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Abstract: 2-Methylisoborneol (2-MIB) is a common off-flavor metabolite, and it has a very low odor
threshold value. 2-MIB is produced by a variety of cyanobacteria and heterotrophic bacteria. In this
study, Dolichospermum spiroides (Anabaena spiroides, FACHB 498) and Planktothrix sp. (FACHB 1371)
were investigated. The influence of high temperature (27, 35 and 40 ◦C) and dissolved inorganic
carbon (DIC, 18.4, 27.5 and 36.7 mg/L) on the two 2-MIB-producing cyanobacteria were simulated
to study the effect of climate change on 2-MIB production. DIC had an effect on 2-MIB production
by Planktothrix sp. The results showed that the highest DIC concentration (36.7 mg/L) led to the
fastest algal growth, which increased 2-MIB production by Planktothrix sp. However, 40 ◦C killed all
the cyanobacteria. The higher temperature (35 ◦C) shortened the lifecycle of the two cyanobacteria
because it moved forward their logarithmic phase compared to 27 ◦C. The 2-MIB-producing potential
of Dolichospermum spiroides may increase at 35 ◦C. The Dolichospermum spiroides results showed
that the fluorescence intensity and the concentration of extracellular 2-MIB were highly correlated
(r2 ≥ 0.90). At 35 ◦C, there was a stronger correlation between extracellular dissolved organic matters’
(DOMs, fulvic acid (P3 (r2 = 0.90)), humic acid (P4 (r2 = 0.92)) and the soluble microbial metabolites’
(P5 (r2 = 0.71)) fluorescence peak intensities and 2-MIB concentration. The Dolichospermum sproides
2-MIB-producing potential was affected by extracellular humus. The Planktothrix sp. 2-MIB-producing
potential declined in general over the growth period. In addition, temperature had no significant
effect on the Planktothrix sp. 2-MIB-producing potential and the extracellular 2-MIB component.

Keywords: 2-methylisoborneol; dissolved inorganic carbon; Dolichospermum spiroides; Planktothrix sp.;
climate change

1. Introduction

The combustion of fossil fuels during the past two centuries has significantly increased the
atmospheric carbon dioxide (CO2) concentration, a trend that has been projected to continue over
the coming decades [1]. Atmospheric CO2 concentrations that had previously increased at a rate
of 1% per year in the 20th century are now increasing at 3% per year and may exceed 900 ppm.
Furthermore, there may be a more than 2 ◦C increase by 2100 [1,2]. If the concentration of CO2 in the
atmosphere increased from 350 to 900 ppm, the pH and dissolved inorganic carbon (DIC) in water
bodies would change. The carbonate ion concentration (cCO2−

3
) would decrease while the concentration

of bicarbonate ions (cCO2−
3

) would increase [3–7]. Since a natural water body is an open system,
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the CO2 exchange between air and water is a long-term and stable process, and so are its effects on
cyanobacteria and green algae [8]. Yu et al. reported that the microcystin concentration in water
declined when CO2 concentrations increased [7].

Figure 1 shows the longitudinal carbon cycling in the water environment, and the increase in
atmospheric CO2 concentration has an effect on the inorganic carbon in the water. Algal cells transport
HCO3

− into the cytosol via plasma membrane active transport and HCO3
− is converted to CO2 in the

