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Abstract: Capturing the dynamics of a lake-water area using remotely sensed images has always 
been an essential task. Most of the fine spatial resolution data are unsuitable for this purpose because 
of their low temporal resolution and limited scene coverage. A Visible Infrared Imaging Radiometer 
Suite on board the Suomi National Polar-orbiting Partnership (Suomi NPP–VIIRS) is a newly-
available and appropriate sensor for monitoring large lakes due to its frequent revisits and wide 
swath (more than 3000 km). However, it provides visible and infrared images at relatively coarse 
spatial resolutions, which would sometimes hamper the accurate mapping of lake shorelines. This 
study, therefore, proposes a two-step downscaling method that combines spectral unmixing and 
subpixel mapping to produce a finer resolution lake map from NPP–VIIRS imagery, which is then 
applied to delineate the shorelines of five plateau lakes in Yunnan Province, as well as the shoreline 
dynamics of Poyang Lake at three separate times. A newly published global water dynamic dataset 
is employed in this study to improve the downscaling method. Results suggest that the proposed 
method can generate a finer resolution lake map that exhibits more details of the shoreline than hard 
classification. The downscaling results of the Suomi NPP–VIIRS generally achieve higher than 75% 
accuracy, while the downscaling results of a Landsat-simulated fraction map could have accuracy 
higher than 85%. This reveals that errors and uncertainties exist in both procedures, but mainly 
come from the spectral unmixing procedure which retrieves water fractions from NPP–VIIRS data. 

Keywords: linear spectral unmixing; subpixel mapping; surface water dynamics; lake shoreline 
mapping; Poyang Lake 

 

1. Introduction 

Lakes are an important component of the regional water cycle. They play a significant role in the 
regional water balance of ecosystems. Lake water can sometimes change drastically because of 
climate change, irregular precipitation and varying consumption in arid and semi-arid regions [1,2]. 
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Therefore, intensive mapping is necessary to capture the dynamics of lake-water areas for the 
purpose of water resource balance analysis [3,4]. 

Satellite imagery is an essential data source for lake-area monitoring because of its wide 
coverage and repeated observations [5]. Various remotely sensed images have been employed to 
serve this purpose, including synthetic aperture radar (SAR) images and optical images. SAR images, 
including Envisat [6] and Sentinel-1 [7,8], have been proven to be effective in mapping surface water 
dynamics or monitoring lake areas because they are not restricted to weather conditions or sunlight. 
Optical images, such as those of the Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper 
plus (ETM+)/Operational Land Imager (OLI) [9–11], Advanced Very High Resolution Radiometer 
(AVHRR) [12,13], and Moderate Resolution Imaging Spectroradiometer (MODIS) [14–16], have also 
been widely used for lake-area monitoring because of their high data availability and suitable 
resolutions. Most of these prior studies have proved that the near-infrared (NIR) and short-wave 
infrared (SWIR) channels are most suitable for delineating water from land. In particular, the spectral 
characteristics of water in the SWIR channel are much more stable than those in the NIR channel 
[17,18]. 

The Suomi National Polar-orbiting Partnership (Suomi NPP) is a new generation of satellites 
intended to replace the Earth Observation System satellites [19]. The Visible Infrared Imaging 
Radiometer Suite on board Suomi NPP (Suomi NPP–VIIRS) provides a range of visible and infrared 
bands at a moderate resolution for observing the Earth’s surface. It is considered to be an upgrade 
and replacement of the AVHRR and MODIS as a wide-swath and multispectral sensor [20]. Its ability 
to detect surface water and lake-water areas has been tested in an exploratory study [21]. 

Landsat imagery is one of the most popular remote sensing data sources that have been used for 
mapping lakes or other types of surface water bodies because of its fine spatial resolution, mostly at regional 
or continental scale [22,23]. With the assistance of Google Earth Engine (http://earthengine.google.com), a 
new cloud platform for large satellite data analysis, several studies have mapped surface water 
dynamics at a global scale using Landsat data archives [24,25]. The results of Pekel et al. [24], in 
particular, have been recommended as providing the best understanding of global surface water 
dynamics so far [26]. However, restricted by the low temporal frequency of Landsat coverage, their 
results only provide monthly occurrences of water inundation. Therefore, their dataset might have 
missed some rapid surface water dynamics, especially those caused by flood events. 

On the contrary, like other coarse resolution sensors, the Suomi NPP–VIIRS scans the Earth’s 
surface frequently with a broad view. It acquires images that provide a timely, cost-effective, and 
spatially comprehensive view of lake coverage. Unfortunately, these images have medium to coarse 
spatial resolutions, which hinders the accurate mapping and monitoring of lake-water areas. A 
traditional and widely used approach to overcome this limitation is the spatial downscaling method 
[12,18] that consists of the spectral unmixing method, which estimates the percentage of water (water 
fraction) in each mixed pixel, and the subpixel mapping (SPM) method, which allocates the water 
subpixels within the mixed coarse pixel. 

Spectral unmixing is a procedure by which the measured spectrum of a mixed pixel is 
decomposed into a collection of endmembers, and a set of corresponding fractions that indicate the 
proportion of each endmember presented in the mixed pixel [27]. Owing to its definite physical 
meaning and simple calculation, the unmixing method based on the linear spectral mixture model 
(LSMM) is one of the most popular approaches [28]. It has been implemented in many studies for 
extracting surface water or lake-water areas [12,18,21,29]. There is a consensus that the major 
difficulty of LSMM is endmember selection [12,18,21], including the selection of water endmembers 
and non-water endmembers. 
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Subpixel mapping, or super-resolution mapping, is a technique generally used to retrieve a finer 
resolution land cover map from fraction images [30]. Many algorithms have been developed to 
spatially allocate subpixels within each coarse pixel of fraction maps, such as the Hopfield Neural 
Network [31], genetic algorithm [32,33], pixel-attraction models [34–36], pixel-swapping algorithms 
[37–40], and particle swarm algorithms [41]. Although these algorithms use different approaches, 
they are all based on the spatial correlation of land cover information, referring to the tendency of a 
land cover feature to be more alike than more distant observations. Therefore, it is obvious that this 
kind of method is applicable for mapping lake shorelines at subpixel scale. Several studies have 
implemented different subpixel mapping methods to derive finer-resolution shorelines or lake areas 
[42–47]. 

Although there are many studies, as mentioned above, that have either tried to retrieve water 
fractions using spectral unmixing, or allocate subpixel location using subpixel mapping, few of them 
integrate both together. This is because both procedures introduce uncertainties and errors once 
combined, and it would be difficult to evaluate and optimize each of them individually. This study, 
therefore, aims to present a complete spatial downscaling procedure from spectral unmixing to 
subpixel mapping, in order to produce finer resolution lake maps from Suomi NPP–VIIRS data. The 
global water dynamic dataset published by Pekel et al. [24] was employed to assist endmember 
selection and also subpixel allocation processes. The uncertainties introduced by each step of the 
procedure were carefully tested and examined. By doing this, this study aims to reveal whether the 
spatial downscaling method is able to describe lake shorelines at a higher spatial resolution and 
accuracy, and how reliable the downscaling results are. This paper is organized as follows. Study 
areas and materials involved are presented in Section 2. The section also gives a detailed description 
of the proposed downscaling method and the method for accuracy assessment. Section 3 shows the 
downscaling results and discusses their accuracy against Landsat data. The conclusions are presented 
in Section 4. 

