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Abstract: Water quality safety is of critical importance in environmental improvement, particularly
with respect to drinking water resources worldwide. As the main drinking water sources in Shenzhen,
China, the cascade reservoirs comprising the Shiyan, Tiegang, and Xili Reservoirs are highly regulated
and have experienced water quality deterioration in recent years. In this study, a three-dimensional
hydrodynamic and water quality model was established using the Environmental Fluid Dynamics
Code (EFDC) for the cascade reservoirs. The relationships between water quality and improvement
measures were quantified and the main pollution sources for individual reservoirs were identified.
Results showed that the hydrodynamic and water quality model well captured the spatial and
temporal variations of water level, the permanganate concentration index (CODMn), and total nitrogen
(TN), with high resolution in the cascade reservoirs. The correlation coefficients between simulations
and observations were close to 1.00 for water levels, and over 0.50 for CODMn and TN concentrations.
The most effective methods for water quality improvement were the reduction of the runoff load for
TN and transferred water load for CODMn in the Shiyan Reservoir, reduction of the transferred water
load in the Tiegang Reservoir, and an increase in transfer water volume, especially in the flood season,
in the Xili Reservoir. Internal pollution sources also played an important role in water pollution,
and thus sedimentation should be cleaned up regularly. This study is expected to provide scientific
support for drinking water source protection and promote the application of hydrodynamic model in
water quality management.

Keywords: cascade reservoirs; EFDC; water quality improvement; drinking water sources

1. Introduction

Drinking water safety is a global issue. In China, over 400 cities have been experiencing serious
water shortages, and for 110 cities these shortages have been extremely serious [1]. The total water
shortage was estimated to represent nearly 30~40 billion m3 per year [2]. Moreover, water pollution
threatens the drinking water source regions of cities [3]. In 2014, nearly 1.3 billion tons of drinking
water from 329 investigated cities were polluted, and tens of millions of residents were affected [4].
The water resource shortages and pollution seriously restricted the sustainable development of social
economy, and affected the human health and safety [5–8]. Water resource saving and exploration, as
well as environment protection, are critical and imminent tasks for drinking water safety in cities.

Numerical models are widely used in water quantity and quality management due to their
advantages in comparative efficiency, visualization of spatial information, and applications in
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data-scarce areas [9]. The typical model categories are hydrological models (e.g., SWAT, MIKE-SHE),
hydrodynamic models (e.g., Delft 3D), and water quality models (e.g., QUAL). For water quality
management, over the past few decades, water quality models have been developed and applied to
quantify the water quality response of the water body to external or internal pollution loads [10–13] and
to evaluate the effectiveness of various reduction measures in water environment improvement [14,15].
Nevertheless, water quality conditions not only depend on external and internal contaminant loads,
but are also related to the complicated processes of transport and transformation overland and in water
bodies. The processes are driven by weather conditions (e.g., precipitation, temperature, radiation,
and cloud cover), hydrological or hydrodynamic conditions (e.g., runoff volume and velocity), and so
on. Thus, hydro-meteorological conditions should be considered when capturing the water quality
concentrations with detailed spatial and temporal resolutions according to different types of water
bodies (rivers and lakes). Although hydrological models can well simulate flow regime variations and
are capable of providing hydrological boundaries for water quality models, the resulting resolutions are
limited. Hydrodynamics models have advantages in simulating the flow or mixing processes driving
the transport of contaminants in the water quality model [16]. Thus, the integration of hydrodynamic
and water quality models is efficient for water quality management, such as in emission reduction
assessments and water quality restoration [17].

The Environmental Fluid Dynamics Code (EFDC), developed by John M. Hamrick in Virginia
Institute of Marine Science, is representative of hydrodynamic and water quality models [18–20].
The EFDC is a three-dimensional surface water modeling system for the simulation of flow fields,
temperature, sediment, water quality, and other factors at different spatial and temporal scales. It has
been successfully applied in various water bodies, including lakes, reservoirs, estuaries, bays, and
wetlands [21–25]. Due to the advantages of open source codes with respect to re-development,
high simulation accuracy, and good stability, EFDC has become one of the most commonly used
hydrodynamic and water quality models in both China and abroad. Wu and Xu [26] applied the
EFDC in the Daoxiang Lake for chlorophyll-a simulation and algal bloom prediction. Zhou et al. [27]
investigated the impact of the proposed Severn Barrage on the hydrodynamic and salinity processes in
the Bristol Channel and Severn Estuary by using the EFDC model with the Barrage module. Arifin [28]
simulated temperature profiles in Lake Ontario and explored spring thermal bar evolution using EFDC.
However, most previous applications have focused on the simulations of hydrodynamics and water
quality processes in a single lake or reservoir without severe regulations.

