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Abstract: We present a novel method for the direct determination of the snowmelt coefficient of 
widely used degree-day models, using only cumulated temperature and precipitation over the days 
of snow cover. We develop a proof of concept using (1) local measurements of precipitation, 
temperature and snow water equivalent (SWE) at a set of well-monitored sites in the US,  
and (2) available time series of snow cover from satellite and gridded daily precipitation and daily 
average temperature for the study region of South Tyrol, in the Italian Alps. We demonstrate how 
the method can reproduce the snow water balance to an acceptable extent, critically depending on 
the accuracy of input precipitation and temperature, highlighting the importance of a reliable 
representation of weather forcing if the estimate has to be robust and representative. Although not 
always accurate at a point, our approach yields a SWE reasonably consistent with observations, and 
snowmelt flows compatible with measured streamflow. At the same time, the model allows an 
interpretation of discrepancies between observations and simulations to detect inconsistencies 
between snow cover and weather forcing. This method is in principle applicable for large-scale 
hydrological assessments thanks to the increasing global coverage of snow cover, precipitation and 
temperature data. As the only other type of observation available to calibrate models is often 
streamflow, the direct calibration of the snow component of a model using snow cover and weather 
forcing reduces the number of model processes and parameters to be calibrated with streamflow, 
and is expected to increase model robustness. 

Keywords: snow water equivalent; snow cover; regional water resources assessment;  
snowmelt coefficient; degree-day method 

 

1. Introduction 

Snow water equivalent (SWE) and snowmelt fluxes are variables of great importance in the 
assessment of water resources in mountain regions. Although SWE earth observation products  
exist [1,2], the evaluation of quantities of water stored as snowpack is still problematic due to the 
large variability of snow density and depth following morphological and climatic conditions on 
terrain. Space-borne remote sensing SWE estimation is mainly achieved with passive microwave 
sensors, but it can only reach a coarse resolution [3,4], limiting its use for water resources assessment 
at the catchment scale. 

Other than from remote sensing, SWE may be evaluated through statistical regionalization of 
SWE [5–7] capitalizing on the availability of several measurements of snow in space, possibly 
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including non-conventional variables (e.g., the distribution of climatologically averaged SWEs using 
tree ring series [8]). Observations, though, remain sparse and even totally absent in certain regions, 
which calls for other ways to regionalize SWE, particularly through spatially distributed hydrological 
models. These may have various levels of complexity, from the simple degree-day method (DDM: 
[9–12]), to comprehensive physically based models of the snowpack energy balance (e.g., [13,14]). 

Snow-covered area (SCA) information, mainly from remote sensing products, offers a proxy for 
the hydrological state of a snow-dominated watershed (see, e.g., [15,16]). As such, it is often used to 
improve hydrological models either as an additional criterion in multi-objective model parameter 
calibration (e.g., [17–19]) or for assimilation in land surface models (e.g., [20–23]). SCA is also used as 
a direct input to DDM-based lumped models to predict snowmelt runoff (e.g., [24]), when calibrating 
model parameters using streamflow or other data. Molotch and Margulis, [25] (further debated in 
[26,27]) use SCA information to back-calculate SWE on the basis of a simple snowmelt model with 
assigned parameters. The potential of snow cover data to directly calculate snow water balances, 
though, has not been fully exploited until now. He et al. [28] actually use snow cover and depth 
information to directly estimate snowmelt factors for a DDM-based model, showing improvements 
in hydrological model performances compared with the case when snowmelt factors are calibrated 
with the streamflow observations alone. However, snow depth data as used in their approach may 
not always be available, and a less data-demanding method is desirable. 

In this contribution, we propose a novel, alternative approach for the direct and spatially 
distributed calibration of the DDM, making use of snow cover information from remote sensing in 
combination with daily precipitation (P) and mean air temperature (T) data alone. We show that the 
model provides accurate results when the input data are accurate, and we test its limitations when 
applied to cases where input data are available with lower levels of accuracy. Based on our findings, 
we finally advocate that a simple estimation of SWE over large regions is possible on the basis of 
snow cover, P and T alone, and may help improving hydrological models used for water resources 
assessment at the regional to global scale. 

2. Materials and Methods 

2.1. The Degree-Day Method 

The degree-day method (DDM) is an empirical model assuming snowmelt proportional to the 
temperature above a threshold accumulated in time (“degree-days”), the proportionality constant 
being called a “snowmelt coefficient” or “degree-day factor”. Although physically based models are, 
in principle, more accurate and do not necessarily demand more data [29], hydrological modeling 
practice has often found relatively little advantage in their use compared to simple models [30–33]. 
Also because of this, DDM is still widely adopted in hydrology, especially at regional scales and for 
basins in remote regions (e.g., [34–44]), and when air temperature-dependent turbulent heat transfer 
and longwave radiation account for most of the snowmelt (e.g., [12]). 