2. Materials and Methods 

2.1. Study Areas and Materials 

2.1.1. Study Areas 

In order to demonstrate the applicability and generality of the proposed method in lake 
downscale mapping, two groups of case studies were selected. The first one is a large area that covers 
five lakes. While the water boundaries of these lakes are relatively stable, this case study intended to 
reveal the generality of the downscaling method in different lakes. The second group is a single lake 
with obvious water dynamics, intended to demonstrate the applicability of the downscaling method 
for monitoring lake-water variation at subpixel scale. 

For the first group, an area that covers five of the largest plateau lakes in Yunnan Province of 
China, including Dianchi Lake, Fuxian Lake, Yangzonghai Lake, Xingyun Lake and Qilu Lake, was 
selected. It is located between 24.0′–25.1′ N and 102.5′–103.1′ E (Figure 1a). All these lakes are essential 
water resources for Yunnan Province. On one hand, they provide physical conditions for human life 
and socio-economic development. On the other hand, each of them is a key element of its local 
ecosystem and a major driver of changes in the ecosystem. The shapes of these lakes are quite 
different from each other. Dianchi Lake is the largest and its shape is also more intricate than the 
others, with a sand levee on the north splitting the lake into two parts. The smaller part on the north 
side is called the inner lake, with an area of approximately 10 km2. The other part is the outer lake 
with an area of almost 300 km2. The shorelines of the other four lakes are relatively simpler, except 
that there is a big wetland on the south-west of Qilu Lake which makes the mapping of its shoreline 
difficult. Furthermore, there are some tiny tributaries on the west of Xingyun Lake and south-west of 
Qilu Lake, which would also be difficult to map on coarse resolution images. 
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For the second group, Poyang Lake located on the south bank of the middle and lower reaches 
of the Yangtze River (Figure 1b), was selected as the study area. As the largest freshwater lake in 
China, Poyang Lake has a drainage area of more than 160,000 km2. With an overall decreasing trend, 
the water area of this lake fluctuates drastically between the wet and dry seasons. During the wet 
season, the floodplains are inundated, forming a big lake with a more than 3000 km2 water area. In 
the dry season, the water area can shrink to less than 1000 km2, leaving a narrow meandering channel 
[48]. For the sake of flood control and other management purposes, levees have been built around 
the lake, which creates numerous small lakes [49]. During the dry season in particular, the lake is 
usually divided into many connected and disconnected patches. Therefore, it is always difficult to 
define the exact boundary of Poyang Lake, because it changes obviously over time. 

 
Figure 1. Maps of study areas showing the locations of (a) Yunnan lakes, and (b) Poyang Lake. 

2.1.2. Materials 

Two sets of image data, namely Suomi NPP–VIIRS and Landsat OLI, were used in this study. 
For the Yunnan lakes, only one pair of images acquired on 2 February 2014 were selected, while for 
Poyang Lake, three pairs of NPP–VIIRS and Landsat images, acquired either in the wet season or the 
dry season, were selected, considering data availability and cloud cover issues. There were drastic 
water-area changes between these three dates (T1, T2 and T3). The selected images are listed in Table 1. 

Table 1. Selected case studies and remotely sensed images involved. 

Case Study Image Type Image Date Acquisition 
Time Path/Row Spatial 

Resolution 

Yunnan lakes 
NPP-VIIRS 2 February 2014 06:39:57 -- 375 m 

Landsat OLI 2 February 2014 03:36:02 129/43 30 m 

Poyang Lake T1 
NPP-VIIRS 5 October 2013 05:52:14 -- 375 m 

Landsat OLI 5 October 2013 02:46:14 121/40 30 m 

Poyang Lake T2 
NPP-VIIRS 1 May 2014 05:53:21 -- 375 m 

Landsat OLI 1 May 2014 02:44:05 121/40 30 m 

Poyang Lake T3 
NPP-VIIRS 8 October 2014 05:52:50 -- 375 m 

Landsat OLI 8 October 2014 02:44:32 121/40 30 m 
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Suomi NPP–VIIRS images were downloaded from the National Oceanic and Atmospheric 
Administration (NOAA)/Comprehensive Large Array-data Stewardship System (CLASS) 
(http://www.class.ncdc.noaa.gov/saa/products/search?datatype_family=VIIRS). Suomi NPP-VIIRS 
sensors provide 22 visible and infrared bands with wavelength ranging from 0.4 to 12.5 μm. Sixteen 
of them are moderate resolution bands (M-bands) at a resolution of 750 m. There is also a day/night 
band with 750 m resolution and five imagery resolution bands (I-bands) with 375 m resolution. The 
third I-band (I3), an SWIR band with a spectral range from 1.58 to 1.64 μm, was employed in this 
study to estimate water fraction because of the high separability of land and water in this part of the 
spectrum [17,18]. 

Landsat OLI images at 30 m resolution acquired on the same day as Suomi NPP–VIIRS images 
were downloaded from United States Geological Survey (USGS) EarthExplorer platform 
(https://earthexplorer.usgs.gov/). They were the standard terrain correction (Level 1T) product that 
has been radiometrically and geometrically corrected. They were used as the reference data to 
evaluate the accuracy of the downscaling results of the Suomi NPP–VIIRS because of their relatively 
finer spatial resolution. The time lag between the acquisition of NPP–VIIRS and Landsat is about 3 
hours. Band 6 of Landsat OLI has a wavelength range from 1.56 to 1.66 μm, which is close to that of 
the NPP–VIIRS I3 band. Both types of images have been atmospherically corrected and processed to 
surface reflectance in ENVI 5.1, and then co-registered with each other. 

A 30 m resolution global surface water dynamic dataset (https://global-surface-water.appspot.com/), 
which was derived by Pekel et al. [24] using more than 3 million Landsat images over the past 32 
years, was employed in this study as auxiliary data. This dataset includes a series of raster layers such 
as occurrence, change, seasonality, recurrence, transitions, and extent. Here, only extent and 
occurrence layers were used. The extent layer (e.g., Figure 2a,c) records the maximum water extent 
over the last 32 years. The occurrence layer (e.g., Figure 2b,d) maintains the frequency of water 
occurrence over the whole observation period in monthly time-steps. Permanent water bodies would 
in theory have an occurrence value of 100%, but this value is sometimes affected by cloud cover, 
which means some of the permanent water bodies have less than 100% occurrence. Through careful 
visual inspection, pixels with occurrence values greater than 90% were considered as permanent 
water bodies in these lake areas. 
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Figure 2. (a) Water extent of Yunnan lakes; (b) water occurrence of Yunnan Lakes; (c) water extent of 
Poyang Lake, and (d) water occurrence of Poyang Lake, extracted from the global water dynamic 
dataset published by Pekel et al. [24]. 