Shenzhen is a mega-city in China with over 10 million residents. A serious shortage of water
resources exists due to its specific geographic position, as it has no large rivers. Moreover, excessive
development through urban construction and industrialization in the past three decades has led
to massive pollution problems (e.g., poor water quality and eutrophication), which has directly
threatened the safety of drinking water in the city. In this study, cascade reservoirs in the northwest
part of Shenzhen were selected as our study area, i.e., the Shiyan Reservoir, the Tiegang Reservoir,
and the Xili Reservoir, which are also closely linked by Water Diversion Projects. The hydrological
and water quality processes are highly disturbed by both the operations of cascade reservoirs and the
external water diversion projects. Therefore, the integrated simulation of hydrodynamics and water
quality variations is still a very complicated task in the study area. In addition, identification of the
main pollution-related sources of drinking water contamination, and implementation of stricter water
resource management measures are urgently required [29]. The objectives of this study were (1) to
capture the complicated hydrodynamics and water quality with high spatial and temporal resolutions
in the regulated cascade reservoirs, (2) to assess the impacts of different pollution sources on water
quality concentrations (including transferred water in the flood and non-flood seasons, and the effects
of reducing pollution load from runoff and transferred water), and (3) to identify the main pollution
source of individual reservoirs. The study was expected to yield results to ensure urban drinking
water safety in Shenzhen, and provide a reference for water quality assessment and protection of
reservoirs (lakes).
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2. Materials and Methods

2.1. Study Area

Shenzhen is a major, fast-developing city in the south of Guangdong Province, China. The total
population is over 10 million, the majority of which is concentrated in the metropolitan area. The area
has a subtropical oceanic climate, which is hot and rainy in summer. The annual average temperature
and precipitation are 22.5 ◦C and 1967 mm, respectively, and over 80% of precipitation occurs in
the summer.

Shenzhen is one of the cities with the greatest severity of water shortage in China, as there are
no major rivers in this region and there is a huge water consumption requirement for industry and
residents. Although there is a large amount of local precipitation, the available water resources are
few due to the limited storage capacity of domestic rivers. The local government attached particular
importance to construction of water diversion and storage projects. Large numbers of reservoirs have
been constructed since the 1960s, which have provided over 80% of water resources to the whole city.

The Shiyan–Tiegang–Xili cascade reservoirs are critical projects located in the northwest of
Shenzhen (113◦52′–113◦58′ E, 22◦35′30′′–22◦42′30′′ N) (Figure 1). These reservoirs serve as drinking
water sources for the Bao’an and Nanshan districts, and as storage for water transfer and collection of
urban stormwater. The maximum water storage capacity of the cascade reservoirs is over 163 million
m3, accounting for nearly 40% of the total water consumption in Shenzhen. The Shiyan Reservoir, built
in 1960, is located in the northwest of the cascade reservoirs. The control watershed area measures
44 km2, and the total storage capacity is 32 million m3. The main tributary flowing into Shiyan
Reservoir is the Shiyan River (S1). The Tiegang Reservoir, built in 1957, is located in the southwest of
the cascade reservoirs, and is the biggest reservoir in Shenzhen. The control watershed area is 64 km2,
and the total storage capacity is 99.5 million m3. Three main tributaries flow into the Tiegang Reservoir,
the Jiuwei River (T1), the Huangmabu River (T2), and the Tangtou River (T3). The Xili Reservoir, built
in 1960, is located in the southeast of the cascade reservoirs. The control watershed area is 29 km2 and
the storage capacity is 32.39 million m3. Two main tributaries flow into the Xili Reservoir, the Baimang
River (X1), and the Makan River (X3).
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Figure 1. Locations of the cascade reservoirs and their surrounding land uses. TX: Connected Project;
ST: a water project taking water from Tiegang Reservoir to the Shiyan Reservoir; T1: Jiuwei River;
T2: Huangmabu River; T3: Tangtou River; X1: Baimang River; X2: Dongshen Water Supply Project;
X3: Makan River.
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Flow exchanges are highly frequent among these three reservoirs. Nearly 1.20 million m3 of water
is diverted to the Xili Reservoir from the East River per day through the Dongshen Water Supply
Project (X2), and an average of 1.00 million m3 of water is transferred to the Tiegang Reservoir from
the Xili Reservoir per day through the Connected Project (TX). The Tangtou Pumping House, as a
water project (ST) taking water from Tiegang Reservoir to the Shiyan Reservoir, transfers an average of
0.7 million m3 water per day. The flow exchanges could increase water turbulence so as to increase the
water self-purification capacity and improve water quality. According to the observed data in 2011, the
cascade reservoirs supplied 530 million m3 of fresh drinking water, which represented 31.4% of total
water supply in the whole city, and collected 28 million tons of stormwater. Thus, the water quantity
and quality processes were obviously altered by a high intensity of human activity. This status directly
affects the water safety in the Bao’an and Nanshan districts, and even the entire city of Shenzhen.