Some authors suggest including a linear dependence on a radiation proxy as well as on 
accumulated air temperature [43,45,46]. In the Precipitation, Runoff, Evapotranspiration Hydrotope 
(PREVAH) model [47], the snowmelt factor is allowed to depend on wind speed, saturation vapor 
pressure and rain. While this formulation is in principle quite general, information on wind speed 
and air vapor pressure is not commonly available, particularly in mountain regions. 

Corrections to the basic DDM have been proposed to allow relaxing the assumption of strictly 
linear relations between accumulated temperature and snowmelt. Certain formulations correct the 
snowmelt coefficient for the melting acceleration effect of rain on snow (e.g., in the LisFlood  
model [48]). Another common correction to the snowmelt factor addresses the predictable seasonal 
variability of energy input to the snowpack (e.g., by introducing a sinusoidal function as a multiplier, 
as in the Soil-Water Assessment Tool (SWAT) model [49], as well as LisFlood [48]. As for the spatial 
variability of snowmelt, Cazorzi and Della Fontana [50], invoking a hydrologic similarity concept for 
sites with similar solar energy supply, assume the snowmelt coefficient to be proportional to a 
topography-driven energy index, related to potential daily average solar radiation. This 
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accommodates for a high variability of snowmelt depending on elevation, slope orientation and 
shading, at the same time keeping computations very simple. 

The DDM does not account for snow transport by wind, nor for snow sublimation. The former 
is important at scales of hundreds of meters (e.g., [51]), while wind-transported snow is assumed to 
be completely sublimated at distances in the order of 3000 m (e.g., [52]), suggesting wind transport 
may be neglected when working at regional to river basin scales. Snow sublimation from wind blow 
has been quantified in ranges from less than 10% of the snow balance [53,54] to around 20% [55,56] 
and sometimes even around 30% [57]. These figures suggest a plausible upper range of the error on 
the estimation of snowmelt using the DDM due to neglecting this process. 

In this work, we assume the parameterization of the snowmelt coefficient used in LisFlood [48], 
a spatially distributed hydrological model extensively used for water resources assessment at the 
European scale: on a given day, snowmelt is proportional to temperature above a snowmelt 
temperature threshold (assumed here to be 0 °C), through the coefficient:  

C =  C  (1 + β R) 1 + α sin 2π365 (d − 81)  (1) 

where C0 is a constant (mm/°C day), R is rain on snow (mm/day), di is the day of the year  
(1 = 1 January) and α and β are appropriate coefficients. We take default values β = 0.01 and α = 0.25 
consistently with [48]. While a systematic sensitivity analysis of the model to these parameters is 
beyond the scope of this paper, some casual trials varying these default values indicated limited 
impact on the overall results. This formulation accounts for the dependence of snowmelt on the 
seasonal pattern of radiation and on the energy conveyed by rainfall on snow, and is chosen for its 
simplicity while maintaining a certain flexibility. Rain on snow is estimated as precipitation 
multiplied by 1 − f(Ti), where is the fraction of precipitation that is snowfall form during the day with 
average temperature Ti. The latter is predicted here as f(Ti) = max(0,min(1,1 − Ti/Tprec)), Tprec = 1 °C 
being a threshold temperature above which all precipitation is considered as liquid (see [58,59]). 

2.2. Direct Estimation of the DDM Snowmelt Factor 

With reference to a period of continuous snow cover, we may write the following balance of 
snowfall and snowmelt: 

( ) − C 1 + 0.01 1 − ( ) 1 + 0.25 sin 2π365 (d − 81) max (0, ) = 0 (2) 

where n is the number of days composing the continuous snow cover period, and Pi and Ti are daily 
precipitation and temperature. From Equation (2) we can compute C0 explicitly from Y, X1, X2 and X3, 
obtained directly from series of precipitation and temperature over a period of continuous snow 
cover for a given site, as: 

C0 = Y/(0.01 × X1 + X2 + 0.25 × X3) (3) 

where 

Y = ( )  

= 1 − ( ) max(0, ) 1 + 0.25 sin 2π365 (d − 81)   

= max( , 0)  

 = max( , 0)sin 2π365 (d − 81)   



Water 2017, 9, 848  4 of 16 

 

Periods of continuous snow cover may be detected, in principle, from field or satellite snow 
observations. Field observations, though, are only available at measurement sites, while satellite 
images suffer from errors due to cloud cover and other artifacts (see, e.g., [60]) that create spurious 
interruptions of snow cover. Cumulates Y, X1, X2 and X3 computed on the arbitrary snow cover 
periods resulting from these interruptions cannot correctly reflect the balance of snowfall and 
snowmelt. In order to overcome this problem, we make the additional working assumption that 
Equation (3) holds also when computing Y, X1, X2 and X3 as the cumulates of all values during snow 
cover days over an extended period. 

