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Abstract: We present and validate a global parametric model of potential evapotranspiration
(PET) with two parameters that are estimated through calibration, using as explanatory variables
temperature and extraterrestrial radiation. The model is tested over the globe, taking advantage of
the Food and Agriculture Organization (FAO CLIMWAT) database that provides monthly averaged
values of meteorological inputs at 4300 locations worldwide. A preliminary analysis of these data
allows for explaining the major drivers of PET over the globe and across seasons. The model
calibration against the given Penman-Monteith values was carried out through an automatic
optimization procedure. For the evaluation of the model, we present global maps of optimized
model parameters and associated performance metrics, and also contrast its performance against
the well-known Hargreaves-Samani method. Also, we use interpolated values of the optimized
parameters to validate the predictive capacity of our model against monthly meteorological time
series, at several stations worldwide. The results are very encouraging, since even with the use of
abstract climatic information for model calibration and the use of interpolated parameters as local
predictors, the model generally ensures reliable PET estimations. Exceptions are mainly attributed
to irregular interactions between temperature and extraterrestrial radiation, as well as because the
associated processes are influenced by additional drivers, e.g., relative humidity and wind speed.
However, the analysis of the residuals shows that the model is consistent in terms of parameters
estimation and model validation. The parameter maps allow for the direct use of the model wherever
in the world, providing PET estimates in case of missing data, that can be further improved even
with a short term acquisition of meteorological data.

Keywords: potential evapotranspiration; Penman-Monteith method; parametric model; CLIMWAT
2.0 database; spatial interpolation; calibration; validation

1. Introduction

Evaporation, which is an overall term covering all processes in which liquid water is
transferred as water vapour to the atmosphere—definition already provided by ancient Greek
philosophers [1]—is crucial element of multiple disciplines and an essential input of hydrological
modelling, water resources management, irrigation planning, and climatological studies. Numerous
efforts are reported in the literature, presenting different expressions of evaporation (including actual,
potential, reference crop, and pan evaporation), based on different types of data. McMahon et al. [2,3]
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provide a major discussion of the background theory and definitions, as well as a critical assessment of
the models developed so far.

Here, we emphasize the concept of potential evapotranspiration, PET, which is a theoretical
quantity considered as “the rate at which evapotranspiration would occur from a large area completely
and uniformly covered with growing vegetation, which has access to an unlimited supply of soil
water, and without advection or heating effects” [4]. Since PET depends on soil properties, a better
defined term is the so-called reference crop evapotranspiration, introduced by Doorenbos and Pruitt [5],
and typically denoted as ET0, which refers to the evapotranspiration from a standardized vegetated
surface (i.e., actively growing and completely shading grass of 0.12 m height, surface resistance
70 s ·m−1, and albedo = 0.23). The globally accepted method for consistent estimation of PET is the
Penman-Monteith (herein referred to as PM) equation, as formalized by the Food and Agriculture
Organization (FAO), which is physically-based, and is therefore used as standard for comparisons
with other, more simple approaches [6]. The major drawback for the generalized application of the
PM method worldwide is the need of simultaneous measurements of four meteorological variables
(air temperature, wind speed, relative humidity, and net radiation or, alternatively, sunshine duration),
at the desirable spatial and temporal resolution.

To overcome the data requirements of the PM formula, a number of alternative approaches have
been developed, which are typically classified into temperature-based and radiation-based; the former
use only temperature observations, which are dense and easily accessible, while the latter also use
values of extraterrestrial radiation (which is, in fact, periodic function of latitude and time). For many
decades, such approaches have been widely applied for PET modelling worldwide using the standard
“literature” values of the parameters involved in their governing equations. However, since these
have been developed for specific studies, locations, and climatic conditions [7], their applicability
outside of these distinct conditions usually result in unreliable predictions, introducing significant
bias in PET estimations. For this reason, and particularly in the last years, significant attention is
payed to local calibrations of empirical PET models, either by using direct PET observations at the
field scale (e.g., lysimeter measurements) and/or against simulated PET data, provided by the PM
formula. One of the first attempts is reported by Allen and Pruit [8], who calibrated and validated
the Blaney–Criddle model against PM data, using local wind function and taking advantage of daily
lysimeter measurements of alfalfa evapotranspiration. Similar calibration approaches were employed
for all of the widespread PET formulas, such as the Thornthwaite, Blaney–Criddle and Priestley-Taylor
(e.g., [9–11]), and other empirical expressions as well (e.g., [12]). Many recent publications also focus
on the re-evaluation of the sole parameter of the Hargreaves equation against regional data, for a range
of climatic regimes [13–17].