2.2. Data Description

Observed meteorological data, flow rate, water level data, and water quality concentrations were
available for model calibration. Meteorological observation data of Shenzhen was provided from the
China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/home.do) including daily
atmospheric pressure, temperature, solar radiation, relative humidity, cloud cover, wind speed, wind
direction, evaporation and rainfall data at meteorological stations near reservoirs. Water level and
exchange flow data were provided by the Shenzhen Municipal Water Affairs Bureau. The water quality
variables included the chemical oxygen demand (CODMn) and total nitrogen (TN). The measurements
of CODMn and TN concentrations in the laboratory were all conducted following standard national
methods [30]. Water quality data was monitored at around 10-day intervals in the cascade reservoirs,
and the pollution loads of the main rivers were provided by the Shenzhen Water Quality Testing Centre.

2.3. Model Description

The EFDC was developed by John Hamrick in 1988 at the Virginia Institute of Marine Science,
and is recommended by the United States Environmental Protection Agency (US EPA). The EFDC is a
multifunctional surface water simulation system, which includes hydrodynamics, water quality
(eutrophication), and sediment transport modules. The EFDC is one of the most widely used
three-dimensional models for the simulation of flow, sediment transport, and biochemical processes
in water systems. As public domain software, the model application has been reported in more
than 100 water bodies all over the world, including rivers, reservoirs, lakes, estuaries, wetland and
coastal seas [21,26,31–35].

2.3.1. Hydrodynamic Module

A physical description of hydrodynamics in EFDC is based on the Princeton Ocean Model
(POM) [36]. The hydrodynamic module is based on three-dimensional hydrostatic equations
formulated in curvilinear orthogonal horizontal coordinates and a sigma vertical coordinate [37].
It is a foundational module, which can simulate flow field, temperature, and salinity. It provides the
hydrodynamic boundary for other modules, and at the same time, biogeochemical processes regarding
the relevant water quality variables (e.g., sediment and nutrients) are calculated in the corresponding
modules [38]. The momentum and continuity equations are as follows [37]:

∂t(mHµ) + ∂x(myHµµ) + ∂y(mx Hνµ) + ∂z(mωµ)− (m f + ν∂xmy − µ∂ymx)Hν

= −myH∂x(gξ + p)−my(∂xh− z∂x H)∂z p + ∂z(mH−1 Av∂zµ) + Qµ
(1)

∂t(mHν) + ∂x(my Hµν) + ∂y(mx Hνν) + ∂z(mων)− (m f + ν∂xmy − µ∂ymx)Hµ

= −my H∂y(gξ + p)−mx(∂yh− z∂y H)∂z p + ∂z(mH−1 Av∂zν) + Qν
(2)

∂z p = −gH(ρ− ρ0)ρ0
−1 = −gHb (3)

http://cdc.cma.gov.cn/home.do


Water 2017, 9, 825 5 of 18

∂t(mξ) + ∂x(my Hµ) + ∂y(mx Hν) + ∂z(mω) = 0 (4)

where u and v are the horizontal velocities (m·s−1) in horizontal coordinates, x and y, and are curvilinear
and orthogonal, respectively; w is the vertical velocity (m·s−1) in the stretched vertical coordinate z; mx

and my are the square roots of the diagonal components of the metric tensor, m = mxmy is the Jacobian
of the metric tensor determinant; Av is the vertical turbulence viscosity coefficient (m2·s−1); Ab is the
vertical turbulent diffusion coefficient (m2·s−1); Qu and Qv are momentum source-sink terms; f is the
Coriolis parameter; P is the physical pressure (millibar); ρ is the density (kg·m−3); ρ0 is the reference
density (kg·m−3).

2.3.2. Water Quality Module

The water quality model CE-QUAL-IC [39] is integrated into the EFDC [40]. Based on the physical
conditions provided by the hydrodynamic module and the sediment–water interface behavior, the
water quality module can simulate 21 state variables in water column, including four forms of algae,
three forms of carbon, four forms of phosphorus, five forms of nitrogen, two forms of silica, chemical
oxygen demand (COD), dissolved oxygen, and total active metal. The general governing equation for
the water quality state variables is expressed as follows:

∂t(mxmy HC) + ∂x(my HµC) + ∂y(mx HνC) + ∂z(mxmyωC)
= ∂

∂x (
my HAx

mx
∂C
∂x ) +

∂
∂y (

mx HAy
my

∂C
∂y ) +

∂
∂z (mxmy

Az
H

∂C
∂z ) + mxmy HSc

(5)

where C is the concentration of a water quality variable (mg·L−1); Ax, Ay, Az are turbulent diffusivities
in the x, y, z directions (m2·s−1), respectively; Sc is the internal and external sources and sinks per
unit volume; and the rest of the variables are the same as in the hydrodynamic module. In order to
visualize the spatial output of water quality variables, Tecplot software [41] was adopted on the basis
of source code to output simulations of all grids during the simulation.