2.3. Testing the Approach at Sites with Accurate Data 

The approach has been tested to reproduce snow water equivalent measured at seven sites (see 
Table 1) of the Snow Telemetry (SNOTEL) network [61] operated by the US Natural Resources 
Conservation Service (NRCS), located in the Upper Rio Grande basin in Colorado, where a DDM was 
already successfully applied [62]. 

The SNOTEL network provides direct, co-located and simultaneous measurements of SWE and 
weather forcing, and represents near-ideal situations for the application of the method. In order to 
compute the cumulates Y, X1, X2, X3 to estimate C0 in Equation (3), we considered at each station all 
days with SWE > 0 as snow-covered. 

2.4. Testing the Approach Using Regional Information 

In order to appreciate the impact of using regionalized information on the performance of the 
method, we consider as a test region the upper Adige catchment, covering most of South Tyrol in the 
Italian Alps (Figure 1). The area is approximately 7400 km2, of which about 80% lays between 1000 
and 2900 m a.s.l., with peaks up to about 3800 m a.s.l. 

The region has annual average temperatures between more than 12 °C in the valley bottoms, 
and less than −4 °C in the higher ranges. Annual precipitation ranges between less than 600 mm (in 
the deeper valleys on the west side of the region) and more than 2000 mm (in the northeastern end), 
with a general trend of yearly precipitation increasing with elevation and moving roughly southwest 
to northeast. Kottek et al. [63] place the region in the Koeppen-Geiger climate classes Dfb, Dfc and 
ET. Snow cover usually starts between early November and mid-December, depending on the 
altitude, and ends from end of March to end of May at the higher elevations, with spots showing 
almost permanent snow cover and glaciers. The duration of snow cover is clearly correlated with 
elevation and ranges from a few days up to more than 200 days yearly. Low-lying valley bottoms, 
below 1000 m with the southernmost part of the area close to 200 m a.s.l., show much shorter and 
intermittent snow cover periods. 

The regionalized information available in South Tyrol includes a 250 m resolution daily snow 
cover time series from 1 November to 31 May based on the well-known Moderate Resolution Imaging 
Spectroradiometer (MODIS) for winters 2002–2003 till 2009–2010, and a time series of daily gridded 
precipitation and temperature obtained from the interpolation of existing weather stations. 

Snow cover maps are produced on a regular basis by EURAC Research, Bolzano [64] using the 
algorithms of [65,66], developed in order to keep the resolution as high as possible in order to 
improve snow detection, especially in mountainous areas characterized by complex terrain. 

Daily gridded values of average temperature and precipitation were derived, in the context of 
early developments of a regional soil water balance model [67] from temperature and precipitation 
measurements at ground stations operated by the province of Bolzano’s Hydrographic Office (see 
[16] for details) using regression kriging with external drift (given by elevation) for temperature, and 
ordinary kriging for precipitation. The choice of ordinary kriging was due to the unclear patterns of 
correlation between precipitation and elevation emerging from the analysis of the available data. The 
interpolation was performed with a resolution of 1 km, using the raw data available after filtering 
out unrealistically high or low values in the daily time series at stations. 
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Figure 1. Study area with indication of the available snow depth measurement stations (triangles, 
codes in red) and discharge measurement stations used to test snowmelt (dots, codes underlined in 
black), with the respective catchments (red outlines). 

All over the region, 16 snow depth measurement sites were made available by the Hydrographic 
Office of the province of Bolzano (indicated in Figure 1; additional data in Tables 2 and 3), where 
temperature and precipitation were not systematically measured. Also, systematic snow density 
measurements are not available. However, Pistocchi [68] shows that snow density in South Tyrol can 
be described fairly well with the simple equation ρ = 0.2 + 0.001 DOY (with ρ = snow density in t/m3, 
DOY = day number from beginning of snow season). 

For the testing of snowmelt, we identified eight headwater catchments (Figure 1) for which 
discharge measurements are available. The characteristics of catchments and discharge gauging 
stations are provided in Table 4. 