Although the spatial resolution and accuracy of meteorological data over the extended areas of
the globe is not sufficient, current advances in remote sensing technologies allowed quite reliable
estimations of PET by combining satellite and ground information [18]. Since gridded data of
meteorological inputs and canopy characteristics is now easily accessible, several researchers employed
PET estimations at large spatial scales, up to global [19–22], by employing scaling and interpolation
techniques of varying physical complexity [23].

In two recent studies, Tegos et al. [24,25] calibrated a simplified radiation-based expression of
the PM formula, using monthly meteorological data from a large number of stations over Greece
and California, respectively. In both areas, the proposed formula, which contains either three or
two free parameters, clearly outperformed other widely used methods, such as Hargreaves and
Samani [26], Oudin et al. [12], and Jensen and Haise [27], as modified by McGuinness and Bordne [28].
Malamos et al. [29] also employed the parametric model at the daily scale, in the context of PET
mapping over the irrigated plain of Arta, Western Greece.

In the present study, we employ the simplified (i.e., with two parameters) expression of the
aforementioned model over the globe, by inferring its parameters through calibration against given
Penman-Monteith values (next referred to as reference PET or ET0). The meteorological inputs and
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ET0 data are retrieved by the FAO CLIMWAT database that provides monthly climatic information at
4300 locations worldwide. A preliminary analysis of these data allowed explaining the major drivers
of PET over the globe and across seasons. We perform extended analysis of the model inputs and
outputs, including the production of global maps of optimized model parameters and associated
performance metrics, as well as comparisons with a widely known formula by Hargreaves and
Samani [26]. Finally, we use the interpolated values of the optimized parameter values to validate the
predictive capacity of the model against detailed meteorological data, in terms of monthly time series,
at several stations worldwide. The results are very encouraging, since even with the use of abstract
climatic information for its calibration, the model generally ensures very reliable PET estimations.
However, we have detected few cases where the model systematically fails to reproduce the reference
PET, particularly across tropical areas. Except for these specific areas, the parameter estimations
through the derived maps can be directly employed within the proposed formula, at both point and
regional scales.

2. Theoretical Background

2.1. The Penman-Monteith Equation

The Penman-Monteith equation for estimating potential evapotranspiration from a vegetated
surface, as formalized by Allen et al. [30], is:

PET =
1
λ

∆(Rn − G) + ραcα(v∗a − va)/ra

∆+ γ
(

1 + rs
ra

) (1)

where PET is the daily potential evapotranspiration (mm · d−1); Rn is the net incoming daily radiation
at the vegetated surface (MJ · m−2 · d−1); G is the soil heat flux (MJ · m−2 · d−1); ρa is the mean air
density at constant pressure (kg · m−3); ca is the specific heat of the air (MJ · kg−1 · ◦C−1); ra is an
aerodynamic or atmospheric resistance to water vapour transport for neutral conditions of stability
(s ·m−1); rs is a surface resistance term (s ·m−1); va* − va is the vapour pressure deficit of the air (kPa),
defined as the difference between the saturation vapour pressure va* and the actual vapour pressure va;
λ is the latent heat of vaporization (MJ · kg−1); ∆ is the slope of the saturation vapour pressure curve
at specific air temperature (kPa · ◦C−1); and, γ is the psychrometric constant (kPa · ◦C−1). Given that
the typical time scale of the PM equation is daily, all of the associated fluxes are expressed in daily or
mean daily units.

We remark that the original Penman equation does not include the soil heat flux term, G,
since Penman noted that, in his experiments, its impact in the energy balance was less than 2% [31].
Nevertheless, evaporation estimations are sensitive to G only when there is a large difference between
successive daily temperatures [2]. In this respect, in most of practical applications this flux is not
accounted for, thus leaving the net incoming daily radiation, Rn, as the sole energy term to be
assessed; the latter is defined as the difference between incoming and outgoing radiation of short and
long wavelengths.