cells by carbonic anhydrase [9]. An increased atmospheric CO2 concentration changes cyanobacteria
and algae growth because it alters the open water carbonate equilibrium, although this effect is buffered
to some degree by the carbonate equilibrium. Furthermore, substantial CO2 increases also affect carbon
sequestration. The effect on filamentous bacteria is even more obvious [10]. Under high temperature
conditions in summer, especially during heat waves, the inorganic carbon utilization mechanism
becomes more effective [3,11].
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Harmful algal blooms caused by cyanobacteria have been reported in scientific literature for
more than 130 years [12]. It is one of the most important waterborne microbial hazards to human and
freshwater ecosystems [13]. Periodic taste and odor events are common problems that influence the
water quality in reservoirs and lakes [14,15]. 2-Methylisoborneol (2-MIB), geosmin, and other volatile
organic compounds are the primary off-flavor compounds in surface and drinking water [16,17].
The odorous 2-MIB is a secondary metabolite produced by cyanobacteria, such as Dolichospermum sp.,
Planktothrix sp., Pseudanabaena, and Oscillatoria sp. [18–20]. 2-MIB is synthesized in algal cells.
The natural substrate (E)-2-methylgeranyl diphosphate (3,2-MeGPP) is formed from the methyl
group S-adenosyl-L-methionine (SAM) and 2-MIB is synthesized from MeGPP by 2-methylisoborneol
synthase (MIBS) [21,22]. The presence of 2-MIB in source waters decreases the water quality, and the
smell in water leads to frequent complaints from consumers [23]. Furthermore, Planktothrix sp. has
been identified as a potential 2-MIB producer [18].

Extracellular and intracellular 2-MIB are produced from different algae organic matter (AOM)
fractions [24–27]. Aqueous AOMs are derived from algae metabolites that are generally categorized
into extracellular organic matter and intracellular organic matter [28]. Natural organic matters present
in surface water are complex and multiphase mixtures consisting of humic acids, fulvic acids, low
molecular weight organic acids, carbohydrates, proteins, and other compounds [29]. Dissolved organic
matters (DOMs) include organic molecules with chromophoric (light absorbing) and fluorophoric
(light emitting) moieties. The fluorescence excitation–emission matrix (EEM) analysis of water samples
has become increasingly common because it can interpret the fluorescence characteristics of DOM
with a high degree of sensitivity [30]. Fluorescence spectroscopy provides a high optical resolution
and the fluorescence given off by different spectral regions is related to different functional groups.
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Therefore, DOM fractions may have their own EEM [31]. However, there has been little research on
the relationship between 2-MIB and AOM.

This study selected two types of cyanobacteria that produce 2-MIB and investigated the primary
environmental factors that affect 2-MIB production. The objectives of this study were to (1) explore
Dolichospermum spiroides 2-MIB production potential under heat wave temperatures; (2) determine the
relationships between AOM and the 2-MIB intracellular and extracellular concentrations; (3) investigate
the effects of temperature and inorganic carbon on Planktothrix sp. 2-MIB production; and (4) investigate
the influence of CO2 increases on algal metabolism.

2. Materials and Methods

2.1. Chemicals and Cell Culture

Standards with the highest level of purity for the target analyte (2-MIB) were purchased from
Sigma–Aldrich (St. Louis, MO, USA). Stock standard solutions of 100 mg/L were prepared by diluting the
different standard solutions with HPLC grade methanol, which was purchased from Fisher Scientific Co.
(Shanghai, China). Grade analytical NaCl was purchased from the Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China), and was heated to 450 ◦C for 2 h before use. Ultrapure water (18 MΩ cm) was
produced using the Milli-Q Integral 5 purification system (Millipore, Molsheim, France).

Dolichospermum spiroides (FACHB 498) and Planktothrix sp. (FACHB 1371) were purchased from
the Institute of Hydrobiology, Chinese Academy of Science (Wuhan, China). They were cultured in
BG11 medium in an incubator at 25 ◦C under a constant light flux (2000 lx) with a light/dark cycle of
12 h/12 h. Each sample was replicated twice and the experiment lasted one growth cycle.

2.2. Odorant Quantification

The odorants were pretreated by the solid phase micro extraction process (SPME) with a commercial
fiber (50/30 µm DVB/CAR/PDMS, 57348U, Supelco, Bellefonte, PA, USA) and an automatic fiber
holder model (Gerstel, Mülheim an der Ruhr, Germany). The concentrations of the odorants in the
samples were determined using a GC-MS system (GCMS-QP2010 Plus, Shimadzu, Tokyo, Japan)
in the selected ion monitoring (SIM) mode. The SIM mode was m/z 95, 107, and 108. A capillary
column (30 m × 0.25 µm × 0.25 mm) was used to separate the off-flavors from the algal organic matter.
The injector temperature was set at 250 ◦C with a splitless ratio. The initial oven temperature was
40 ◦C. This was held for 5 min, and then increased to 240 ◦C at a rate of 8 ◦C/min with an 8-min hold.
The temperature of the electron impact (EI) ion source was set at 200 and 250 ◦C, respectively.