2.4.1. Testing Modelled SWE at Snow Depth Measurement Stations 

We extracted a time series of interpolated temperature and precipitation and a time series of 
snow cover presence/absence (0/1) for pixels corresponding to the 16 snow measurement stations. 
Snow cover maps from MODIS contain inevitably several pixels with no data due to clouds or other 
artifacts. Moreover, misclassification of snow pixels is far from a rare event. Cloud clearing methods 
based on the temporal combination of successive observation days have successfully been applied in 
many studies (e.g., [2,69,70]). These methods are known to affect the overall accuracy of the snow 
cover series depending on the number of days that are employed in the cloud clearing process. For 
instance, the temporal combination of two successive days is successful in around 90% of cases, as 
shown by [71]. In the present exercise, given the relatively high number of cloudy days at the sites of 
interest, pixels classified as “clouds” were assigned to either snow or non-snow based on the 
predominant condition in a moving time window set from five days before to five days after each 
day in order to avoid discarding too many days, likely with snow cover, in the calculation of the 
cumulates. 
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From the snow cover, precipitation and temperature time series, we computed the cumulates Y, 
X1, X2 and X3, considering all days in the winters (November to May) of the period 2002–2010, in 
which a pixel is classified as “snow-covered”. Consequently, it is possible to compute a snowmelt 
coefficient constant C0 from Equation (3), hence snowmelt (M) and snow water equivalent (SWE) as: M(t) = S(t) C max(0, T(t)) SWE(t) = max( 0, SWE(t − 1) + P(t) f(T(t)) – M(t)) (4) 

where t denotes a generic day in the year, M(t), P(t) and T(t) are the corresponding daily values of 
snowmelt, precipitation and temperature, respectively, S(t) is a binary variable equal to 0 if snow 
cover is absent, and to 1 if it is present, and C is computed from Equation (1). SWE can be computed 
on a daily basis for each site where snow cover, precipitation and temperature are known, and can 
be compared in particular with SWE from measured snow depth and estimated density at the 16 
observation sites. It should be noted that, in Equation (4), all quantities are referred to a unit surface 
area and can be therefore expressed in mm, mm/day or other consistent units.  

It should be noted that, by computing C0 as the ratio of cumulative snowfall (P) to a combination 
of cumulative positive degree-days (T) and rainfall times positive temperature (P × T) over all  
snow-covered days of the snow cover time series, we implicitly assume this ratio to be representative 
of the balance between snowfall and snowmelt. We may plot the ratio of cumulates P, T and P × T 
over snow-covered days for all stations from the start of the period to a generic end date (as shown 
in the Supporting Information, Figure S1). In principle, this ratio may converge to a constant value, 
but it can also show a trend. When it converges, we may assume that a representative constant 
snowmelt coefficient is an appropriate assumption. A trend, on the contrary, indicates that a single 
constant representative coefficient cannot be identified based on the available information. Across 
the 16 sites examined in the Supporting Information, a trend appears only in two cases, suggesting 
that the problem may be limited in practical applications. 

2.4.2. Testing Modelled Melt Flows at Headwater Discharge Measurement Stations 

We also extracted snow cover, precipitation and temperature information for the cells of a 1 km 
resolution grid corresponding to selected headwater catchments (Table 4) and repeated for each grid 
cell the exercise conducted for the snow depth station points. Each grid cell was considered  
snow-covered if this was the dominant condition among the 16 grid cells of the 250 m resolution 
MODIS-derived snow cover image. The calculation yields daily snowmelt flows per pixel according 
to Equation (4), which were summed over each catchment to represent total snowmelt discharge. 
These flows, only for days of the months of March, April and May when we expect significant 
contributions from snowmelt, were compared to observed discharges. 

3. Results and Discussion 

3.1. Snowmelt Coefficients and Snow Water Equivalents at SNOTEL Sites 

Table 1 lists, for the seven sites, the values estimated for C0 along with average daily snowmelt 
coefficients calibrated by DeWalle et al. [62]. 

The coefficients found with our approach are lower, but correlated with those of  
DeWalle et al. [62]. The differences may be attributed to the different assumptions in ours and their 
model, and the different averaging periods. With the values of C0 in Table 1, the model of Equation 
(4) reproduces to an acceptable level of accuracy the time series of measured SWE at all stations 
(results shown as Supporting Information). This indicates the validity of the approach when applied 
at sites where accurate information is available. 
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Table 1. SNOTEL stations used in the test, and snowmelt coefficients estimated with the proposed 
approach and in DeWalle et al. [62]. 

