parabolic manner, over FR, that portion of the sub-grid which is currently
producing runoff. The distribution curve of the SM in a grid cell is stated as [23]

1− f
FR

= 1−
(

1− SM′

SMM

)EX

(9)

where f is the portion of the sub-grid area for which the free water storage capacity is less than or equal
to SM’ and EX is a model parameter that describes the inhomogeneity of the SM. The areal mean free
water storage capacity SM may be used instead of SMM as a model parameter, and has the relationship

SMM = SM × (1 + EX) (10)

Assume AU is an index indicating the free water storage of the grid cell and it is computed as

AU = SMM × (1 − (1 − S/SM)1/(1+EX)) (11)

and FR is computed as

FR = (R − IM × (P − KC × EM))/(P − KC × EM) (12)

The interflow and ground water are computed as

RG = S × KG × FR (13)

RI = S × KI × FR (14)

where KG and KI are discharge coefficients for ground water and interflow, respectively. The overland
runoff is computed as:
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If P − KC × EM ≤ 0, then
RS = 0 (15)

Otherwise
If P − KC × EM + AU < SMM, then

RS = (P − KC × EM − SM + S + SM × (1 − (P − KC × EM + AU)/SMM)1+EX) × FR (16)

Otherwise
RS = (P − KC × EM + S − SM) × FR (17)

2.2.4. Four Mechanisms-Based Cell-To-Cell Routing

CREST 3.0 adopts the four mechanisms-based cell-to-cell routing method to implement flow
routing of overland flow, interflow, ground water, and river channel flow. For each upstream
grid cell, the arrival time from the upstream grid cell to its downstream basin outlet grid cell is
accumulated along the flow path based on the flow concentration time within each grid cell. The flow
path is generated based on the eight flow direction method adopted in ArcGIS software. The flow
concentration time within grid cell (i, j) is computed as [23]:

Ti,j =
Li,j

K
√

Si,j

(18)

where Ti,j represents the flow concentration time within grid cell (i, j); Li,j represents the distance
between the centers of grid cell (i, j) and its adjacent downstream grid cell; Si,j represents the slope
from grid cell (i, j) to its adjacent downstream grid cell; K is defined as the runoff velocity coefficient.
The value of K varies from cell to cell and within cells depending on the following four processes that it
represents: for ground water runoff, K is set to a value representative of the ground water flow velocity;
for interflow runoff, K is set to a value representative of the soil saturated hydraulic conductivity;
for overland runoff, K corresponds to the land surface roughness; and for river channel flow, K is a
channel velocity coefficient determined by the channel roughness and hydraulic radius [23].

The interflow and ground water flow move more slowly in response to relatively small values of
K. In contrast, overland flow and river channel flow move faster and correspond to larger values of K.
All values of K—which control the timing of peak flow—can be provided a priori using land cover maps,
soil surveys, and channel cross-sections, but typically must be optimized through calibration [23].

The overland, interflow, and ground water runoff are generated in a hill slope grid cell and
flow downstream along their flow paths according to the eight flow direction method. The runoff
component retains its flow movement mechanism until it encounters the stream grid cell. After the
runoff comes into the stream grid cell, it will flow downstream according to the river channel routing
mechanism. The total flow concentration time of the upstream grid cell is accumulated along its flow
path, meanwhile considering its flow movement mechanism.

2.3. Model Calibration

The CREST 3.0 model has 15 parameters, which can be found in Table 1. The model parameters are
optimized using the SCE-UA optimization method developed by Duan [35–44]. The objective function of
the parameter optimization is the Nash–Sutcliffe coefficient of efficiency (NSCE). Some parameters or
state variables of the CREST 3.0 model have strong physical meanings, and their values must obey some
constraints including KG + KI < 1, non-negative tension water storages, and KRF ≥ KOF ≥ KIF ≥ KGF.
These constraints are implemented by punishment function method. The constraints are treated as
punishment terms which are added to the objective function value if the constraints are conflicted.
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Table 1. Parameters and their boundaries of the CREST 3.0 model [23].

Parameter Physical Meaning Range and Unit

KC Potential evapotranspiration correction coefficient 0.1–2
B Power of tension water storage capacity distribution curve 0.1–2
C Deeper soil layer evapotranspiration coefficient 0.01–0.5

WUM Upper soil layer water capacity 5–60 (mm)
WLM Lower soil layer water capacity 10–90 (mm)
WDM Deep soil layer water capacity 35–150 (mm)

IM Impervious area ratio 0.01–0.5
SM Free water capacity 1–60 (mm)
EX Power of free water storage capacity distribution curve 0.01–2
KG Free water storage to groundwater outflow coefficient 0–1
KI Free water storage to interflow outflow coefficient 0–1

KRF Velocity coefficient for river channel flow 0–100
KOF Velocity coefficient for overland flow 0–10
KIF Velocity coefficient for interflow 0–1
KGF Velocity coefficient for ground water flow 0–0.1

3. Study Area and Data Description

In this study, we apply the original CREST 2.x and the improved CREST 3.0 models in daily streamflow
simulation in the Ganjiang River basin, China to verify the performance of the improved model.