Apart from the site location, expressed in terms of latitude, ϕ, the PM equation requires air
temperature, relative humidity, solar radiation, and wind speed data for calculating the model’s
variables. FAO provides detailed guidelines for the cases of proxy or missing meteorological
information. A typical example is the determination of solar radiation from measured duration
of sunshine or cloud cover. Moreover, FAO suggests using average daily maximum and minimum air
temperatures, instead of mean daily temperature, to represent more accurately the non-linearity of the
saturation vapour pressure—temperature relationship. If fact, the use of mean air temperature yields a
lower saturation vapour pressure va*, and hence a lower vapour pressure difference va* – va, and lower
reference evapotranspiration estimates [30].
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2.2. The Parametric Formula

The parametric model, initially proposed by Koutsoyiannis and Xanthopoulos [32], and then
formalized and implemented by Tegos et al. [24,25,33,34], provides PET estimates through calibration
based on given (“reference”) PET data. The model performance was satisfying as the proposed
framework provides consistent monthly PET estimates at point and especially at the regional scale.
The most recent application was the daily and monthly implementation of the model for the PET
mapping in an irrigated plain of Greece [29] and the investigation of trend analysis in Greece through
the development of an R-script tool [35].

The mathematical expression of the parametric model, which is applicable to temporal scales
from daily to monthly, is the following:

PET =
aRa + b
1− cT

(2)

where PET is the potential evapotranspiration in mm, Ra (kJ · m−2) is the extraterrestrial radiation,
T (◦C) is the mean air temperature, and a (kg · kJ−1), b (kg ·m−2), and c (◦C−1) are model parameters
that should be inferred through calibration, against “reference” PET data, either modelled or measured.
We remark that from a macroscopic point-of-view, the above parameterization has some physical
correspondence to the PM equation, since the product a Ra represents the overall energy term
(i.e., incoming minus outgoing solar radiation), parameter b represents the missing aerodynamic
term, while quantity (1 − c T) is an approximation of the denominator term of the PM formula [24].

Equation (2) uses two explanatory variables, namely extraterrestrial radiation, Ra,
and temperature, T, and thus it belongs to the so-called radiation-based approaches. The extraterrestrial
radiation, defined as the solar radiation received at the top of the Earth’s atmosphere on a horizontal
surface, is an astronomic variable, given by:

Ra =
24(60)

π
Gscdr[ωs sin(ϕ) sin(δ) + cos(ϕ) cos(d) sin(ωs)] (3)

where Gsc is the solar constant, with typical value 82 kJ ·m−2 ·min−1, dr is the inverse relative distance
of the Earth from the Sun, ωs (rad) is the sunset hour angle, ϕ is the latitude (rad), and δ is the solar
declination (rad). Variables dr and δ are periodic functions of time, while ωs is function of latitude and
time. For details on computing the above astronomic variables, the reader may refer to the literature
(e.g., [3]).

While for a given location the extraterrestrial radiation is a highly regular and fully predictable
variable, thus only explaining the periodicity of PET, temperature exhibits quite irregular variability,
thus explaining the fluctuations of PET, which is key component of the changing hydrological cycle,
at all temporal scales, from daily to annual and even larger ones, i.e., overannual [36]. Following FAO
recommendations, we can also take advantage from minimum and maximum daily temperature data,
thus estimating the temperature term by the average:

T = (Tmin + Tmax)/2 (4)

This expression may be particularly useful in cases when records of mean daily temperature are
missing, while average minimum (Tmin) and maximum temperature (Tmax) values are available.

2.3. Modified Parametric Model

It is well-known that the variability of daily and, even more, monthly PET is relatively small,
if compared to other hydrometeorological variables, such as precipitation and runoff. For this reason,
when attempting to estimate the model parameters a, b, and c through calibration, it is quite easy
to achieve very high values of goodness-of-fitting criteria (e.g., efficiency), through combinations of
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parameter values that do not have physical sense. Additional uncertainty arises when the actual PET
data is little informative to support the inference of the three parameters, e.g., due to limited length
of associated meteorological data. In this respect, to avoid uncertainties due to “blind” calibration
approaches or overfitting [37], we propose using the more parsimonious expression (also considering
the minimum and maximum temperature, instead of the mean daily one):

PET =
a′ Ra

1− c′(Tmin + Tmax)/2
(5)

which contains two instead of three parameters (parameter a′ in the numerator and parameter
c′ in the denominator). Apparently, in the context of a calibration exercise using alternative
expressions (2) and (5), the optimized values of c and c′ should be different.