2.2. Methods 

2.2.1. Water Fraction Retrieval 

Water fraction retrieval was conducted on the basis of LSMM theory [50] which assumes the 
reflectance of a mixed pixel to be a linear combination of all its endmembers’ reflectance. According 
to LSMM, water fraction f can be estimated using the following equation: 

waterland

mixland

RR
RRf




  (1) 

where Rmix is the reflectance of a mixed pixel containing both water and land fractions; and Rwater and 
Rland are the reflectance of pure water and land, respectively. 

The value of Rmix can be identified directly from the reflectance image. Therefore, the most 
difficult part of using Equation (1) to estimate water fraction is to find optimal candidate pure pixels 
that can be used as Rwater and Rland. Huang et al. [21] determined feasible value ranges for Rwater and 
Rland from the histogram of the SWIR band (I3) of the NPP–VIIRS, considering this histogram 
generally appears as two peaks when there are enough water and land pixels on the image (an 
example is shown as Figure 3). The feasible range for pure water pixels starts from the minimum 
reflectance value of the whole image and ends with the maximum reflectance of a pure water pixel, 
while the feasible range for pure land pixels starts from the minimum reflectance of a pure land pixel 
and ends with the maximum reflectance value of the whole image. Therefore, the determination of 
feasible ranges is actually determining the upper limit of the pure water pixel range (Rw-max in 
Figure 3) and the lower limit of the pure land pixel range (Rl-min in Figure 3). A moving window 
was then applied to search for candidate pure pixels that have reflectance values within the feasible 
ranges. While the moving window approach reduced the uncertainties of reflectance variations of 
water and land objects to some extent, the determination of feasible ranges from the histogram still 
needs manual intervention, which introduces additional uncertainties [21]. 
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Figure 3. An example of the two-peak histogram of the NPP–VIIRS short-wave infrared (SWIR) band, 
and the demonstration of feasible ranges. 

In this study, the extent layer (e.g., Figure 2a,c) was employed to generate the maximum water 
mask to exclude possible water areas and extract pure land pixels. It was first resampled to a 15 m 
binary water map and then aggregated to 375 m resolution. The aggregated pixel would be 
considered as a pure land pixel if all the 15 m pixels in the aggregation window are non-water. The 
minimum reflectance of all these pure land pixels was selected as the lower limit for the feasible value 
range of pure land pixels (Rl-min in Figure 3). The occurrence layer (e.g., Figure 2b,d) was used to 
generate the permanent water mask at 375 m resolution, also through resampling and then 
aggregating. The aggregated pixel would be considered as a permanent water pixel only if all the 15 
m pixels in the aggregation window are water. The maximum reflectance of all permanent water 
pixels was used as the upper limit for the feasible value range of pure water pixels (Rw-max in Figure 
3). It has to be noted that when selecting the minimum reflectance of all pure land pixels and the 
maximum reflectance of all pure water pixels, the three-sigma rule was applied in order to avoid 
abnormal values being wrongly selected. The three-sigma rule considers values that lie out of three 
standard deviations of the mean to be outliers, which are usually taken as abnormal values. 

Once the feasible ranges for both pure water and pure land pixels were determined, mixed pixels 
could be identified easily. A 3 × 3 moving window was applied to determine the endmembers for 
each mixed pixel. Among all the pure land pixels within the moving window, the one that has the 
lowest reflectance value was taken as the endmember of land (Rland). The endmember of water (Rwater) 
was determined similarly by taking the highest reflectance value of all the pure water pixels within 
the moving window. These two endmembers were then employed to estimate the water fraction of 
each mixed pixel using Equation (1). 

2.2.2. Subpixel Mapping 

After the derivation of the water fraction, subpixel mapping is needed to allocate subpixels 
within each mixed pixel. The pixel-swapping algorithm was adopted in this study for subpixel 
mapping because of its simplicity and efficiency. It was initially proposed by Atkinson [37] to achieve 
maximum attractiveness between same-class fractions. The attractiveness of all subpixels was 
calculated based on their initial locations, which are allocated randomly at the beginning of the 
algorithm. For each subpixel i, its attractiveness Ai was calculated as a distance-weighted function of 
its j = 1,2,…, J neighbouring subpixels (Equation (2)): 
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where α is the exponential parameter of the distance-decay model; Cj is the binary class (1 for the 
target class and 0 for the other) of the jth pixel; and hij is the Euclidean distance between the location 
of subpixel i and a neighbouring subpixel j. The total number of neighbouring pixels (J) is determined 
by the size of the predefined moving window (r). 

The attractiveness of subpixels was then ranked within each coarse pixel on a pixel-by-pixel 
basis. The general procedures are: (1) Subpixel classes are swapped if the attractiveness at the least 
attractive location of class 1 is less than that at the most attractive location of class 0. Otherwise, no 
operation would be conducted. (2) The related attractiveness would be recalculated and updated 
whenever a change has been made. This pixel-swapping process is repeated iteratively. It stops either 
at a fixed number of iterations or when the algorithm converges to a solution. 

In this study, two modifications were made for improving the efficiency of lake mapping. The 
first one is to replace the random initial allocation of water subpixels with the lake-center oriented 
allocation. Subpixels that are closer to the center of lake have higher priorities to be assigned as water 
at the initialization process. This modification helps reduce iteration times and reach a convergence 
faster. The other one is to assign a higher C value (instead of 1, the same value of r was used as C) to 
pure lake-water pixels, which gives the main lake body pixels higher attractiveness to the water 
subpixels within the mixed pixel. This makes the final subpixel mapping result more compact around 
lakes. 

2.2.3. Accuracy Assessment 

Accuracy assessment in this study includes two aspects, evaluating the accuracy of the water 
fraction estimation and evaluating the accuracy of subpixel mapping. For both aspects, the 
referencing data are water cover information derived from corresponding Landsat images. Since 
Landsat has a much finer resolution than NPP–VIIRS, all Landsat pixels were considered as pure 
pixels here. A binary water/land classification can be generated using a threshold to the SWIR band 
(band 6) of the Landsat image [22]. Reflectance values of this band equal to or below the threshold 
were assigned to water, while those above were classified as land. It can be noted that the threshold 
must be determined very carefully, because the optimal threshold differs from case to case. In this 
study, the thresholds were adjusted carefully for each case study with the aid of visual interpretation. 
For the Yunnan lakes especially, pixels that are far away from the lakes were manually excluded. 
Binary lake maps with a value of 1 as the lake-water area and 0 as the land were derived, which were 
then resampled to 15 m resolution using the nearest neighbor method. Landsat-simulated water 
fraction maps (e.g., Figure 4c,d) were then generated by aggregating the 15 m Landsat lake map to 
375 m resolution with a scale factor of 25. Each pixel of these maps maintains the water percentage 
within its 375 m × 375 m area. These fraction maps were used as the reference to evaluate the accuracy 
of fraction maps derived from the 375 m resolution NPP–VIIRS. Evaluation was first based on a pixel-
by-pixel fraction difference, since they have exactly the same resolution. 