Station C0 (mm/°C Day) Average of Daily Snowmelt Coeff. in [62] (mm/°C Day)
Wolf Creek Summit 1.79 2.9 

Beartown 4.14 5.2 
Cumbres Trestle 2.91 4.1 

Middle Creek 2.82 4.0 
Lily pond 2.87 5.9 
Culebra #2 3.33 4.9 
Trinchera 2.03 3.2 

3.2. Snowmelt Coefficients and Snow Water Equivalents at Snow Depth Measurement Stations 

Estimated snowmelt coefficients for the 16 sites of this study are provided in Table 3. SWE 
simulated from Equation (4) using these snowmelt coefficients can be compared with SWE derived 
from measurements of depth and estimates of snow density (hereinafter considered as “observed” 
SWE), as in the example of Figure 2 (graphs for the remaining stations are provided as Supporting 
Information Figure S2). While in all stations a reasonable correspondence of observed and simulated 
SWE can be found for at least some winter seasons, the performance of the model shows considerable 
variability, and in many cases it remains rather weak, as indicated by the summary of model 
performance indicators provided in Table 3. The model yields systematic underestimation of SWE at 
most stations, a quite common outcome in snow modelling studies (e.g., [72,73]). Artan et al. [73] 
identify the main source of underestimation in the negative bias of gridded precipitation data 
compared with measurements at SWE gauging sites. This is reflected in a systematic error  
(MSEs% [74]), usually dominating over the unsystematic error (MSEu%; ibid.). The root mean 
squared error (RMSE) is usually twice (or more) the uncertainty of observed SWE (whose upper 
bound is around 35% due to snow density uncertainty [68]). The Nash-Sutcliffe efficiency (NSE) of 
the model is usually rather poor, which is somehow expected as this indicator reflects the level of 
agreement on the higher values (e.g., [75]), but negative NSE values indicate the observed mean is a 
better predictor of SWE than the model. The index of agreement d [20] and the R2 are more 
encouraging, although not in all cases (d should be considered acceptable above at least 0.7, see,  
e.g., [75]). In some cases, the extremely low proportion of variance explained owes to one specific 
winter season where observations are completely unrelated to simulations. For instance, if we 
consider the station of Ciampinoi (code X112Y63), removing winter 2006–2007 increases R2 from 
about 4% to more than 40%. The large overestimation of SWE by the model during this season is 
likely related to an error in precipitation, that results four to six times higher than during the other 
winters. In fact, during this period the nearest precipitation station systematically records 
anomalously high precipitation values that could not be automatically filtered out from the time 
series prior to interpolation. 

Although the model performance indicators (Table 3) have no significant correlation with the 
snowmelt coefficients, NSE at sites with low values of snowmelt coefficients is generally negative 
and the index of agreement d is generally relatively low, suggesting that these situations tend to be 
modelled less accurately. The values of the snowmelt coefficients are also about a half of typical 
literature values [11,28,46]: out of 16 sites, six yield snowmelt coefficients below 1 mm/°C day, and 
only three above 2 mm/°C day. The snowmelt coefficients are negatively and significantly correlated 
to the cumulative temperature (r = −0.73, p = 1.2E − 03). In turn, T shows a positive correlation with 
elevation (r = 0.71; p = 1.8E − 03), which is unexpected. Also, we find a positive correlation of T with 
the number of days where we assumed snow cover under clouds (r = 0.68, p = 3.7E − 03). The 
correlation with precipitation (P) and precipitation divided by the number of days with snow cover 
(P/N) is rather low and not significant (r = 0.24, p = 0.37; r = 0.43, p = 0.09, respectively). 

Assuming the approach can reproduce SWE under conditions of reliable data (as shown in 
Section 3.1), the systematic underestimation of SWE and the generally low estimates of C0 may 
depend on lack of precipitation or excess of temperature over snow-covered days. 
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Figure 2. Examples of scatter plots of estimated and observation-derived snow water equivalent (mm) 
at selected stations, and corresponding time series. On the right panes, red lines represent model 
simulations and blue dots represent snow water equivalent (SWE) derived from observed snow 
depth. 

Table 2. Snow depth measurement stations and explanatory variables (P = cumulative winter 
snowfall 2002–2010, mm; T = cumulative winter degree-days; P × T = cumulative rain on snow 
multiplied by daily degree-days; N = cumulative number of days with estimated presence snow cover; 
N (meas.) = cumulative number of days with snow depth > 0; Z = station elevation; dd = degree-days. 