The modified parameterization (Equation (5)) resembles the well-known approach by Priestley
and Taylor [38], who developed a PET formula based on the original PM equation, but without the
aerodynamic component; the latter was indirectly accounted by increasing the energy term by a factor
of 1.26. For simplicity, this factor is generally considered as constant; however, several researchers
have demonstrated that this exhibits quite significant seasonal and spatial variability (2).

3. The CLIMWAT Database: Preliminary Analysis

3.1. Database Overview

The CLIMWAT 2.0 database is a joint initiative by the Water Development and Management Unit
and the Climate Change and Bioenergy Unit of FAO [39], which provides average monthly climatic data
at 4300 stations (Figure 1, blue points), well-distributed worldwide. These data include monthly mean
values of mean daily maximum and minimum temperature (◦C), daily relative humidity (%), wind
speed (km · day−1), daily sunshine duration (h), daily solar radiation (MJ ·m−2), monthly rainfall, gross
and effective (mm), as well as mean monthly ET0 estimations through the Penman-Monteith formula.
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The exceptionally large sample of climatic data allows for extracting useful conclusions about the
major drivers of PET over the globe. In this context, we employed a comprehensive statistical analysis
of reference PET data against the available meteorological variables, at both the annual and monthly
scales. The outcomes of this analysis are summarized in Sections 3.2 and 3.3, respectively.

3.2. Which Meteorological Drivers Explain Mean Annual PET over the Globe?

In order to answer this question, we plotted reference PET (i.e., ET0) data against the four
meteorological variables that are embedded in the Penman-Monteith equation, i.e., solar radiation,
mean temperature estimated from Equation (4), relative humidity and wind speed, at the annual scale,
and fitted the most suitable regression model.

Figure 2 illustrates that mean annual ET0 over the globe is highly correlated with mean annual
solar radiation and temperature, particularly when considering power-type or exponential regression
functions. As expected, mean annual ET0 is negatively correlated with mean relative humidity, while it
seems uncorrelated to wind speed. It is worth mentioning that as the solar radiation and temperature
increase, the variance of ET0 increases significantly. Therefore, in order to reduce heteroscedasticity
effects, it is essential considering at least two explanatory variables in the context of empirical
PET modelling.

Figure 2 also demonstrates the variability of mean annual ET0 against mean annual sunshine
duration and annual extraterrestrial radiation, which are typically used instead of solar radiation,
in PET estimations (given that solar radiation observations are generally sparse, due to the cost of
associated equipment, i.e., pyranometers, radiometers or solarimeters). Surprisingly, the mean annual
sunshine duration is slightly less correlated with mean annual ET0 than extraterrestrial radiation,
although the former is expected to be better estimator of the actual solar energy received in the
Earth’s surface. This is a very important conclusion that confirms the suitability of radiation-based
approaches, using both temperature and extraterrestrial radiation as explanatory variables of PET.
However, it is essential remarking that the overall driver of PET and temperature as well is net solar
radiation, which is a portion of the extraterrestrial one. Furthermore, the correlation between PET
and temperature is so much significant only at coarse time scales, such as the annual one, while its
correlation with the solar radiation remains significant, at all temporal scales [40].

Water 2017, 9, 795  6 of 23 

 

3.2. Which Meteorological Drivers Explain Mean Annual PET over the Globe? 

In order to answer this question, we plotted reference PET (i.e., ET0) data against the four 
meteorological variables that are embedded in the Penman-Monteith equation, i.e., solar radiation, 
mean temperature estimated from Equation (4), relative humidity and wind speed, at the annual 
scale, and fitted the most suitable regression model.  