2.3. Experimental Procedures

2.3.1. The Technical Pathway

The technical pathway used in this study is shown in Figure 2.
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2.3.2. Culture Design

Dolichospermum spiroides (FACHB 498) and Planktothrix sp. (FACHB 1371) were cultured in BG11
medium. Planktothrix sp. was the primary 2-MIB-producing cyanobacteria in Zizhuyuan (ZZY) Park,
Beijing, China. The pH of the landscape water in Zizhuyuan Park was approximately 8.0. Therefore,
the DIC in the water was primarily HCO3

−. There were three DIC treatments: 18.4 mg/L DIC (ZZY water
DIC concentration), 27.5 mg/L DIC, or 36.7 mg/L DIC, which were adjusted using NaHCO3.

Dolichospermum spiroides (FACHB 498) and Planktothrix sp. (FACHB 1371) were cultured in a
climate incubator at 27 ◦C, 35 ◦C or 40 ◦C under a constant light flux (2000 lx). The control temperature
was 27 ◦C, while 35 ◦C and 40 ◦C were the simulated heat-wave temperatures.

2.3.3. Determination

The cultures were harvested every 2 days and the samples were used to monitor changes in
the cyanobacteria and off-flavor compounds, including extracellular 2-MIB and intracellular 2-MIB.
The algal liquids were centrifuged (8000 rpm, 4450× g) for 15 min, and then the supernatant was
removed and used to measure extracellular 2-MIB. After the supernatant samples were cleaned
using NaCl (0.8%), a freeze-thaw process (−26 ◦C and 40 ◦C, 30 min and 5 min, respectively) was
repeated three times followed by ultrasonic treatment. This completely destroyed the algal cells.
The supernatant, which was obtained by dissolving the cells in ultrapure water for 2 h followed by
centrifuging (8000 rpm, 4450× g) for 10 min, was used to determine the intracellular 2-MIB. At the same
time, the cell numbers were counted using a Zeiss microscope (ZEISS-Axio Imager.A2, Jena, Germany).
Chlorophyll a (Chla) concentrations in the cyanobacteria were measured after extraction with 90%
ethanol for 24 h in the dark. The supernatants were analyzed at 665 nm and 750 nm with a UV-VIS
spectrophotometer (Lambda 650S, Perkin Elmer, Waltham, MA, USA). The Dolichospermum spiroides
fluorescence intensity (FI) was determined with fluorescence EEMs, which were recorded on a
three-dimensional fluorescence spectrometer (Hitachi F-7000, Hitachi, Tokyo, Japan). The parameters
in this study were set according to Chen [32]. The EEMs were recorded as a series of emission scans
(250–550 nm in 5-nm increments) at set excitation wavelengths (200–450 nm in 5-nm increments).
A 5 nm bandpass was used for both the excitation and emission monochromators, and the integration
time was 0.25 s. The data were processed with Origin, a plotting software, and characterized by
contour maps. Ultra-pure water was used as a blank to correct the Raman scattering of water.

2.3.4. Statistical Analysis

The Planktothrix sp. cell density was more variable than the Dolichospermum spiroides cell density,
and Chla can be used to characterize cell growth. Therefore, this study used the 2-MIB/Chla ratio
to describe 2-MIB production potential. The average value and standard deviation were calculated
for each set of parallel determination data. In the linear regression analysis, the vertical axis shows
the intensity values for the fluorescence peaks of the cells in the EEMs, while the corresponding
intracellular and extracellular 2-MIB concentrations are shown by the horizontal axis. These data were
then used to fit a correlation curve in a period. All graphs were plotted using Origin software.

3. Results

The results showed that the 40 ◦C treatment killed all the cyanobacteria cells. Therefore, the results
and discussion only consider the 27 and 35 ◦C treatments.