In the EFDC model, the kinetic equation of COD is

∂COD
∂t

= −
(

DO
KHCOD + DO

)
KCODCOD +

BFCOD
∆Z

+
WCOD

V
(6)

where COD is the concentration of chemical oxygen demand (g O2-equivalents·m−3); KHCOD is the
half-saturation constant of dissolved oxygen required for oxidation of chemical oxygen demand
(g O2·m−3); KCOD refers to the oxidation rate of chemical oxygen demand (day−1); BFCOD refers to
the sediment flux of chemical oxygen demand (g O2-equivalents·m−2·day−1), applied to bottom layer
only; WCOD refers to the external loads of chemical oxygen demand (g O2-equivalents·day−1).

The EFDC model considers five state variables for nitrogen: three organic forms (refractory
particulate, labile particulate, and dissolved) and two inorganic forms (ammonium and nitrate).

∂TN
∂t

=
∂RPON

∂t
+

∂LPON
∂t

+
∂DON

∂t
+

∂NH4
∂t

+
∂NO3

∂t
(7)

where RPON is the concentration of refractory particulate organic nitrogen (g N·m−3); LPON is the
concentration of labile particulate organic nitrogen (g N·m−3); DON is the concentration of dissolved
organic nitrogen (g N·m−3); NH4 is the concentration of ammonium nitrogen (g N·m−3); NO3 is the
concentration of nitrate nitrogen (g N·m−3).

3. Model Configuration and Calibration

3.1. Computational Domain and Grid Generation

The topological and bathymetric data provided by the administration office of the reservoirs were
used to generate the grid. In this study, the computational grids are at a 50 m × 50 m spatial resolution
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to represent the complex geometry of the cascade reservoirs. Horizontally, the final grid measures
1096 square cells in the Shiyan Reservoir, 2783 square cells in the Tiegang Reservoir, and 1344 square
cells in the Xili Reservoir (Figure 2). In the vertical direction, the sigma coordinate was adopted and
divided into five layers. The depth ratio of each layer was 0.2 from top to bottom.
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cascade reservoirs.

3.2. Initial Conditions

The simulation period was from 1 January to 31 December, 2011, in which the first month was the
spinning-up period. The initial conditions were set according to the observations, including water
level, water temperature, flow velocity, and water quality of the cascade reservoirs (Table 1).
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Table 1. Initial condition of the Environmental Fluid Dynamics Code (EFDC) for the three cascade
reservoirs. CODMn: permanganate concentration index; TN: total nitrogen.

Reservoirs Water Level (m) Velocity (m/s) Temperature (◦C) CODMn (mg/L) TN (mg/L)

Shiyan 35.40 0 14.2 2.8 2.46
Tiegang 23.05 0 14.2 2.3 1.18

Xili 27.20 0 14.2 1.35 1.42

3.3. Boundary Conditions

The horizontal and surface boundary conditions in the model represented external driving
forces to the reservoir dynamics. The lateral boundary conditions consisted of tributary inflow
rates, associated water temperature, and water quality concentrations. In the Shiyan Reservoir, the
Shiyan River (S1), Ejing Reservoir transfer water, and Tiegang Reservoir transfer water (ST) were its
inflows. The outflows were water supply to the water plant, transfer to other reservoirs (S2), and a
spillway. In the Tiegang Reservoir, inflows included the Jiuwei River (T1), the Tangtou River (T2), the
Huangmabu River (T3), and Xili Reservoir transfer water (TX). Outflows consisted of transfer water to
Shiyan Reservoir (ST), water supply to the water plant, and a spillway (T4). In the Xili Reservoir, the
Baimang River (X1), the Makan River (X3) and transfer water from Xijiang River (X2) were its inflows,
while water supply to the water plant (X4), transfer water to Tiegang Reservoir, and a spillway were
its outflows.

The surface boundary conditions were described as daily meteorological conditions, including
atmospheric pressure, air temperature, relative humidity, rainfall and evaporation rate, solar
short-wave radiation, cloud cover rate, wind speed, and its direction. In the modeling process, daily
data were organized into a special format of EFDC to represent the meteorological boundary conditions.

3.4. Model Calibration

Hydrodynamic and water quality parameters were adjusted by a trial-and-error approach to
obtain good simulation performance. The hydrodynamic parameters were calibrated first, and water
quality parameters were then calibrated based on the hydrodynamic boundary provided by the
hydrodynamic module. The sensitive parameters were selected according to previous studies [42]
and are presented in Table 2. Correlation coefficient (R) and root-mean-squared-error (RMSE) were
used to evaluate different parts of discrepancies between simulations and observations of water levels,
concentrations of CODMn and TN. R was used to evaluate temporal variations between the simulations
and observations, while RMSE was to evaluate the average differences between the simulation and
observations. Equations (8) and (9) present the formulas for R and RMSE, respectively.