Figure 2 illustrates that mean annual ET0 over the globe is highly correlated with mean annual 
solar radiation and temperature, particularly when considering power-type or exponential 
regression functions. As expected, mean annual ET0 is negatively correlated with mean relative 
humidity, while it seems uncorrelated to wind speed. It is worth mentioning that as the solar 
radiation and temperature increase, the variance of ET0 increases significantly. Therefore, in order to 
reduce heteroscedasticity effects, it is essential considering at least two explanatory variables in the 
context of empirical PET modelling. 

Figure 2 also demonstrates the variability of mean annual ET0 against mean annual sunshine 
duration and annual extraterrestrial radiation, which are typically used instead of solar radiation, in 
PET estimations (given that solar radiation observations are generally sparse, due to the cost of 
associated equipment, i.e., pyranometers, radiometers or solarimeters). Surprisingly, the mean 
annual sunshine duration is slightly less correlated with mean annual ET0 than extraterrestrial 
radiation, although the former is expected to be better estimator of the actual solar energy received 
in the Earth’s surface. This is a very important conclusion that confirms the suitability of 
radiation-based approaches, using both temperature and extraterrestrial radiation as explanatory 
variables of PET. However, it is essential remarking that the overall driver of PET and temperature 
as well is net solar radiation, which is a portion of the extraterrestrial one. Furthermore, the 
correlation between PET and temperature is so much significant only at coarse time scales, such as 
the annual one, while its correlation with the solar radiation remains significant, at all temporal 
scales [40]. 

(a) (b)

(c) (d)

y = 216.88e0.0003x

R² = 0.8451

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000

M
ea

n 
an

nu
al

 E
T0

 (m
m

)

Annual  solar radiation (MJ/m2)

y = 535.24e0.0424x

R² = 0.7283

0

500

1000

1500

2000

2500

3000

3500

-20 -10 0 10 20 30 40

M
ea

n 
an

nu
al

 ET
0 

(m
m

)

Mean annual temperature (oC)

y = -1222ln(x) + 6388.8
R² = 0.3669

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

M
ea

n 
an

nu
al

 ET
0 

(m
m

)

Mean annual relative humidity (%)

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12

M
ea

n 
an

nu
al

 E
T0

 (m
m

)

Mean annual wind velocity (m/s)

Figure 2. Cont.



Water 2017, 9, 795 7 of 22
Water 2017, 9, 795  7 of 23 

 

(e) (f)

Figure 2. Scatter plot of mean annuals of (a) solar radiation, (b) temperature, (c) relative humidity, 
(d) wind speed, (e) sunshine duration, (f) extraterrestrial radiation vs. mean annual ET0.  

3.3. How Well do Extraterrestrial Radiation and Temperature Explain the Seasonal Patterns of PET? 

The key assumption of radiation-based models is that PET follows the seasonal patterns of 
extraterrestrial radiation, Ra, and temperature, T. In general, a loop-type shape exists between the 
mean monthly PET and the two aforementioned variables, due to the influence of thermal inertia, 
causing a delay in temperature changes against solar radiation changes across seasons. Apparently, 
due to the loop-shape relationship, the two pairs of variables are expected to be linearly correlated; 
actually, the more elongate the loop, the higher should be the correlation. In Figure 3, we plotted the 
relationships between monthly extraterrestrial radiation vs. mean monthly ET0 and mean monthly 
temperature vs. ET0, at five characteristic stations in Australia, exhibiting different hydroclimatic 
conditions, which confirm the above hypothesis. However, there are also cases where the shapes of 
T − ET0 and Ra − ET0 loops are irregular (nonconvex), thus resulting in very low, even negative, 
correlations. Such examples are shown in Figure 4, involving another set of stations in Australia. 

(a) (b)

Figure 3. Scatter plots of monthly extraterrestrial radiation, Ra, vs. mean monthly ET0 (a) and mean 
monthly temperature, T, vs. ET0 (b) at five stations in Australia, exhibiting loop-type patterns. 