Another easy way to validate water fraction results is to compare the satellite-observed lake 
areas calculated from both estimated and referenced water fraction maps using the following 
equation [51]: 





n

i
iwisf

1
S

 
(3) 

where fwi is the water fraction of pixel i; si is the area of pixel i; and n stands for the total number of 
pixels that comprise the lake. 

A generalized cross-tabulation matrix (CTM) was proposed by Pontius and Cheuk [52] to 
evaluate soft classified maps at multiple resolutions. On the basis of CTM, Silván-Cárdenas and Wang 
[53] developed a subpixel confusion–uncertainty matrix (SCM) to assess sub-pixel mapping accuracy 
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and uncertainties. Compared to the traditional evaluation methods, such as root mean square error 
(RMSE), SCM is able to provide detailed information on subpixel confusion and uncertainty. It was, 
therefore, also adopted in this study to evaluate the water fraction estimation results. Accuracy–
uncertainty indices were calculated from traditional indices such as overall accuracy and the Kappa 
coefficient, based on SCM. 

Landsat-simulated water fraction maps were also used for subpixel mapping, which provides a 
comparison for the subpixel mapping results of the NPP–VIIRS-derived water fraction. Subpixel 
mapping results of both data sources (Landsat-simulated and NPP–VIIRS-derived) were evaluated 
using the initial resampled 15 m resolution water maps as references. Validation maps were produced 
by overlaying the subpixel mapping results with reference maps pixel-by-pixel. Some accuracy 
indices, such as the commission and omission errors, overall accuracy and Kappa coefficient, were 
calculated from these validation maps to provide an intuitive assessment of the accuracy. 

 
Figure 4. (a) Water fraction map derived from the Suomi NPP–VIIRS I3 band for Yunnan lakes on 2 
February 2014; (b) water fraction map derived from Landsat band 6 for Yunnan lakes on 2 February 
2014; (c) water fraction map derived from Suomi NPP–VIIRS I3 band for Poyang Lake on 5 October 
2013; (d) water fraction map derived from Landsat band 6 for Poyang Lake on 05 October 2013. 
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3. Results and Discussion 

3.1. Water Fraction Map and Its Accuracy 

The I3 bands of the Suomi NPP–VIIRS images as listed in Table 1 were employed as the input of 
the water fraction retrieval method. Water fraction maps at a spatial resolution of 375 m were then 
derived (e.g., Figure 4a,c). Corresponding Landsat-simulated water fraction maps (e.g., Figure 4b,d) 
are displayed for reference. 

In order to quantify the accuracy of the NPP–VIIRS retrieved water fraction, the corresponding 
Landsat-simulated water fraction map was employed as the reference. Two maps were overlaid pixel 
by pixel, generating a difference map as shown in Figure 5. A difference value greater than 0 indicates 
that water fraction has been overestimated by the NPP–VIIRS image. From Figure 5, the water 
fraction for Yunnan lakes was slightly underestimated by the NPP–VIIRS in general, because a 
substantial proportion of pixels have fraction difference values smaller than 0. For Poyang Lake, 
overestimation is much more common, especially for the result of 5 October 2013 (T1). 
Underestimation also exists, but mainly occurs in the river channels. 

 
Figure 5. Difference between the NPP–VIIRS water fraction and the Landsat-simulated water fraction 
for the four case studies in Table 1: (a) Yunnan lakes; (b) Poyang Lake T1; (c) Poyang Lake T2; (d) 
Poyang Lake T3. 



Water 2017, 9, 834  11 of 20 

 

The absolute difference was divided into four levels, less than 0.10, 0.10–0.25, 0.25–0.50, and 
greater than 0.50. The percentage of pixels that belonged to each level was counted in Table 2. It is 
clear that most of the pixels have been estimated properly. For the Yunnan lakes, about 66% of the 
pixels have an absolute difference of less than 0.25. There are only 10% mixed pixels that have an 
absolute difference greater than 0.5. For all the three cases of Poyang Lake, over 50% mixed pixels 
have an absolute difference of less than 0.10. There are also about 10% of the mixed pixels whose 
water fraction has been estimated improperly, with an absolute difference greater than 0.50. This 
indicates that the water fraction has been retrieved from the NPP–VIIRS image with acceptable 
accuracy in general, bearing in mind that deviations still exist, some of them are even significant. 

Table 2. Percentage of mixed pixels with four levels of absolute difference. 

Case Study 
Percentage of Pixels that Have an Absolute Difference 
<0.10 0.10–0.25 0.25–0.50 >0.50 

Yunnan lakes 39% 27% 24% 10% 
Poyang Lake T1 53% 19% 16% 12% 
Poyang Lake T2 61% 18% 13% 8% 
Poyang Lake T3 54% 20% 16% 10% 

The areas of these lakes were calculated using Equation (3) from the NPP–VIIRS-derived and 
Landsat-simulated fraction maps, respectively (Table 3). Note that for the Poyang Lake cases, the lake 
area here refers to the total water area in the whole study area. It is obvious that the areas of all the 
lakes have been estimated properly by the NPP–VIIRS. Qilu Lake has the highest estimation 
difference, which is about 5%, mainly due to its relatively smaller lake-water area and intricate water 
body. The area of Poyang Lake varies at three selected dates, which has been captured successfully 
by both the NPP–VIIRS and Landsat. Estimation for T2 (1 May 2014) has the highest difference (more 
than 7%) among all three. Based on these results, downscaling the NPP–VIIRS image is proved to be 
able to achieve generally accurate lake-water coverage estimation. 

Table 3. Difference of lake areas * calculated from the NPP–VIIRS and Landsat. 

Case Study Lake 
Lake Area on 

NPP-VIIRS (km2) 
Lake Area on 
Landsat (km2) Difference (%) 

Yunnan lakes 

Dianchi Lake 289.30 294.26 1.69 
Yangzonghai Lake 28.84 29.47 2.14 

Fuxian Lake 212.40 213.83 0.67 
Xingyun Lake 31.13 31.86 2.29 

Qilu Lake 23.80 22.59 5.36 
Poyang Lake T1 Poyang Lake 2011.32 2093.30 3.92 
Poyang Lake T2 Poyang Lake 2107.93 2277.45 7.44 
Poyang Lake T3 Poyang Lake 2666.81 2766.85 3.62 

Note: * For the Poyang Lake cases, lake area refers to the total water area in the whole study area. 