Code Station Name Z (m a.s.l.) P (mm) T (dd) P × T (mm dd) N N (Meas.) 
X136Y7 Prettau 1449 1386 248 1914 1121 1491 
X86Y37 Pens 1487 1068 527 858 818 1211 
X127Y14 Klausberg-Steinhaus 1590 1152 1456 2418 1107 1432 
X139Y5 Kasern 1590 1349 1132 2248 1039 1273 
X136Y17 Rein in Taufers 1600 738 660 630 617 1525 
X60Y36 Pfelders 1620 1567 1019 1845 1003 1283 
X14Y35 Ausserrojen 1833 1189 441 532 1038 1289 
X113Y18 Stausee Neves 1860 1670 2484 3686 1463 1351 
X96Y82 Obereggen 1872 1868 1125 2113 1225 1056 
X41Y71 Weissbrunn-Ulten 1890 2536 727 937 1273 1270 
X27Y32 Melag 1915 1139 899 1029 1050 1336 
X124Y59 Piz la Ila 1995 1209 2260 4480 1353 1366 
X106Y29 Gitschberg-Meransen 2010 770 3088 5551 1310 1554 
X75Y48 Waidmannalm-Hafling 2040 1996 2495 4462 1307 1436 
X112Y63 Ciampinoi 2150 2492 2048 5129 1445 1190 
X35Y41 Lazauneralm-Schnals 2450 1224 2654 3155 1616 1513 

Errors in model forcing are known to have an impact on SWE reconstruction [76]. Looking at 
our case, the measurement sites may not have temperature measurements nearby, and the 
interpolation may yield local overestimations due to important elevation differences with the nearest 
measurement stations. We tested the impact of increasing the threshold temperature for melting, and 
the temperature for 100% liquid precipitation (Tprec) accounting for the temperature adiabatic lapse 
rate (6.5 °C/1000 m ) at the six stations with snowmelt coefficient below 1 mm/°C day, using for each 
station an approximate elevation difference representative of the nearest available station. In 
addition, measurements of snow precipitation are known to suffer from gauge undercatch, and 
precipitation changes with altitude may be significant. In order to account for the latter effect, the 
gridded precipitation was corrected for altitudinal effects using a lapse rate in line with the values 
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found by Herrnegger et al. [77]. These temperature and precipitation corrections yield sizeable 
increases in C0 at all stations, and values in five out of six stations well above 1 and substantially in 
line with the literature, while the explained variance of measured SWE does not deteriorate or even 
improves, as shown in the Supporting Information (Table S1). The test indicates that both the 
underestimation of SWE and the low C0 values obtained in the South Tyrol case may be related to 
precipitation underestimation and temperature overestimation. A low estimated C0 may be regarded 
in general as a clue for this type of errors in precipitation and temperature, and prompts to apply 
appropriate corrections in order to obtain more realistic snowpack balances. 

Table 3. SWE model performance indicators at the 16 measurement stations. Scatter plots for the 
stations in bold are presented in Figure 2. Variables are defined in the main text. Nash-Sutcliffe 
efficiency (NSE); systematic error (MSEs%); unsystematic error (MSEu%); root mean squared error 
(RMSE). 

Code NSE d R2 Slope Intercept (mm) MSEs% MSEu% RMSE (mm) C0 (mm °C−1 Day −1)
X112Y63 −3.80 0.38 0.04 0.41 98.67 9.3% 90.7% 201.76 1.19 
X106Y29 −1.42 0.51 0.54 0.20 2.98 98.5% 1.5% 217.66 0.25 
X35Y41 −0.97 0.55 0.84 0.27 4.14 99.3% 0.7% 216.75 0.46 
X124Y59 −0.60 0.60 0.45 0.30 −0.48 92.8% 7.2% 168.39 0.52 
X75Y48 −0.59 0.61 0.28 0.37 35.71 77.6% 22.4% 157.07 0.79 
X86Y37 −0.41 0.61 0.53 0.33 6.05 93.3% 6.7% 140.17 1.99 
X127Y14 −0.27 0.53 0.24 0.15 41.20 94.6% 5.4% 163.10 0.78 
X136Y17 −0.24 0.62 0.58 0.34 23.52 93.3% 6.7% 131.41 1.11 
X27Y32 0.02 0.72 0.74 0.49 −4.26 91.0% 9.0% 94.20 1.25 
X113Y18 0.13 0.68 0.49 0.38 24.70 83.0% 17.0% 126.18 0.66 
X14Y35 0.13 0.72 0.74 0.46 9.36 91.5% 8.5% 87.25 2.67 
X41Y71 0.21 0.75 0.15 0.36 70.12 57.6% 42.4% 102.77 3.44 
X96Y82 0.31 0.73 0.33 0.39 56.91 56.6% 43.4% 78.56 1.71 
X136Y7 0.35 0.78 0.66 0.51 30.21 79.9% 20.1% 97.80 5.18 
X139Y5 0.42 0.78 0.42 0.45 52.48 52.0% 48.0% 71.76 1.17 
X60Y36 0.80 0.94 0.80 0.82 12.68 17.9% 82.1% 40.68 1.51 

A possible additional cause of discrepancy is in the limitations of satellite-derived SCA in the 
presence of canopy cover. Correcting satellite data for canopy cover has been shown to increase SCA 
and SWE, consistently with modelled hydrological balances (see [78]). All stations with C0 < 1 were 
found to fall in grid cells with significant canopy cover, with the exception of station X75Y48 
(Waidmannalm/Hafling). At all 16 stations considered here, however, discrepancies between the 
number of snow cover days estimated from satellite and the number indicated by positive observed 
snow depth (Table 2) do not exhibit any significant correlation with the snowmelt coefficients, nor 
with the model performance, suggesting the impact of the snow cover time series on the estimation 
of C0 may be limited. 