R =
N

∑
i=1

(Oi −O)× (Si − S)/

√√√√ N

∑
i=1

(Oi −O)
2 ×

N

∑
i=1

(Si − S)2 (8)

RMSE =

√√√√ N

∑
i=1

(Oi − Si)
2/N (9)

where O and S are the observed and simulated values, respectively; N is the number of the time series;
and i is the ith of the time series. A value of 0.0 for RMSE indicates a perfect model. Moreover, in our
study, if the R value is no less than 0.50 and 0.80, the simulation performances are satisfactory and
good, respectively [43].
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Table 2. Selected sensitive parameters for the hydrodynamic and water quality model. COD: chemical
oxygen demand: LPON: concentration of labile particulate organic nitrogen; RPON: concentration of
refractory particulate organic nitrogen; DON: dissolved organic nitrogen.

Parameter Value Unit

dimensionless horizontal momentum diffusivity 0.25 None
background, constant or eddy (kinematic) viscosity 1.0 × 10−7 m2·s−1

background, constant or molecular diffusivity 1.0 × 10−9 m2·s−1

reaeration rate constant 3.93 None
COD decay rate 0.10 day−1

reference temperature for COD decay 20.0 ◦C
minimum hydrolysis rate of RPON 0.001 day−1

minimum hydrolysis rate of LPON 0.01 day−1

minimum hydrolysis rate of DON 0.03 day−1

maximum nitrification rate 0.06 g N·m−3·day−1

benthic flux rate of ammonia nitrogen
0.01 (Shiyan)

g·m−2·day−10.00 (Tiegang)
0.08 (Xili)

benthic flux rate of chemical oxygen demand
3.00 (Shiyan)

g·m−2·day−12.00 (Tiegang)
3.00 (Xili)

benthic flux rate of nitrogen
0.50 (Shiyan)

g·m−2·day−10.20 (Tiegang)
2.00 (Xili)

3.5. Simulation Scenarios

In this study, several scenarios were designed to explore the quantitative relationships between
water quality improvement in the cascade reservoirs and the pollution load reduction or reservoir
operation by the calibrated model. Reservoir operation scenarios were set to assess the impact of
reservoir operation on water quantity and quality by increasing transferred water volume during flood
and non-flood seasons by 5%, 10%, and 20%. In our study, March (58–89 days) and July (181–211 days)
were chosen as typical months of non-flood and flood seasons, respectively. As the main pollution
sources of cascade reservoirs, rainfall-runoff and transferred water had different characteristics with
respect to water quantity and quality. The amount of rainfall-runoff was quite little (i.e., only 20%
of inflow water), but it had very high pollutant concentrations because of industrial pollution and
domestic wastewater. In contrast, owing to strict water quality management in the drinking water
reservoir, the water quality conditions of transferred water were much better. Since runoff was polluted
heavily, the simulated scenarios were designed to reduce CODMn and TN loads by 30%, 50%, and 70%,
individually. The reduction ratios of CODMn and TN loads in the transferred water were also 30%,
50%, and 70%.

4. Results and Discussion

4.1. Hydrodynamic Calibration

Water levels in the cascade reservoirs were well simulated by the hydrodynamic module of
EFDC (Figure 3). In the Shiyan Reservoir, the simulated water level was well matched with the
observation, except in September. The correlation coefficient reached 0.97 and RMSE was only 0.1 m.
In the Tiegang Reservoir, the correlation coefficient reached 0.997, and the RMSE was merely 0.11 m.
Only the simulated water levels in the flood season were higher than in the observations. The probable
reason was that the reservoir inundated the surrounding dry land in the flood season, resulting in the
expansion of water area and exceeding the generalized grid area. In the Xili Reservoir, although the
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water level varied severely, the simulation performance was still good, i.e., the correlation coefficient
reached 0.98 and RMSE was 0.1 m.
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Figure 3. Simulated and observed water level in the Shiyan (A), Tiegang (B) and Xili (C) Reservoirs.

4.2. Water Quality Calibration

Figure 4 showed the simulated and observed concentrations of CODMn and TN in the cascade
reservoirs. The overall results are summarized in Table 3 for water level, CODMn, and TN, respectively.
Due to frequent water diversion, water levels in the cascade reservoirs fluctuated dramatically, and
the maximum ranges in the Tiegang Reservoir reached 5 m, which made the hydrodynamic condition
complicated. As a result, the water quality simulation was much more complicated. However, the
water quality model results fit the observations in cascade reservoirs quite well. The water quality
model reproduced the temporal variations of CODMn concentrations, and R values were 0.70, 0.59,
and 0.58, respectively. From June to August, the growth of phytoplankton community resulted in the
decline of TN concentrations. However, in other periods, owing to the dissimilarity of inflow water
with different water quality and quantity, the trend of TN was varied for each reservoir.