Accuracy–uncertainty indices, including producer accuracy, user accuracy, overall accuracy and 
the Kappa coefficient, were calculated based on SCM for lakes in each case study (Table 4). From 
Table 4, center values of traditional accuracy indices demonstrate the baseline of the accuracy for 
lakes in each case study. It is found that although the overall accuracy for all the lakes is over 90%, 
the producer accuracy (PA), user accuracy (UA) and Kappa coefficient are quite different. Dianchi 
Lake, Yangzonghai Lake and Fuxian Lake in the Yunnan lakes case study have relatively higher 
accuracy than the others. Corresponding uncertainties for these indices were appended as plus–
minus values behind each index. It is found that uncertainties for most of these indices are around 1–
2%. Uncertainties for the Kappa coefficient are generally less than 0.03. It is noted that the larger the 
uncertainty of an index, the less useful the center value will be. In general, the water fractions of lakes 
for all the case studies have been estimated properly, with some of the Yunnan lakes having relatively 
higher accuracy and fewer uncertainties. 
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Table 4. Accuracy assessment of lake-water fraction estimation based on the subpixel confusion–
uncertainty matrix (SCM). 

Case Study Lake 

Producer 
Accuracy (%) 

with 
Uncertainty 

User 
Accuracy (%) 

with 
Uncertainty 

Overall 
Accuracy 
(%) with 

Uncertainty 

Kappa 
Coefficient 

with 
Uncertainty 

Yunnan lakes 

Dianchi Lake 95.33 ± 1.05 96.95 ± 1.09 97.94 ± 0.58 0.95 ± 0.02 
Yangzonghai Lake 92.09 ± 1.78 94.09 ± 1.86 98.26 ± 0.48 0.92 ± 0.02 

Fuxian Lake 96.91 ± 0.80 97.56 ± 0.81 97.94 ± 0.60 0.96 ± 0.01 
Xingyun Lake 90.17 ± 1.92 92.22 ± 2.01 95.09 ± 1.14 0.88 ± 0.03 

Qilu Lake 93.94 ± 2.52 89.29 ± 2.28 95.93 ± 1.20 0.89 ± 0.03 
Poyang Lake T1 Poyang Lake 75.46 ± 1.72 78.47 ± 1.86 94.70 ± 0.50 0.74 ± 0.03 
Poyang Lake T2 Poyang Lake 63.28 ± 1.27 82.88 ± 2.18 92.30 ± 0.57 0.67 ± 0.03 
Poyang Lake T3 Poyang Lake 75.70 ± 1.58 86.80 ± 2.07 93.88 ± 0.67 0.77 ± 0.03 

3.2. Subpixel Mapping Results and Their Accuracy 

Both the NPP–VIIRS-derived water fraction map (e.g., Figure 4a,c) and the Landsat-simulated 
water fraction map (e.g., Figure 4b,d) were employed as the input of a subpixel mapping algorithm 
with a scale factor of 25, respectively. The other parameters of the SPM algorithm, such as the moving 
window size (r) and exponential parameter of the distance-decay model (α), were adjusted and 
determined carefully through a series of experiments. Ultimately, the window size was set to 13 and 
the exponential parameter was given an optimal value of 10 for all cases. With these parameters, 
downscaled lake maps at a spatial resolution of 15 m were produced and are presented in Figure 6. 

It can be observed from Figure 6a that the overall shapes of five Yunnan lakes have been 
generated appropriately by subpixel mapping the NPP–VIIRS-derived water fraction map. Some 
subtle parts of the shorelines can even be restored. However, it has also been noted that the 
downscaled lake shorelines are not as smooth as the actual shorelines portrayed by the Landsat image 
(Figure 1a). Some delicate areas, such as the inner lake on the north of Dianchi Lake and the wetland 
on the south-west of Qilu Lake, have not been mapped reasonably. The boundaries of these areas are 
obviously incorrect compared with those observed from the Landsat image; while the subpixel 
mapping result of the Landsat-simulated water fraction map (Figure 6b) looks reasonable. The 
shorelines of all lakes were properly restored, even in the intricate areas. 

For Poyang Lake at three different times, the subpixel mapping results of the NPP–VIIRS (Figure 
6c,e,g) look inferior to that of the Yunnan lakes, due to its much more complicated shoreline, as well 
as its rich and small river tributaries. The main lake bodies were retrieved appropriately, but small 
patches, as well as rivers, were failed to be restored. Nevertheless, the subpixel mapping results of 
the Landsat-simulated water fraction (Figure 6d,f,h) appear to be much more reasonable. The main 
lake bodies, small patches and even some small rivers were properly derived. 

All subpixel mapping results in Figure 6 were overlaid pixel-by-pixel with the corresponding 
referencing water maps that were derived directly from Landsat images to achieve a quantitative 
accuracy assessment. The validation maps of the Yunnan lakes are shown in Figure 7. For a better 
visual effect, five Yunnan lakes were split into separated map frames with different scales. 
Commission and omission errors can be identified directly from Figure 7. It is clear that errors mainly 
occur in those parts where the lakes have relatively delicate shorelines. This is even obvious in the 
NPP–VIIRS derived results (Figure 7a–e). Significant omission errors (green), as well as commission 
errors (red) occur in the northern part of Dianchi Lake, and also in the south-west boundary of Qilu 
Lake, while the results that are derived from the Landsat-simulated water fraction (Figure 7f–j) have 
much higher accuracy, apparently. Even in some intricate areas, errors are very limited. Only some 
tiny and delicate water areas, for example the small tributaries on the south-west of Qilu Lake and 
tributaries on the west of Xingyun Lake, have obvious errors. 

The validation maps of Poyang Lake in Figure 8 reveal that the main lake body has been 
retrieved correctly at all three times. It is also noted that errors exist substantially in the downscaling 
results of the NPP–VIIRS data. Commission errors (red) occur mainly in the isolated patches that 
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were formed when the water level dropped in the dry season, while omissions (green) generally 
happen in narrow river channels. It seems that those fine water bodies cannot be correctly retrieved 
by downscaling the NPP–VIIRS. On the contrary, the downscaling results of simulated Landsat data 
have very limited errors, either commission or omission, and even some small rivers can be restored 
properly. 

 
Figure 6. (a) Subpixel mapping result of NPP–VIIRS-derived water fraction for Yunnan lakes on 2 
February 2014; (b) subpixel mapping result of Landsat-simulated water fraction for Yunnan lakes on 
2 February 2014; (c) subpixel mapping result of NPP–VIIRS-derived water fraction for Poyang Lake 
on 5 October 2013; (d) subpixel mapping result of Landsat-simulated water fraction for Poyang Lake 
on 5 October 2013; (e) subpixel mapping result of NPP–VIIRS-derived water fraction for Poyang Lake 
on 1 May 2014; (f) subpixel mapping result of Landsat-simulated water fraction for Poyang Lake on 
1 May 2014; (g) subpixel mapping result of NPP–VIIRS-derived water fraction for Poyang Lake on 8 
October 2014, and (h) subpixel mapping result of Landsat-simulated water fraction for Poyang Lake 
on 8 October 2014. 
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Figure 7. Validation results of subpixel mapping of: (a) Dianchi Lake from the NPP–VIIRS; (b) 
Yangzonghai Lake from the NPP–VIIRS; (c) Fuxian Lake from the NPP–VIIRS; (d) Xingyun Lake from 
the NPP–VIIRS; (e) Qilu Lake from the NPP–VIIRS; (f) Dianchi Lake from the Landsat; (g) 
Yangzonghai Lake from the Landsat; (h) Fuxian Lake from the Landsat; (i) Xingyun Lake from the 
Landsat; and (j) Qilu Lake from the Landsat. 