It should be recalled that, when SWE is low, snow cover may not be detected despite some 
presence of snow. The value of SWE at which snow cover is completely detected is in the order of 10 
to 40 mm water, depending on terrain roughness [79], and can be higher in the presence of canopy. 
In principle, total snowmelt during snow cover must balance not only cumulated snowfall, but an 
additional amount of water that should logically correspond to the water available on the ground 
surface when snow cover is no longer fully detected. If we assume this amount to be 15 mm, in the 
lower range of [79], considering a single snow cover period for each of the eight winter seasons during 
2002–2010, the cumulate of snowfall (P in Table 1) must be increased by 15 × 8 = 120 mm, which 
implies already an increment of the snowmelt coefficient of about 5% (see Supporting Information 
Table S1). However, in some years there may be more than one continuous period of snow cover, and 
we should consider a 15 mm increase of P for each new period. In this case, the increment of the 
snowmelt coefficients would be higher of a factor equal to the average number of continuous snow 
cover periods in a year (e.g., two or more in some cases). 
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3.3. Simulated Snowmelt 

For the eight selected headwater catchments, snowmelt coefficients estimated at the nodes of the 
1 km resolution precipitation and temperature grids enabled calculating a time series of SWE and 
snowmelt on the whole catchment. Simulated snowmelt can be compared with observed discharges, 
with some caution. First of all, daily values of snowmelt may be very noisy, whereas catchments tend 
to compensate effects in time by detaining peak flows and releasing them in a smoother way. In 
mountain catchments of the size considered here, a relatively small snowmelt event may be retained 
and delayed by all forms of infiltration and ponding. In order to smooth out the variability of 
snowmelt, and merely for the sake of a semi-quantitative comparison with observed runoff, we 
conventionally refer to the moving average of snowmelt during seven days. Moreover, the signal of 
snowmelt in those catchments is expected to be most apparent during the months of March, April 
and May only, while other processes may play a larger role during the remaining periods. In order 
to account for these effects, we compare the moving average of snowmelt during seven days with 
observed discharges for the months of March, April and May of the period 2002–2010 when available. 
It should be noted that snowmelt occurring on hillslopes should be routed using an appropriate 
hydrological model in order to describe its detention and transmission losses in the catchment, as 
other processes, including infiltration, evapotranspiration and subsurface flow, may play a 
significant role (e.g., [80]). Therefore, the comparison of simulated snowmelt with observed runoff 
retains only an indicative meaning and, contrary to the case of evaluating a calibrated hydrological 
model, is not expected to yield a strict correspondence between observed discharges and computed 
snowmelt. In all cases, however, a significant positive correlation emerges (Table 4), although with 
apparent dispersion (Figure 3). Station 3415-Vedretta Piana presents a limited number of discharge 
observations from a catchment influenced by the effect of glaciers and with significant storage in a 
set of small glacial lakes, which explains the poorer correlation. Still, the range of predicted snowmelt 
is in good agreement with the range of observed discharges (Figure 3A). In the cases of Station  
4575-Rio Casies at Colle (Figure 3B) and Station 4875-Rio Anterselva at Bagni Salomone (Figure 3C), 
snowmelt overestimates observed discharges. In these catchments, recorded discharges correspond 
to about 14 L/s per km2, while all other catchments feature between 17 and 26 L/s per km2 (see  
Table 4). Moreover, the ratio of inflow to outflow is around 7 for the two stations, while for the other 
six the ratio is between 1 and 3. At low flow values, observed discharges seem to remain relatively 
constant, while snowmelt varies considerably, and at the lowest values observations are above 
simulated snowmelt. In the case of Station 5497-Rio Riva at Caminata (Figure 3D), another station 
with relatively scarce measurements, while an overestimation is still apparent at low flows, the match 
between snowmelt and runoff is clearly better at higher flows. In the other cases, snowmelt appears 
less biased in comparison with observations. The dispersion of values at higher flows may be due to 
other components of runoff in the stream, and particularly rainfall-runoff processes. Despite its 
indicative and exploratory character, this comparison highlights the compatibility of our simulation 
with the hydrological processes of these catchments. 