Table 3. Simulation performance of water level, CODMn, and TN concentrations by EFDC.

Factor
Shiyan Tiegang Xili

R RMSE R RMSE R RMSE

water level 0.97 0.10 0.997 0.11 0.98 0.10
CODMn 0.70 1.17 0.59 1.88 0.58 0.58

TN 0.60 0.76 0.51 0.28 0.27 0.61

Note: the root-mean-square error (RMSE) unit is in meters for water level, and mg/L for water quality.
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and Xili (C) Reservoirs.

According to the spatial distributions of water quality in the cascade reservoirs, CODMn and TN
concentrations showed roughly consistent distribution characteristics (Figure 5). The concentration
was lower near the entrance of transfer water, and then gradually deteriorated due to the mixing
action. The concentration was the highest at the area where rivers flowed into the reservoirs, because a
great deal of industrial pollutant was collected along the rivers. However, according to the Chinese
Environmental Quality Standards for Surface Water (GB3838-2002), the CODMn concentrations in
most regions were of Grades II~III in the Shiyan Reservoir, and Grades I~II in the Tiegang and Xili
Reservoirs, while the TN concentrations in most regions were inferior to Grade IV in all three reservoirs.
Thus, eutrophication was the largest threat to the drinking water sources of these reservoirs.
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Figure 5. Simulated spatial distributions of CODMn and TN concentrations in the Shiyan (A),
Tiegang (B) and Xili (C) Reservoirs. Note: Six grades were used according to the Chinese Environmental
Quality Standards for Surface Water (GB3838-2002).
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4.3. Scenario Simulation and Assessment for Water Quality Improvement

4.3.1. Increase of Transferred Water Volume

Due to the increase of transferred water volume, the CODMn and TN concentrations reduced
slightly in the center area of cascade reservoirs (Table 4). In addition to CODMn in the Tiegang Reservoir,
if the transferred water increased the same proportion, the water quality improvement was better in
the flood season than in the non-flood season. In the scenario of increasing transferred water by 5%,
the CODMn and TN concentrations were reduced by 1.5%~2.7% and 1.0%~3.0% during the non-flood
season, and by 0.6%~16.7% and 2.3%~9.3% during the flood season, respectively. In the scenario of
increasing transferred water by 10%, the CODMn and TN concentrations were reduced by 2.6%~5.7%
and 1.8%~5.8% during the non-flood season, and by 1.4%~18.4% and 3.7%~9.3% during the flood
season, respectively. In the scenario of increasing 20% of transferred water, the average concentrations
of CODMn and TN in reservoirs were reduced by 8.3% and 9.5% during the non-flood season, and by
13.0% and 11.6% during the flood season, respectively. By comparison, the water quality improvement
in the Xili Reservoir was the most obvious (Figure 6), followed by the Shiyan and Tiegang Reservoirs.
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Table 4. Variation of water quality concentrations in the middle area of the cascade reservoirs under
increasing different proportion transfer water (%).

Period Factor
Shiyan Tiegang Xili

5% 10% 20% 5% 10% 20% 5% 10% 20%

non-flood
season

CODMn −1.9 −3.6 −8.2 −1.5 −2.6 −5.2 −2.7 −5.7 −11.6
TN −3.0 −5.8 −11.0 −1.0 −1.8 −2.9 −2.9 −5.7 −12.0

flood
season

CODMn −3.8 −8.0 −14.7 −0.6 −1.4 −2.6 −16.7 −18.4 −21.8
TN −3.2 −7.0 −13.6 −2.3 −3.7 −6.8 −7.4 −9.3 −14.4

In conclusion, the increase of transferred water volume was obviously correlated with the
pollution reduction. The explanation was that the water quality concentrations of transferred water
were relatively lower than those of other inflows, and water quality was improved by dilution action.
If pollution in the reservoir was much more severe, the improvement would be even more obvious on
increasing the transfer water volume. For example, the water quality condition in Tiegang Reservoir
was the best among the cascade reservoirs, and thus the improvement was the least obvious.