3.1. The Effect of DIC on the Production of 2-MIB by Planktothrix sp.

The 2-MIB production potential of Planktothrix sp. was measured at three different DIC
concentrations. Figure 3a,b show that the 2-MIB-producing potentials for Planktothrix sp. under
the different DIC conditions varied with time over the growth period, and that they generally had the
same change trend. The 2-MIB-producing potential for the Planktothrix sp. determined on the third
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day was far lower than the potential on the first day. This meant that the 2-MIB-producing potential
declined between the first and third day. From the third to the 15th day, there was no uniform rule
for 2-MIB-producing potential at the different DIC concentrations. Between the 15th and 35th day,
the 2-MIB-producing potential tended to be stable and at a low level for all three concentrations. Above
all, the results suggested that the DIC concentration had no significant effect on the 2-MIB-producing
potential. Therefore, we analyzed the changes in the total 2-MIB and Chla levels over the growth cycle
at the different DIC concentrations.

The 2-MIB production potentials for Planktothrix sp. at the three different DIC concentrations
were compared. Figure 3c,d show that at 27 ◦C, the effect of DIC concentration on the 2-MIB levels was
not significant, and that the 2-MIB concentration at 36.7 mg/L DIC reached a peak on the 23rd day.
At 35 ◦C, the total 2-MIB concentration increased as the DIC concentration rose. Figure 3e,f show the
change in Chla over time at the different DIC concentrations. At 35 ◦C, the results showed that the
Chla concentration in Planktothrix sp. was highest in the 36.7 mg/L DIC treatment.
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Figure 3. The changes with time in one period of the 2-MIB producing potencial, total concentration
of 2-MIB and Chla in three different DIC conditions at 27 and 35 ◦C: (a) 2-MIB producing potencial
at 27 ◦C; (b) 2-MIB producing potencial at 35 ◦C; (c) total 2-MIB at 27 ◦C; (d) total 2-MIB at 35 ◦C;
(e) Chla concentration at 27 ◦C; (f) Chla concentration at 35 ◦C.
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3.2. The Effects of Temperature on Dolichospermum spiroides and Planktothrix sp.

3.2.1. Dolichospermum spiroides and Planktothrix sp. Cell Growth at Different Temperatures

Figure 4a,b show that the Chla concentration in Dolichospermum spiroides was inhibited at 35 ◦C.
The Chla concentration increased slowly with a logarithmic pattern at 35 ◦C, which indicated that the
growth of Dolichospermum spiroides was inhibited at 35 ◦C. However, this pattern was less obvious for
Planktothrix sp., where the highest Chla concentrations varied between the 27 and 35 ◦C treatments
as time progressed. The peak Chla concentration in Dolichospermum spiroides was different from
Planktothrix sp. For Dolichospermum spiroides, the Chla concentration at 27 ◦C reached a peak on the
26th day, but it reached a peak on the 22nd day at 35 ◦C. For Planktothrix sp., the maximum Chla
concentration appeared on the 28th day at 27 ◦C, but on the 23rd day at 35 ◦C.

Water 2017, 9, 859  6 of 12 

 

3.2. The Effects of Temperature on Dolichospermum spiroides and Planktothrix sp. 

3.2.1. Dolichospermum spiroides and Planktothrix sp. Cell Growth at Different Temperatures 

Figure 4a,b show that the Chla concentration in Dolichospermum spiroides was inhibited at 35 °C. 
The Chla concentration increased slowly with a logarithmic pattern at 35 °C, which indicated that the 
growth of Dolichospermum spiroides was inhibited at 35 °C. However, this pattern was less obvious for 
Planktothrix sp., where the highest Chla concentrations varied between the 27 and 35 °C treatments 
as time progressed. The peak Chla concentration in Dolichospermum spiroides was different from 
Planktothrix sp. For Dolichospermum spiroides, the Chla concentration at 27 °C reached a peak on the 
26th day, but it reached a peak on the 22nd day at 35 °C. For Planktothrix sp., the maximum Chla 
concentration appeared on the 28th day at 27 °C, but on the 23rd day at 35 °C.  