The Ganjiang River is a tributary of the Yangtze River and is the longest river in Jiangxi Province,
China. It is located in the southeast part of China. The basin outlet is the Waizhou station, and the
drainage area is 81,258 km2. The elevation of the Ganjiang River basin ranges from 11 to 1997 m,
and the terrain varies significantly from hilly land to low hill. The climate of the Ganjiang River basin
is mainly subtropical humid monsoon climate, and rainfall usually happens during April and June
and flood frequently happens during May and July [45,46]. The DEM, slope, flow direction, and flow
routing sequence maps of the Ganjiang River basin are demonstrated in Figure 2.

This study adopts hydro-meteorological data from 2003 to 2009 to carry out daily streamflow
simulation. The rainfall data adopts the TRMM (Tropical Rainfall Measuring Mission) satellite-based
remote sensing product 3B42V7. The original spatiotemporal resolutions of the TRMM 3B42V7 rainfall
data are 0.25◦ × 0.25◦ and 3 h. We resampled the TRMM rainfall data into spatiotemporal resolutions
of 1 km × 1 km and 1 day by using the nearest-neighbor method and daily rainfall accumulation
method. The potential evapotranspiration (PET) data was downloaded from the global daily potential
evapotranspiration dataset of the Famine Early Warning System (FEWS) of the USGS (The United
States Geological Survey) and the spatiotemporal resolutions are 1◦ × 1◦ and 1 day. The spatial
resolution of the PET data was resampled into 1 km × 1 km by using the nearest-neighbor method.
The daily streamflow data was obtained from Waizhou station observations.
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Figure 2. Maps of Ganjiang River basin. (A) DEM; (B) Slope; (C) Flow direction; (D) Flow routing sequence.

4. Results and Discussion

4.1. Comparison of Basin Outlet Discharge Simulations between CREST 2.x and 3.0

For the purposes of comparing the simulation capability of the CREST 2.x and 3.0 models, the
measured and simulated basin outlet hydrographs are compared herein. The basin outlet streamflow
simulation results are demonstrated in Figure 3. As we can see in Figure 3, the performance of CREST
3.0 is overall better than the 2.x version. The low flow simulations of the CREST 2.x are significantly
underestimated. In contrast, the low flow simulations of the CREST 3.0 version are much better than
the 2.x model. CREST 3.0 can simulate the flow recession process and base flow of the Ganjiang River
basin with satisfactory accuracy.
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CREST 2.x only considers two runoff components, including overland flow and interflow. Without
consideration and computation of ground water, CREST 2.x failed to simulate the base flow process.
CREST 3.0 adds a linear reservoir-based ground water simulation module, and considers the runoff
generation and flow concentration processes of the ground water. Therefore, the base flow and ground
water simulations of CREST 3.0 outperform the 2.x version. The addition of the base flow simulation
functionality of the improved 3.0 version is of great significance to global climate change research,
global land surface modelling, water resources planning and management, etc. In these applications,
the base flow plays a very important role in enclose the water cycle balance. Therefore, the 3.0 version
has good application prospects in these study areas.

The scatter plots between measured and simulated basin outlet streamflow of CREST 2.x and 3.0
models are demonstrated in Figure 4. As shown in Figure 4, the simulation results of CREST 3.0 are
better than the 2.x version. The distribution of the scatters of version 3.0 is more homogeneous around
the regression line than version 2.x. Especially for high flow values, 2.x tends to underestimate the
high discharge values. Therefore, the high flow simulations of the 2.x version are slightly worse than
the 3.0 version.
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We also compared model performances of CREST 2.x and 3.0 according to Nash–Sutcliffe
coefficient of efficiency (NSCE), BIAS (a statistic is biased if it is calculated in such a way that it
is only systematically different from the population parameter of interest), regression R2, and root
mean square error (RMSE) [47]. The error statistics of CREST 2.x and 3.0 are listed in Table 2. The NSCE
of CREST 2.x and 3.0 were 0.75 and 0.77, respectively. The BIAS of CREST 2.x and 3.0 were −9.2302%
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and 0.0003%, respectively. The R2 of CREST 2.x and 3.0 were both 0.78. The RMSE of CREST 2.x and
3.0 were 852.60 and 827.21, respectively. These results indicate that CREST 3.0 overall outperformed
the 2.x version.