Table 4. Discharge measurement stations used for the testing of snowmelt. The correlation coefficient 
r is always with p << 1.0E − 05, except for Vedretta Piana where p = 4.6E − 05. Inflow is the average of 
daily precipitation flows (precipitation times catchment area) during the months of November to 
May; outflow is the corresponding measured discharge at the catchment outlet. (*) For Station 3415, 
outflow higher than inflow may be a consequence of the paucity of measurements, not necessarily 
representative of the average. 

Code Name Catchment Area km2 Elevation m a.s.l. r Inflow (m3/s) Outflow (m3/s)
2075 Rio Plan-Eschbaum 49.6 1575 0.80 1.20 1.22 
3195 Rio Fleres a Colle Isarco 72.4 1063.32 0.76 5.02 1.87 
3355 Rio Vizze a Novale 109.7 1365.4 0.58 2.24 1.85 
3415 Vedretta Piana (*) 23.1 2120 0.49 0.59 1.55 
3585 Rio Racines a Stange 47.2 960 0.69 2.37 1.36 
4575 Rio Casies a Colle 117.3 1196.07 0.71 10.74 1.65 
4875 Rio Anterselva a Bagni Salomone 83.5 1095.95 0.73 8.70 1.20 
5497 Rio Riva a Caminata 116.2 855 0.88 7.23 2.41 
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Figure 3. Comparison of observed discharges and snowmelt. (A) 3415: Vedretta Piana; (B) 4575: Rio 
Casies a Colle; (C) 4875: Rio Anterselva a Bagni Salomone; (D) 5497: Rio Riva a Caminata; (E) 2075: 
Rio Plan-Eschbaum; (F) 3585: Rio Racines a Stange; (G) 3355: Rio Vizze a Novale; (H) 3195: Rio Fleres 
a Colle Isarco. 1:1 lines represented in red with rounded tips. 

4. Conclusions 

We have proposed and tested a novel method to derive the snowmelt coefficient of a  
DDM-based model directly from snow cover and weather data. The method is simple, and yields 
spatially distributed SWE and snowmelt estimates reasonably consistent with observations. While 
we do not account for fine-scale spatial variability, the approach may capture watershed-scale 
variability of melt energy and freezing levels as reflected in the interplay between snow cover and 
weather forcing, the key element needed in large-scale snow models [81]. 
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An important advantage of independently calibrating the snow module of hydrological models 
is in reducing the number of hydrological processes (hence model parameters) to be calibrated on the 
basis of streamflow only. This is expected to improve model robustness, particularly in large-scale 
water resources assessment, if calibrated models must then be used to estimate variables other than 
streamflow. It should be stressed that the method for SWE and snowmelt estimation presented here 
is conditional to a given spatial distribution of precipitation and temperature, as well as snow cover 
observations. Snowmelt coefficients estimated with our approach may be used to compute snow 
balance variables from a given temperature and precipitation dataset, but an accurate representation 
of these variables is critical for the transferability of the estimated coefficients and remains a key 
requirement along with the representativeness of snow cover information. Hence precipitation and 
temperature should be carefully checked to remove biases due to elevation gradients, and SWE 
corresponding to non-detectable snow cover should be accounted for, whenever necessary. 
Conversely, the method may be used to detect inconsistencies of snow cover with precipitation and 
temperature data when it yields unrealistic snow melt coefficients. The approach allows in principle 
a simple operational calculation of SWE and snowmelt, which may be useful for water resources 
management, especially over large regions. The expanding available capacity to handle satellite 
information at high resolution globally (see, e.g., [82]) and the development of global precipitation 
data (e.g., [83]) suggest it could be applied in the future for large scale snow water assessment. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/11/848/s1. The 
data used in this research may be obtained upon request to the authors. In a separate document of supporting 
information, we show an application of the proposed DDM model to the seven measurement stations of Wolf 
Creek Summit, Culebra#2, Cumbres Trestle, Beartown, Middle Creek, Lily Pond and Trinchera (Colorado, USA), 
used in the analysis of DeWalle et al. [62], from the well-known Snow Telemetry (SNOTEL) system managed by 
the US National Resources Conservation Center—National Water and Climate Center. At each station, we use 
the criterion SWE > 0 to detect presence or absence of snow cover. This corresponds to considering ideal 
situations where both snow cover and weather forcing are known with the best reasonably achievable accuracy. 
In all seven cases, C0 results acceptably in line with the literature and, particularly, the findings of DeWalle et 
al., [62], corroborating the validity of the approach when reliable SCA, precipitation and temperature are 
available. We also provide additional supporting graphs and tables as mentioned in the text. The time series of 
gridded precipitation and temperature over South Tyrol, used for the analysis, is available upon request from 
the authors. 
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