0 5 10 15 20 25 30 35
200
400
600
800

1000
1200
1400
1600
1800

0 5 10 15 20 25 30 35 40
0

10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35
0

10
20
30
40
50
60
70
80

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35
0

10
20
30
40
50
60
70
80

0 5 10 15 20 25 30 35 40
20
30
40
50
60
70
80
90

100
110

 

Ch
l-a

 (m
g/

m
3 )

 27℃
 35℃

 

 

Ch
l-a

 (m
g/

m
3 )

 

 

M
IB

/C
hl

a(
×

1
0

-5
)

M
IB

/C
hl

a(
×

1
0

-3
)

(a) (b)

(d)(c)

(e) (f)

Ex
tra

ce
llu

la
r 2

-M
IB

 (%
)

Time (day)

Ex
tra

ce
llu

la
r 2

-M
IB

 (%
)

Time (day)  
Figure 4. The variations of Chla, 2-MIB-producing potential, and extracellular 2-MIB proportion for 
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Dolichospermum spiroides (a,c,e) and Planktothrix sp. (b,d,f). 2-MIB-producing potential was shown by
2-MIB/Chla.

3.2.2. The 2-MIB-Producing Potentials of Dolichospermum spiroides and Planktothrix sp. Under Different
Temperature Conditions

At 35 and 27 ◦C, the Dolichospermum spiroides 2-MIB-producing potential generally increased.
Figure 4c shows that the 2-MIB-producing potential was greater at 35 ◦C than at 27 ◦C on the 14th day,
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and it remained higher thereafter. After the 22nd day, the 2-MIB-producing potential at 35 ◦C increased
very rapidly. For Planktothrix sp. (Figure 4d), the 2-MIB-producing potential at the two temperatures
declined in general. This was because the Chla concentration was low at the beginning, and its increase
led to a dramatic decline in the MIB/Chla ratio.

At the same temperature (35 ◦C), the Dolichospermum spiroides 2-MIB-producing potential
was much smaller than that of Planktothrix sp. (two orders of magnitude) over the same period
of time, which was due to the lower absolute 2-MIB concentration, but higher Chla content in
Dolichospermum spiroides.

3.2.3. The Extracellular 2-MIB Portion of Dolichospermum spiroides and Planktothrix sp.

2-MIB was divided into two components, which were the extracellular 2-MIB and the intracellular
2-MIB. This study analyzed the variation in extracellular 2-MIB. The proportion of extracellular
2-MIB in Dolichospermum spiroides increased with time at both temperatures. Figure 4e shows that
the proportion of extracellular 2-MIB increased at 35 ◦C, and this increase was more significant than
at 27 ◦C. However, the trend for Planktothrix sp. was different (Figure 4f). Over the growth cycle,
the extracellular 2-MIB proportions for Planktothrix sp. were more than 50%, except on the 12th and
20th day.

The results also show that when the MIB/Chla ratio for Dolichospermum spiroides increased rapidly,
and there was a concurrent rapid rise in the extracellular 2-MIB proportion (Figure 4c,e). Furthermore,
when the MIB/Chla increase was slow, the extracellular 2-MIB proportion curve was more moderate.