4.3.2. Pollution Load Reduction of River Runoff

Table 5 showed the comparison of water quality improvement ratio under 30%, 50%, and 70%
load reduction of river runoff. Decreasing pollution load from river runoff was more effective in
reducing CODMn concentrations for the Xili Reservoir. In terms of TN, the reduction of runoff loads
was more helpful for the improvement of water quality for the Shiyan Reservoir, followed by the
Tiegang Reservoir, but the improvement was slight for the Shiyan Reservoir. As shallow reservoirs,
endogenous pollution was the main source in the Shiyan and Xili Reservoirs; a too-great reduction of
the runoff load would lead to the increasing release of sediment pollution load. If 70% of the runoff
load was reduced, the improvement in Shiyan Reservoir was even less than in the scenario of a 30%
reduction, and the CODMn and TN concentrations were only decreased by 1.1% and 7.9%, respectively.
The water quality was similar to that in the scenario of the 50% reduction in the Tiegang and Xili
Reservoirs. The main reason was that the runoff load took only a small proportion of total loads in the
Tiegang Reservoir. Furthermore, the Tiegang Reservoir is a deep-water reservoir, and the impact of
endogenous pollution on water quality was slight.

Table 5. Variation of water quality concentrations in the middle area of the cascade reservoirs on
reducing different proportions of runoff load (%).

Factor
Shiyan Tiegang Xili

30% 50% 70% 30% 50% 70% 30% 50% 70%

CODMn −2.5 −2.5 −1.1 −0.8 −1.1 −1.1 −6.3 −6.3 −6.3
TN −18.4 −18.4 −7.9 −9.3 −10.2 −10.2 0.0 0.0 0.0

The simulated results showed that a 30% reduction of runoff load gave a maximum water quality
improvement in the Shiyan and Xili Reservoirs, and a 50% reduction in the Tiegang Reservoir. For the
cascade reservoirs, the improvement was the best in the Shiyan Reservoir, followed by Tiegang and
Xili. In addition to the Xili Reservoir, the reduction ratio of TN was greater than that of CODMn.

4.3.3. Pollution Load Reduction of Transferred Water

Table 5 presented the results of water quality improvement ratio under 30%, 50%, and 70% load
reduction of transferred water. Decreasing 30% of the transferred water load also resulted in the
reduction of CODMn and TN concentrations for all the three reservoirs, i.e., 5.1% and 7.6% in the
Shiyan Reservoir, 9.0% and 21.4% in the Tiegang Reservoir, and 6.4% and 0% in the Xili Reservoir,
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respectively. If the decrease ratio was 50%, CODMn and TN concentrations decreased further, i.e., by
8.5% and 13.0% in the Shiyan Reservoir, 14.6% and 35.3% in the Tiegang Reservoir, and 6.4% and 0.0%
in the Xili Reservoir, respectively. In the scenario of decreasing 70% of the transferred water load, the
reductions of CODMn and TN concentrations were raised to 11.9% and 18.4% in the Shiyan Reservoir,
20.3% and 49.2% in Tiegang Reservoir, and 6.3% and 0% in Xili Reservoir, respectively. The water
quality in the Xili Reservoir was affected slightly by the reduction of transferred water load. The main
reason was that the entrance of river into the Xili Reservoir was very close to the transferred water, and
far away from the middle area of the reservoir. It would be beneficial to uniformly mix the polluted
runoff with transferred water.

Along with the increase in reduction ratios of transferred water load, the effects on water quality
improvement would be strengthened in the center area of the Shiyan and Tiegang Reservoirs (Table 6).
The effect on TN concentrations was greater than that of CODMn, and the best improvement of water
quality was in the Tiegang Reservoir (Figure 7), followed by the Shiyan and Xili Reservoirs.
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Table 6. Variation of water quality concentrations in the middle area of the cascade reservoirs on
reducing different proportions of transferred water pollution load (%).

Factor
Shiyan Tiegang Xili

30% 50% 70% 30% 50% 70% 30% 50% 70%

CODMn −5.1 −8.5 −11.9 −9.0 −14.6 −20.3 −6.4 −6.4 −6.4
TN −7.6 −13.0 −18.4 −21.4 −35.3 −49.2 0.0 0.0 0.0

4.4. Identification of the Main Pollution Source for Individual Reservoirs

The received runoff of the Shiyan Reservoir was from heavily polluted diffuse sources and
a sewage drainage system in the Bao’an and Nanshan Districts [44,45]. In addition, as a shallow
reservoir, the sediment release is a critical pollutant source, and the release of nutrients into the water
body would be greatly increased by the disturbance of hydrodynamic conditions, such as wind and
waves [46–48]. The results of scenario simulation showed that the reduction of transferred water load
would be the most significant for reducing the CODMn concentration, with an average reduction of
8.5%. However, the most effective measure for TN concentration was to reduce the runoff load with an
average reduction of 14.9%.

In the Tiegang Reservoir, the transferred water flowed into the center area through a long narrow
waterway (shown in Figure 1), so the water quality in the center area was most affected by transferred
water. The results of scenario simulations showed that the reduction of transferred water load would
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be the most effective measure for decreasing both CODMn and TN concentrations, with average
reductions of 14.6% and 35.3%, respectively.