Table 2. Error statistics of CREST 2.x and 3.0. NSCE: Nash–Sutcliffe coefficient of efficiency; RMSE:
root mean square error.

Model Error Statistics Indicator Value

CREST 2.x

NSCE 0.75
BIAS −9.2302%

R2 0.78
RMSE 852.60

CREST 3.0

NSCE 0.77
BIAS 0.0003%

R2 0.78
RMSE 827.21

4.2. Comparison of Areal Mean Soil Moisture Simulations between CREST 2.x and 3.0

Figure 5 shows the areal mean soil moisture simulations of CREST 2.x and 3.0. CREST 2.x only
considers one soil layer. Therefore, it generates soil moisture of the total vadose zone. CREST 3.0
separates the vadose zone into three soil layers and considers the runoff generation, soil moisture, and
evapotranspiration computations of upper, lower, and deep soil layers. It can be observed that the
simulated total tension water soil moisture of CREST 2.x (W) was smaller than the 3.0 generated W.
This indicates that CREST 2.x may underestimate the total soil moisture of the vadose zone due to the
exclusion of the deep soil layer. CREST 2.x separates runoff into overland flow and interflow according to
saturated hydraulic conductivity, and can be recognized as only considering the upper and lower layer
soil moisture. These soil moistures correspond to upper (WU) and lower (WL) layer soil moistures of
CREST 3.0. It is demonstrated in Figure 5 that values and variation tendencies of upper (WU) and lower
(WL) soil layers of CREST 3.0 seem similar to the total soil moisture (W) of CREST 2.x.Water 2017, 9, 904  12 of 19 
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In Figure 6, we show the simulated tension water storages of CREST 2.x (W) and 3.0 (WU + WL).
We can see that the W and WU + WL simulations are closer to each other. The variation tendency and
absolute values are similar to each other. For high values, CREST 3.0 simulations are larger than the 2.x
version. For low values, CREST 3.0 simulations are smaller than the 2.x version. For medium values,
the simulations of the two models are similar to each other.

Figure 7 shows the scatter plot of simulated tension water storages of CREST 2.x (W) and 3.0
(WU + WL) models. The regression R2 value between the CREST 2.x and 3.0 are 0.8594, which indicates
a high linear correlation relationship between W and WU + WL. The distribution of scatters is even and
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good. These results prove that the vadose zone total tension water storage simulations of the CREST 2.x
model are similar to the sum of upper and lower soil layers tension water storage simulations of CREST
3.0.
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In this research, we do not have sufficient station-observed soil moisture data to further validate
the effectiveness and accuracy of the model simulations. This is because the soil moisture data in China
is not publicly available to researchers. As a substitute, remotely-sensed soil moisture data provided
by satellites such as AMSR-E, SMOS, and SMAP become valuable in research activities. However, both
station-observed and remotely-sensed soil moisture data have their own limitations when applied to
real-world scenarios. The distribution of soil moisture observation stations in most areas of China
is sparse, therefore, the representativeness of the station-based data is poor when interpolating to
the whole basin. Remote sensing data can provide spatial distribution of the soil moisture, but the
uncertainty issue of remote sensing data is severe for soil moisture variables. Therefore, it is suggested
that the validation of soil moisture simulations must combine the advantages of the station observation
and remotely-sensed data in future studies.

4.3. Comparison of Areal Mean Actual Evapotranspiration Simulations between CREST 2.x and 3.0

Figure 8 shows the areal mean actual evapotranspiration (AET) simulations of the CREST 2.x
model. Most AET simulations are good and reasonable. However, there are some unreasonable AET
peak values that we call “singular points”. These singular points are much larger than other AET
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simulation results, and may be unreasonable. After comparing the computed AET with remote sensing
retrieved PET used in this study, we found that these singular values are even larger than observed
PET values. Therefore, we confirm that the evapotranspiration computation algorithm or codes of the
CREST 2.x model need to be improved, and the singular values are unreasonable.
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In order to compare AET simulation results of CREST 2.x and 3.0, we exclude the above-mentioned
singular values. Figure 9 demonstrates simulated evapotranspiration of CREST 2.x (excluding singular
points) and 3.0 models. CREST 2.x can only generate total AET, and CREST 3.0 generates the AET of
upper, lower, and deep soil layers. It can be seen the total AET of CREST 3.0 is larger than the total AET
of CREST 2.x, which indicates that CREST 2.x may underestimate the total AET due to the exclusion of
deep soil layer evapotranspiration. It also can be found that most AET of the upper soil layer is larger
than the AET of the lower soil layer, and the AET of the deep soil layer is usually very small.
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soil layer; ETL: evapotranspiration of lower soil layer; ETD: evapotranspiration of deep soil layer.