3.2.4. DOM Composition of Dolichospermum spiroides at Different Temperatures

There were three obvious fluorescence regions for the extracellular DOMs (Figure 5a,c,e).
These represented the soluble microbial metabolites (left region, P5 represents their peak FI values),
fulvic acid (right bottom region, P3 represents its peak FI value), and humic acid (right upper region,
P4 represents its peak FI value). These three types of organic matter are major AOMs produced
by Dolichospermum spiroides [33]. The intracellular EEM (Figure 5b,d,f) results show that there were
obvious differences in DOMs compared to the extracellular 2-MIB. The humic acid and fulvic acid
contents were extremely low, and only when the algal cell density was very high (incubated for
30 days at 27 ◦C), did a small amount of humic acid appear. Intracellular DOMs mainly produced two
fluorescence sources. The fluorescence source at the left bottom of Figure 5b,d,f represent two types
of aromatic protein, tryptophan (P1 represents its peak FI value) and tyrosine (P2 represents its peak
FI value). The phenolic functional groups in tryptophan as well as the indole functional groups in
tyrosine were in the excitation/emission (EX/EM) ranges of 200–250 nm and 280–380 nm, respectively,
when fluorescence occurred. Therefore the fluorescence region showed the mix of tryptophan and
tyrosine aromatic proteins. The left upper fluorescence region represents the phenolic compounds and
soluble microbial metabolites. A comparison of the initial states and the 30th day FI for extracellular
DOMs (at 27 ◦C and 35 ◦C) showed that during the culture period, there was an obvious change in FI
values, from 853.4 to 2699 at 27 ◦C, as well as 3168 at 35 ◦C for P5; from 1612 to 2495 at 27 ◦C, as well as
2765 at 35 ◦C for P3. In contrast, P4 only had a slight change, as its FI value increased from 659.2 to 1129
at 27 ◦C, as well as 1583 at 35 ◦C. Furthermore, the fluorescence intensities of the intracellular humus
at 27 ◦C were higher than those at 35 ◦C. However, the fluorescence intensities for the extracellular
humus at 27 ◦C were lower than those at 35 ◦C.
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Figure 5. EEMs of Dolichospermum spiroides at two different temperatures: (a,b) EEMs of extra- and
intracellular DOMs in the beginning of the culture; (c,d) EEMs of extra- and intracellular DOMs on
the 30th day of the culture at 27 ◦C; (e,f) EEMs of extra- and intracellular DOMs on the 30th day of
the culture at 35 ◦C. P1 represents the peak fluorescence intensity (FI) value of tryptophan aromatic
protein; P2 represents the peak FI value of tyrosine aromatic protein; P3 represents the peak FI value
of fulvic acid; P4 represents the peak FI value of humic acid; P5 represents the peak FI value of the
soluble microbial metabolites.

3.2.5. Relationship between Dolichospermum spiroides 2-MIB, and Intra- and Extracellular DOMs

The correlation between FI and 2-MIB concentration was analyzed. Figure 6 shows that the
intracellular and extracellular organic matter levels were different. Generally, outside the cells,
there were strong correlations between the extracellular organic matter fluorescence peaks and the
extracellular 2-MIB concentration (Figure 6a,c). However, this difference was not so obvious for the
intracellular 2-MIB (Figure 6b,d). Furthermore, the effect of temperature on the correlations was not
the same. The extracellular portion at 35 ◦C (Figure 6c) produced the highest correlation coefficient for
the peak FI values (P3, P4, and P5) and the extracellular 2-MIB concentration. In particular, the P4 and
P3 values for FI and the extracellular 2-MIB concentration were highly correlated (r2 ≥ 0.90). However,
the correlation between the FI peak values and 2-MIB was less strong at 27 ◦C.
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4. Discussion

None of the three DIC treatments yielded significant differences in 2-MIB-producing potential.
At 35 ◦C, the increase in DIC causes the carbon cycle in the water to generate more algal cells because
more carbon would be available for photosynthesis and growth. Figure 3d,f suggest that a high
DIC concentration promotes algal growth and leads to increased 2-MIB production. This means that
when high temperatures and high DIC concentrations occur simultaneously (heat wave scenario),
2-MIB production by Planktothrix sp. increases quickly. A previous study found that DIC had a
similar effect on Chlamydomonas [34]. In their study, the authors found that the photosynthesis of
Chlamydomonas moewusii was promoted in a saturated amount of DIC. For the insignificant differences
in total 2-MIB and Chla concentration values under the three DIC treatments at 27 ◦C, it may due to the
suppression by nutrient limitation. At 35 ◦C, the response may become more obvious. In the study of
Visser et al. [35], it was found that the response of cyanobacterial growth to rising CO2 concentrations
and elevated temperatures can be suppressed by nutrient limitation. When heat wave occurs, measures
to prevent algal blooming should be taken.

The results shown in Figure 4a are consistent with those of Wang [23], who reported that the
growth rate of Pseudanabaena sp. varied between 10 ◦C and 35 ◦C. In this study, Planktothrix sp. growth
was not inhibited at 35 ◦C. The results shown in Figure 4a,b suggest that higher temperatures will
shorten the lifecycles of Dolichospermum spiroides and Planktothrix sp. and will the advance the onset of
the logarithmic phase in laboratory-scale culture studies.