In the Xili Reservoir, the clean transferred water mixed with the local polluted runoff thoroughly.
Thus, the pollution load reduction resulted in only slight effects on water quality improvement.
Thus, similar performances of local runoff load reduction and transferred water load were detected,
but increasing the transferred water volume could improve the water quality to the greatest extent,
especially in the flood season. The average reductions were 19.0% and 10.4% for CODMn and TN
concentrations, respectively.

Several strategies should be implemented to relieve the impact of main pollution sources for
individual reservoirs, such as construction of sewage treatment plants or artificial wetlands to
reduce river pollution loads in the local region (Shenzhen) or the water source region (Heyuan),
and increasing the transfer water volume from Heyuan through the Dongshen Water Supply Project.
The cost–benefit should be assessed for every strategy. For example, the charge for water treatment in
the cities of Shenzhen and Heyuan, and the charge for water transfer are 1.29, 1.40, and 1.07 RMB/m3,
respectively [49,50]. Thus, the unit-cost of water treatment in the water source region is the greatest,
followed by water treatment in Shenzhen and then transfer of water. Although the water quality is in
good condition (i.e., Grades I~II) for the water source region and transfer water, the water quantity
is usually greater, e.g., 435 million m3 per year for water transfer. The local rivers in Shenzhen are
seriously polluted, inferior to Grade V, but the water quantity is 63.34 million m3 per year for the three
reservoirs. Therefore, there is no great potential for water improvement in the water source region due
to good water quality and high costs of water treatment. For local rivers, there is a great potential for
improvement by water transfer or water treatment. By estimation, if the water quality concentration
reaches the protection objective of the water function zone (Grade III) for local rivers, the cost for water
transfer strategy would be 4.82~15.0 RMB/m3 polluted water, while that for combination strategies
of water treatment and water transfer would be 4.77~9.85 RMB/m3 polluted water. Therefore, the
combination of water transfer and local river treatment is a probable economic strategy for water
quality improvement in the drinking water sources in the city of Shenzhen, China.

5. Conclusions

As one of the most important water sources of urban water supply in China, the reservoir water
quality directly affects urban water supply security. Hydrodynamics and water quality models can be
used to describe the spatial and temporal distributions of water quality variables and provide technical
support for water environment management. In our study, a three-dimensional surface water modeling
system (EFDC) was used to establish hydrodynamic and water quality model for the regulated cascade
reservoirs. The relationships between water quality and improvement measures were quantified and
the main pollution sources were identified for individual reservoirs. Results showed the following:

(1) The hydrodynamic and water quality processes in the regulated cascade reservoirs were well
simulated by EFDC. The correlation coefficients of water level simulation in the Shiyan, Tiegang
and Xili Reservoirs reached 0.97, 0.997, and 0.98, respectively. The mean absolute errors were
only 0.09 m, 0.08 m, and 0.08 m, respectively. Models could well reproduce spatiotemporal
heterogeneity of water quality concentrations (CODMn and TN). Due to the dramatic decrease
in water level in the last three months, the simulated water quality concentrations of the Xili
Reservoir were overestimated, and the performance was not as good as that of the Shiyan and
Tiegang Reservoirs.

(2) An increase of transferred water volume, or pollution load reductions of local runoff and
transferred water, would improve the water quality conditions in the cascade reservoirs. The most
effective method for water quality improvement was to reduce local runoff load for TN and
transferred water load for CODMn in the Shiyan Reservoir, reduce transferred water load in the
Tiegang Reservoir, and increase transferred water volume, especially in the flood season, in the
Xili Reservoir.
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(3) To improve the water quality of cascade reservoirs in Shenzhen, the control of diffuse
rainfall-runoff pollution should be a priority and can be achieved by establishing a sewage
discharge permission system, constructing ecological river wetlands, and other physical and
biological measures. In addition, sedimentation should be cleaned up regularly to reduce internal
pollution, particularly for the Shiyan and Xili Reservoirs. For the cost–benefit analysis, the
combination of water transfer and local river treatment is a probable economic strategy for water
quality improvement.

Due to the severe disturbance of the Water Diversion Project, the water quality simulation was
very complicated. Although the TN simulation performance was slightly weak, CODMn concentrations
were simulated satisfactorily, particular for the water level. All the simulation performances were
superior to those performed in the Shanmei Reservoir and Danjiangkou Reservoir of China [51,52].
The simulation performance will be further improved and validated if more observations from different
years are collected. Other water quality variables, such as total phosphorus, dissolved oxygen, water
temperature, and chlorophyll, should be also simulated with consideration of interaction mechanisms
among different variables. Moreover, the ensemble Kalman filter may be a good way to assimilate
water quality variables and make significant simulation improvements [35].
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