Figure 10 shows the scatter plot of the simulated evapotranspiration of CREST 2.x (excluding
singular points) and 3.0 models. The regression R2 between CREST 2.x and 3.0 is 0.875, which indicates
a high correlation relationship. The scatter distribution is also satisfactory and even. Figure 10 indicates
that the evapotranspiration of CREST 3.0 is overall larger than the 2.x version. These results indicate
that the exclusion of deep soil layer tension water storage and evapotranspiration computation leads
the CREST 2.x to generate lower AET compared with the CREST 3.0 model.

The validation of ET simulations is much more difficult than soil moisture variables. Unlike the soil
moisture, the true values of ET for different underlying surfaces (e.g., bare soil and vegetation-covered
land surface) are difficult to obtain. Observed ET data are usually potential ET (PET) of the water
surface, rather than actual ET (AET). Precise estimation of the relationship between PET and AET for
all kinds of underlying surfaces is also very challenging. Even though the study of ET is a hot issue
in remote sensing and hydrology studies, a solidly reliable ET data set or product is still difficult to
obtain, and the uncertainty issue in ET estimation is severe. Considering that the station-observed
ET data is not sufficient, remote sensing-generated products (e.g., MODIS MOD16, AVHRR, etc.) are
better substitutes for researchers and engineers in real-world applications. Therefore, we will further
validate the ET simulations by using remotely-sensed ET products in future research.
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4.4. Analysis of Areal Mean Runoff Generation Area and Free Water Storage Simulations

Apart from grid-based streamflow, soil moisture, and AET, CREST 3.0 can also generate runoff
generation area (FR) and free water storage (S) simulations for each grid cell. Figure 11 demonstrates
simulated areal mean runoff generation area and free water storage of the CREST 3.0 model. Most of
the FR are between 0.1 and 0.9. This result indicates that for large basins such as the Ganjiang River
basin, the tension water storage cannot be totally saturated (FR = 1) or totally exhausted (FR = 0) for the
whole basin. This conclusion is reasonable. For very large basins such as the Ganjiang River basin, the
spatial distribution of rainfall intensity is usually significantly uneven and the rainfall usually cannot
fall on the whole basin for long enough to saturate the whole watershed. Therefore, the areal mean FR
cannot be 1. For large basins, the base flow plays an important role in drought periods. The drought
season streamflow is stable and larger than 0. The free water reservoir can be supplied by base flow,
and the free water storage of the whole basin cannot be totally exhausted.
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The free water storage, S, reflects the quantity of runoff generated during the runoff generation process
to some extent. Figure 11 shows that when FR is increasing, S is still increasing; when FR is decreasing, S is
also decreasing. This result indicates that when runoff generation area, FR, is large, the generated runoff is
also large. The FR and S react with the same tendency in the process of runoff generation.

5. Conclusions

In this paper, we make four improvements to the traditional CREST 2.x distributed hydrological
model and propose a new version 3.0. With the addition of three soil layers-based soil moisture and
evapotranspiration computations, free water reservoir-based separation of three runoff components,
and four mechanisms-based cell-to-cell routing, CREST 3.0 outperforms the traditional 2.x version in
simulation accuracy, output information, and application fields. CREST 3.0 is also friendlier than the 2.x
version in its handling of remote sensing retrieved data such as soil moisture. Furthermore, following
conclusions can be made here:

(1) CREST 3.0 resolves the high and low flow underestimation problem of the CREST 2.x model.
Version 3.0 considers the overland flow, interflow, ground water flow, and river channel flow, and may
be more adaptable to different kinds of watersheds and may perform better in flood forecasting
applications than the 2.x version.

(2) CREST 3.0 solves the soil moisture and evapotranspiration under-estimation problem of the
CREST 2.x model. The 3.0 version considers the soil moisture and evapotranspiration of upper, lower,
and deep soil layers. CREST 3.0 performs better in the water quantity estimation and may perform
better in water resources planning and management applications.

(3) CREST 3.0 separates the soil layer into three layers, and the depth of the upper soil layer can
be configured to adapt to remote sensing retrieved soil moisture data such as AMSR-E, SMAP, SMOS,
and Sentinel-1. The 3.0 version is capable of using the remotely-sensed soil moisture and AET data to
assist model calibration and validation. The CREST 3.0 model is more suitable to data assimilation
tasks than the 2.x version.

(4) Apart from grid-based streamflow, soil moisture, and AET, CREST 3.0 can also generate runoff
generation area and free water storage for grid cells. These additional products can provide more
useful information for scientific research and real-world engineering applications.
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