 
Figure 8. Validation results of subpixel mapping of Poyang Lake (a) from the NPP–VIIRS on 5 October 
2013; (b) from the NPP–VIIRS on 1 May 2014; (c) from the NPP–VIIRS on 8 October 2014; (d) from the 
Landsat on 5 October 2013; (e) from the Landsat on 1 May 2014; (f) from the Landsat on 8 October 
2014. 
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Percentage of errors, as well as overall accuracy and Kappa coefficient, were calculated based 
on the overlaying maps. As suggested by Mertens et al. [32], a mask was applied to exclude all pure 
pixels from the water fraction map in order to achieve a more precise accuracy assessment. These 
indices were calculated for each lake individually and listed in Table 5. 

It is obvious from Table 5 that the accuracy of downscaled maps differs across lakes, dates, and 
data sources. Lakes downscaled from the Landsat-simulated water fraction maps have many fewer 
errors than those derived from the NPP–VIIRS water fraction maps. For all the five Yunnan lakes 
individually, high accuracy has been achieved using the Landsat-simulated water fraction map. Even 
the worst one, Qilu Lake, has an overall accuracy of 91.32% and a Kappa coefficient of 0.82, which 
represent a close-to-perfect agreement according to Landis and Koch [54]. While using the NPP–
VIIRS-retrieved water fraction map, the downscaling results for the Yunnan lakes have relatively 
lower accuracy. Dianchi Lake has the highest accuracy, with an overall accuracy of 80.50%, a 
commission error of 6.81%, and an omission error of 12.69%. Its Kappa coefficient is 0.61 which, 
according to Landis and Koch [54], is a medium above agreement. The accuracy of the other lakes is 
a little bit lower than that of Dianchi Lake, indicating that the method of downscaling NPP–VIIRS for 
lake-water mapping is applicable for the Yunnan lakes, but still needs to be improved. For the three 
cases of Poyang Lake, bearing in mind that the water bodies are much more complicated, the 
downscaling results have lower accuracy than those of Yunnan lakes. The downscaling results of the 
NPP–VIIRS have overall accuracy about 80%, with generally more than 10% omission errors. These 
errors are largely due to the failure of restoring fine river channels, as shown in Figure 8a–c. When 
using simulated Landsat, the overall accuracy reaches around 88% for all cases, and the Kappa 
coefficients are between 0.62 and 0.69. The Poyang Lake cases also suggest that the downscaling 
method is applicable but imperfect. The accuracy comparison between different downscaling data 
sources in Table 5 reveals the uncertainties introduced only by fraction errors. It is therefore 
suggested that water fraction estimation errors, even if sometimes limited (see Table 4), would affect 
the final downscaling results significantly. 

Table 5. Accuracy indices showing the evaluation result of different lakes on both the NPP–VIIRS 
and Landsat downscaling results for different case studies. 

Case Study Lake Downscaling 
Data Source 

Commission 
Error (%) 

Omission 
Error (%) 

Overall 
Accuracy 

(%) 

Kappa 
Coefficient 

Yunnan lakes 

Dianchi Lake 
NPP-VIIRS 6.81 12.69 80.50 0.61 

Landsat 2.86 2.83 94.31 0.89 
Yangzonghai 

Lake 
NPP-VIIRS 8.42 13.24 78.34 0.56 

Landsat 1.59 1.56 96.85 0.97 

Fuxian Lake 
NPP-VIIRS 8.75 12.27 78.98 0.59 

Landsat 2.35 2.32 95.33 0.91 
Xingyun 

Lake 
NPP-VIIRS 9.95 14.62 75.43 0.51 

Landsat 2.71 2.66 94.63 0.89 

Qilu Lake 
NPP-VIIRS 16.25 6.61 77.14 0.55 

Landsat 4.34 4.34 91.32 0.82 

Poyang Lake T1 Poyang Lake 
NPP-VIIRS 9.20 11.01 79.79 0.42 

Landsat 5.43 5.43 89.14 0.69 

Poyang Lake T2 Poyang Lake 
NPP-VIIRS 4.13 12.02 83.85 0.48 

Landsat 5.74 5.74 88.52 0.62 

Poyang Lake T3 Poyang Lake 
NPP-VIIRS 5.96 12.95 81.09 0.46 

Landsat 6.26 6.26 87.48 0.67 

Based on the four levels of absolute fraction difference in Table 2, the NPP–VIIRS mixed pixels 
were divided into four groups. For each group, percentages of commission and omission errors in 
the subpixel mapping result were recalculated through dividing the error pixel numbers by total 
pixel numbers. These percentages of errors for all the four case studies have been displayed as bar 
charts in Figure 9. It is obvious that as the absolute fraction difference increases, which means the 
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water fraction estimation accuracy decreases, the percentage of commission and omission errors 
increases significantly, from less than 5% to nearly 70%. This demonstrates that the water fraction 
estimation results affect the subpixel mapping results seriously. 

 

Figure 9. Commission and omission errors of subpixel mapping of mixed pixels with different levels 
of absolute difference. 

4. Conclusions 

Due to their fine temporal resolution and wide spatial coverage, Suomi NPP–VIIRS data have 
begun to show their value in surface water and lake-water detection. However, the effective and wide 
application of this data source is still challenging because of its medium to coarse spatial resolution 
[21]. The mixed pixel issue seriously affects the accurate detection of land cover, which includes the 
mapping of lake shorelines. This study has demonstrated the potential of downscaling the 375 m 
Suomi NPP–VIIRS SWIR band for lake-water area extraction. The purpose is to devise an effective 
method that improves the spatial resolution as well as the mapping accuracy by combining the 
spectral unmixing method and subpixel mapping method. 

For spectral unmixing, a low-cost, easy-to-implement method was proposed to automatically 
extract endmembers from the image for estimating water fraction based on the principle of the linear 
spectral mixture model. An accurate and globally available water dynamic dataset was employed to 
automatically refine the feasible value ranges of pure water and pure land reflectance, which helps 
avoid uncertainties introduced by human intervention. Through either lake area comparison or the 
subpixel confusion–uncertainty matrix, it was proved that the water fraction had been properly 
estimated from the NPP–VIIRS. By directly comparing this with the referencing fraction map, a 
limited proportion of pixels was found to have large fraction deviations (greater than 0.50). However, 
it is also noted that water and land endmembers acquired with the proposed method are sometimes 
unable to reflect the real land cover types in the study area precisely, especially for the land 
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endmember, because the non-water land cover type varies from place to place. The reflectance of 
these land cover types is also quite different from others. It is almost impossible to select a single 
endmember to represent all non-water land covers exactly, although the moving window approach 
does make the selected endmembers more representative to some extent. 