The 2-MIB-producing potential in Dolichospermum spiroides was higher at 35 ◦C than at 27 ◦C.
The combined Chla data shows that after the 22nd day, many of the cells began to die and disintegrate,
which released 2-MIB and caused a large increase in extracellular 2-MIB. In contrast, temperature had
no significant effect on the Planktothrix sp. 2-MIB-producing potential.
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Figure 4e,f show that the higher temperature will increase 2-MIB concentrations in water bodies
where Dolichospermum spiroides is dominant and that 2-MIB is synthesized in cells. Most of the 2-MIB
remains in the cell until the cells die and break down. Then, the 2-MIB is released into the water.
In contrast, Planktothrix sp. transport 2-MIB to the extracellular area after the 2-MIB is synthesized.
Therefore, extracellular 2-MIB concentrations were always higher in Planktothrix sp. cultures compared
to Dolichospermum spiroides cultures.

The results shown in Figure 4c,f also indicate that the contribution made by extracellular 2-MIB to
the MIB/Chla ratio over time was more substantial than that made by intracellular 2-MIB. The EEM
results suggested that humic acid was not the main component of the Dolichospermum spiroides
intracellular fluid. Extracellular concentrations of soluble microbial metabolites and fulvic acid
increased significantly, whereas the humic acid concentration increased relatively slowly over time.
At 35 ◦C, the concentrations of intracellular soluble microbial metabolites as well as tyrosine and
tryptophan aromatic proteins were lower, while the concentration of extracellular fulvic acid, humic
acid, and soluble microbial metabolites were higher than those at 27 ◦C. This result also suggests that a
number of Dolichospermum spiroides cells died at 35 ◦C and released their humus into the water.

At the higher temperature, there was a stronger correlation between the fluorescence peak
intensities of the extracellular DOMs (fulvic acid, humic acid, and soluble microbial metabolites) and
2-MIB concentration. This may be because the extracellular humus substances (including humic acid,
fulvic acid, and soluble microbial metabolites) had a similar molecular polarity to 2-MIB, as they are
all polar molecules. This suggests that the 2-MIB synthesized in the cells was passively transported
to the extracellular environment. Extracellular 2-MIB is strongly related to extracellular humus,
and extracellular humus may affect the 2-MIB-producing potential of Dolichospermum sproides by
altering the proportion of extracellular 2-MIB.

5. Conclusions

This study used temperature and DIC to simulate the effects of climate change on two
2-MIB-producing cyanobacteria (Dolichospermum spiroides and Planktothrix sp.), and the following
conclusions were drawn:

DIC affects 2-MIB production by Planktothrix sp. At 35 ◦C and 36.7 mg/L DIC, cell growth
was promoted, which led to increased 2-MIB production. All the cyanobacteria died when they
were exposed to 40 ◦C. However, 35 ◦C shortened the growth cycles of Dolichospermum spiroides
and Planktothrix sp., but did not kill them. At 35 ◦C, Dolichospermum spiroides cells entered their
death phase early (on the 22nd day), and the 2-MIB-producing potential of Dolichospermum spiroides
increased over the whole experimental period. Furthermore, Dolichospermum spiroides at 35 ◦C had
a higher 2-MIB-producing potential than at 27 ◦C. In contrast, the Planktothrix sp. 2-MIB-producing
potential declined in general over time. In addition, temperature had no significant effect on the
2-MIB-producing potential and extracellular 2-MIB proportion released by Planktothrix sp. At 35 ◦C,
there was a stronger correlation between the fluorescence peak intensities produced by the extracellular
DOMs and the 2-MIB concentration (fulvic acid (P3 (r2 = 0.90)), humic acid (P4 (r2 = 0.92)), and soluble
microbial metabolites (P5 (r2 = 0.71))). The 2-MIB-producing potential of Dolichospermum sproides was
affected by extracellular humus.
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