When subpixel mapping a lake area, it would be helpful to make some modifications to the 
traditional subpixel mapping algorithms, such as modifications to the random initialization and 
attractiveness calculation, since the location of main lake body is easily acquired from the water 
product involved. These modifications would enhance the subpixel mapping algorithms by either 
reducing the calculation or improving the final result. 

It is demonstrated that by downscaling NPP–VIIRS data using the proposed two-step process, 
lake maps at finer resolution can be generated with proper accuracy. This methodology could also be 
easily applied to other similar sensors such as MODIS. This could be useful because these coarse 
resolution data usually have fine temporal resolution, which means they are usually available while 
other finer spatial resolution data are not. Spatial downscaling these data produces lake maps with 
finer spatial resolution and higher accuracy compared to their hard classification results. Daily lake 
water products at fine spatial resolutions could be produced from daily MODIS or NPP–VIIRS time-
series using the downscaling method, bearing in mind that uncertainties may be introduced by the 
downscaling process. It also has to be noted that while having all these advantages, the downscaling 
process sometimes requires intensive additional computation. 

Based on the downscaling results of both the NPP–VIIRS-derived and Landsat-simulated water 
fraction maps, it has been found that the water fraction retrieval process introduced more 
uncertainties and errors into the final result than the subpixel mapping process. The subpixel 
mapping result of the Landsat-simulated water fraction map that has the exact water fraction values 
entails very limited errors, while the downscaling fraction map that is derived from the actual NPP–
VIIRS image produced much more errors, although the validation results reveal that the NPP–VIIRS-
derived water fraction has acceptable accuracy. Only a small proportion of the pixels have fraction 
deviations greater than 0.50. Most of the estimated water fractions have deviations smaller than that. 
However, it seems that these deviations, even though sometimes small, may still affect subpixel 
mapping results. This is because the spatial allocation of water subpixels is based on the water 
fraction within each coarse mixed pixel. When the fraction is not accurate, it is difficult for any type 
of optimal method to restore the correct subpixel mapping results. On the contrary, if the water 
fraction was retrieved correctly, the shoreline of lakes could be easily restored at the subpixel scale 
with high accuracy. It is therefore suggested that future work on downscale lake mapping should 
focus more on improving the unmixing procedure. It is hoped that this study could promote the 
application of some moderate resolution sensors, such as the Suomi NPP–VIIRS and MODIS, in 
monitoring lake-water areas. It is anticipated that in the near future, after the downscaling method 
has been significantly improved, a daily lake-water product at fine spatial resolutions could be 
generated from time-series MODIS and NPP–VIIRS data. 

Acknowledgments: This is an extended work of a conference paper that was presented at the 1st International 
Electronic Conference on Water Science. This work was supported by the National Key Research and 
Development Plan (2017YFC0404302) and Natural Science Foundation of China (41501460, 41671056, and 
41601353). We would like to thank Tingbao Xu for his help in initially reviewing this paper. Furthermore, we 
highly appreciate valuable and constructive comments on the manuscript provided by the anonymous 
reviewers. 

Author Contributions: Chang Huang, Yun Chen and Shiqiang Zhang contributed the main idea and designed 
the experiments; Linyi Li performed the experiments; Kaifang Shi and Rui Liu analyzed the remote sensing data; 
and Chang Huang wrote the manuscript, which was then improved by the contribution of all the co-authors. 

Conflicts of Interest: The authors declare no conflict of interest. 

  



Water 2017, 9, 834  18 of 20 

 

References 

1. Singh, A.; Seitz, F.; Schwatke, C. Inter-annual water storage changes in the Aral Sea from multi-mission 
satellite altimetry, optical remote sensing, and GRACE satellite gravimetry. Remote Sens. Environ. 2012, 123, 
187–195. 

2. Lee, H.; Durand, M.; Jung, H.C.; Alsdorf, D.; Shum, C.K.; Sheng, Y. Characterization of surface water 
storage changes in arctic lakes using simulated SWOT measurements. Int. J. Remote Sens. 2010, 31, 3931–3953. 

3. Haas, E.M.; Bartholomé, E.; Lambin, E.F.; Vanacker, V. Remotely sensed surface water extent as an indicator 
of short-term changes in ecohydrological processes in sub-Saharan Western Africa. Remote Sens. Environ. 
2011, 115, 3436–3445. 

4. Huang, S.; Dahal, D.; Young, C.; Chander, G.; Liu, S. Integration of palmer drought severity index and 
remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North 
Dakota. Remote Sens. Environ. 2011, 115, 3377–3389. 

5. McCullough, I.M.; Loftin, C.S.; Sader, S.A. Combining lake and watershed characteristics with Landsat TM 
data for remote estimation of regional lake clarity. Remote Sens. Environ. 2012, 123, 109–115. 

6. Ding, X.W.; Li, X.F. Monitoring of the water-area variations of Lake Dongting in China with ENVISAT 
ASAR images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 894–901. 

7. Zeng, L.; Schmitt, M.; Li, L.; Zhu, X.X. Analysing changes of the Poyang Lake water area using Sentinel-1 
synthetic aperture radar imagery. Int. J. Remote Sens. 2017, 38, 7041–7069. 

8. Huang, C.; Nguyen, B.D.; Zhang, S.Q.; Cao, S.M.; Wagner, W. A Comparison of Terrain Indices toward 
Their Ability in Assisting Surface Water Mapping from Sentinel-1 Data. ISPRS Int. J. Geo-Inf. 2017, 6, 140. 

9. Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat TM data. Photogramm. Eng. 
Remote Sens. 2000, 66, 1461–1467. 

10. Chen, Y.; Wang, B.; Pollino, C.A.; Cuddy, S.M.; Merrin, L.E.; Huang, C. Estimate of flood inundation and 
retention on wetlands using remote sensing and GIS. Ecohydrology 2014, 7, 1412–1420. 

11. Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for 
land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. 

12. Sheng, Y.; Gong, P.; Xiao, Q. Quantitative dynamic flood monitoring with NOAA AVHRR. Int. J. Remote Sens. 
2001, 22, 1709–1724. 

13. Barton, I.J.; Bathols, J.M. Monitoring floods with AVHRR. Remote Sens. Environ. 1989, 30, 89–94. 
14. Chen, Y.; Huang, C.; Ticehurst, C.; Merrin, L.; Thew, P. An evaluation of MODIS daily and 8-day composite 

products for floodplain and wetland inundation mapping. Wetlands 2013, 33, 823–835. 
15. Huang, C.; Chen, Y.; Wu, J. Mapping spatio-temporal flood inundation dynamics at large river basin scale 

using time-series flow data and MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 350–362. 
16. Feng, L.; Hu, C.M.; Chen, X.L.; Cai, X.B.; Tian, L.Q.; Gan, W.X. Assessment of inundation changes of Poyang 

Lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. 
17. Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in 

remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. 
18. Li, S.; Sun, D.; Yu, Y.; Csiszar, I.; Stefanidis, A.; Goldberg, M.D. A new short-wave infrared (SWIR) method 

for quantitative water fraction derivation and evaluation with EOS/MODIS and Landsat/TM data. IEEE 
Trans. Geosci. Remote Sens. 2013, 51, 1852–1862. 

19. Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite 
data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. 

20. Yu, Y.; Privette, J.L.; Pinheiro, A.C. Analysis of the NPOESS VIIRS land surface temperature algorithm 
using MODIS data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2340–2350. 

21. Huang, C.; Chen, Y.; Wu, J.; Li, L.; Liu, R. An evaluation of Suomi NPP-VIIRS data for surface water 
detection. Remote Sens. Lett. 2015, 6, 155–164. 

22. Olthof, I.; Fraser, R.H.; Schmitt, C. Landsat-based mapping of thermokarst lake dynamics on the 
Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sens. Environ. 2015, 168, 194–204. 

23. Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; 
Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery 
across Australia. Remote Sens. Environ. 2016, 174, 341–352. 

24. Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and 
its long-term changes. Nature 2016, 540, 418–422. 



Water 2017, 9, 834  19 of 20 

 

25. Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water 
change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. 

26. Yamazaki, D.; Trigg, M.A. Hydrology: The dynamics of earth’s surface water. Nature 2016, 540, 348–349. 
27. Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. 
28. Keshava, N. A survey of spectral unmixing algorithms. Linc. Lab. J. 2003, 14, 55–78. 
29. Ma, B.; Wu, L.; Zhang, X.; Li, X.; Liu, Y.; Wang, S. Locally adaptive unmixing method for lake-water area 

extraction based on MODIS 250m bands. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 109–118. 
30. Atkinson, P.M.; Cutler, M.E.J.; Lewis, H. Mapping sub-pixel proportional land cover with AVHRR 

imagery. Int. J. Remote Sens. 1997, 18, 917–935. 
31. Tatem, A.J.; Lewis, H.G.; Atkinson, P.M.; Nixon, M.S. Super-resolution land cover pattern prediction using 

a hopfield neural network. Remote Sens. Environ. 2002, 79, 1–14. 
32. Mertens, K.C.; Verbeke, L.P.C.; Ducheyne, E.I.; De Wulf, R.R. Using genetic algorithms in sub-pixel 

mapping. Int. J. Remote Sens. 2003, 24, 4241–4247. 
33. Li, L.; Chen, Y.; Xu, T.; Liu, R.; Shi, K.; Huang, C. Super-resolution mapping of wetland inundation from 

remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. 
Remote Sens. Environ. 2015, 164, 142–154. 

34. Mertens, K.C.; De Baets, B.; Verbeke, L.P.C.; De Wulf, R.R. A sub-pixel mapping algorithm based on sub-
pixel/pixel spatial attraction models. Int. J. Remote Sens. 2006, 27, 3293–3310. 

35. Ling, F.; Li, X.D.; Du, Y.; Xiao, F. Sub-pixel mapping of remotely sensed imagery with hybrid intra- and 
inter-pixel dependence. Int. J. Remote Sens. 2013, 34, 341–357. 

36. Ling, F.; Du, Y.; Xiao, F.; Xue, H.P.; Wu, S.J. Super-resolution land-cover mapping using multiple sub-pixel 
shifted remotely sensed images. Int. J. Remote Sens. 2010, 31, 5023–5040. 

37. Atkinson, P.M. Sub-pixel target mapping from soft-classified, remotely sensed imagery. Photogramm. Eng. 
Remote Sens. 2005, 71, 839–846. 

38. Thornton, M.W.; Atkinson, P.M.; Holland, D.A. A linearised pixel-swapping method for mapping rural 
linear land cover features from fine spatial resolution remotely sensed imagery. Comput. Geosci. 2007, 33, 
1261–1272. 

39. Huang, C.; Chen, Y.; Wu, J.P. Dem-based modification of pixel-swapping algorithm for enhancing 
floodplain inundation mapping. Int. J. Remote Sens. 2014, 35, 365–381. 

40. Ling, F.; Fang, S.; Li, W.; Li, X.; Xiao, F.; Zhang, Y.; Du, Y. Post-processing of interpolation-based super-
resolution mapping with morphological filtering and fraction refilling. Int. J. Remote Sens. 2014, 35, 5251–5262. 

41. Li, L.; Chen, Y.; Yu, X.; Liu, R.; Huang, C. Sub-pixel flood inundation mapping from multispectral remotely 
sensed images based on discrete particle swarm optimization. ISPRS J. Photogramm. Remote Sens. 2015, 101, 
10–21. 

42. Foody, G.M.; Muslim, A.M.; Atkinson, P.M. Super-resolution mapping of the waterline from remotely 
sensed data. Int. J. Remote Sens. 2005, 26, 5381–5392. 

43. Ling, F.; Xiao, F.; Du, Y.; Xue, H.P.; Ren, X.Y. Waterline mapping at the subpixel scale from remote sensing 
imagery with high-resolution digital elevation models. Int. J. Remote Sens. 2008, 29, 1809–1815. 

44. Muslim, A.M.; Foody, G.M.; Atkinson, P.M. Localized soft classification for super-resolution mapping of 
the shoreline. Int. J. Remote Sens. 2006, 27, 2271–2285. 

45. Muad, A.M.; Foody, G.M. Super-resolution mapping of lakes from imagery with a coarse spatial and fine 
temporal resolution. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 79–91. 

46. Shah, C.A. Automated lake shoreline mapping at subpixel accuracy. IEEE Geosci. Remote Sens. Lett. 2011, 8, 
1125–1129. 

47. Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vazquez, J. Automatic extraction of 
shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 
2012, 123, 1–11. 

48. Xu, G.; Qin, Z. Flood estimation methods for Poyang Lake area. J. Lake Sci. 1998, 10, 31–36. 
49. Shankman, D.; Keim, B.D.; Song, J. Flood frequency in China’s Poyang Lake region: Trends and 

teleconnections. Int. J. Climatol. 2006, 26, 1255–1266. 
50. Haertel, V.F.; Shimabukuro, Y.E. Spectral linear mixing model in low spatial resolution image data. IEEE 

Trans. Geosci. Remote Sens. 2005, 43, 2555–2562. 
51. Verdin, J.P. Remote sensing of ephemeral water bodies in western Niger. Int. J. Remote Sens. 1996, 17, 733–748. 



Water 2017, 9, 834  20 of 20 

 

52. Pontius, R.G., Jr.; Cheuk, M.L. A generalized cross-tabulation matrix to compare soft-classified maps at 
multiple resolutions. Int. J. Geogr. Inf. Sci. 2006, 20, 1–30. 

53. Silván-Cárdenas, J.L.; Wang, L. Sub-pixel confusion–uncertainty matrix for assessing soft classifications. 
Remote Sens. Environ. 2008, 112, 1081–1095. 

54. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 
159–174. 

© 2017 by the authors. Submitted for possible open access publication under the  
terms and conditions of the Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/). 