 

y = 373.59e0.0005x

R² = 0.6526

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000

M
ea

n 
an

nu
al

 ET
0 (

m
m

)

Mean annual  sunshine duration (h)

y = 0.0036x2.1401

R² = 0.6772

0

500

1000

1500

2000

2500

3000

3500

150 200 250 300 350 400 450

M
ea

n 
an

nu
al

 ET
0 

(m
m

)

Annual  extraterrestrial radiation (MJ/m2)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

15 000 20 000 25 000 30 000 35 000 40 000 45 000

M
ea

n 
m

on
th

ly
 E

T 0
(m

m
)

Monthly extraterrestrial radiation (kJ/m2)

ADELAIDE_AIRPORT
CUE
MOUNT_VICTORIA
NEWMAN
SMOKY_CAPE

0.0

2.0

4.0

6.0

8.0

10.0

12.0

5.0 10.0 15.0 20.0 25.0 30.0 35.0

M
ea

n 
m

on
th

ly
 E

T 0
(m

m
)

Mean monthly temperature (oC)

ADELAIDE_AIRPORT
CUE
MOUNT_VICTORIA
NEWMAN
SMOKY_CAPE

Figure 2. Scatter plot of mean annuals of (a) solar radiation, (b) temperature, (c) relative humidity,
(d) wind speed, (e) sunshine duration, (f) extraterrestrial radiation vs. mean annual ET0.

3.3. How Well Do Extraterrestrial Radiation and Temperature Explain the Seasonal Patterns of PET?

The key assumption of radiation-based models is that PET follows the seasonal patterns of
extraterrestrial radiation, Ra, and temperature, T. In general, a loop-type shape exists between the
mean monthly PET and the two aforementioned variables, due to the influence of thermal inertia,
causing a delay in temperature changes against solar radiation changes across seasons. Apparently,
due to the loop-shape relationship, the two pairs of variables are expected to be linearly correlated;
actually, the more elongate the loop, the higher should be the correlation. In Figure 3, we plotted the
relationships between monthly extraterrestrial radiation vs. mean monthly ET0 and mean monthly
temperature vs. ET0, at five characteristic stations in Australia, exhibiting different hydroclimatic
conditions, which confirm the above hypothesis. However, there are also cases where the shapes of
T − ET0 and Ra − ET0 loops are irregular (nonconvex), thus resulting in very low, even negative,
correlations. Such examples are shown in Figure 4, involving another set of stations in Australia.
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Figure 3. Scatter plots of monthly extraterrestrial radiation, Ra, vs. mean monthly ET0 (a) and mean
monthly temperature, T, vs. ET0 (b) at five stations in Australia, exhibiting loop-type patterns.
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Figure 4. Scatter plots of monthly extraterrestrial radiation, Ra, vs. mean monthly ET0 (a) and mean
monthly temperature, T, vs. ET0 (b) at five stations in Australia, exhibiting irregular patterns.

In order to investigate whether extraterrestrial radiation and temperature actually explain the
seasonal patterns of ET0 over the globe, we formulated the linear regression models of mean monthly
ET0 against the two variables and calculated the coefficient of determination, r2 (i.e., square of Pearson
correlation coefficient), at the full sample of 4300 CLIMWAT stations. Table 1 summarizes the results,
by means of number of stations corresponding to ranges of r2, from 0–10% up to 90–100%. It is shown
that ET0 exhibits very high linear correlation, by means of r2 values greater than 0.90 against both
extraterrestrial radiation and temperature at only 642 out of 4300 stations (14.9%). This percentage
rises up to 49.7% (2135 stations) is we consider a wider acceptable range for r2, i.e., upper than 0.80.

On the other hand, at 443 stations over the globe (10.3%), the coefficient of determination is less
than 0.50 against both explanatory variables. Apparently, the particular hydroclimatic regime at these
areas does not allow representing PET through simplified radiation-based approaches, thus requiring
either more complex parameterizations or additional variables to explain the seasonal patterns of
PET due to energy or water limitations, i.e., relative humidity and/or wind speed [41,42]. PET has
been proven sensitive to potential changes in climate in regions with a lower temperature, less solar
radiation, and greater relative humidity, while the influence of the wind velocity and relative humidity
in its estimation is supported by several studies [41–47].

An interesting remark is that in 42 stations (1% of the sample), a linear regression function
of temperature against ET0 ensures r2 greater than 0.90, while at the same stations, the correlation
between ET0 and Ra is negligible (r2 < 0.10). The opposite case, i.e., very high correlation of PET with
Ra, while very low with T appears only once, thus it is statistically negligible. In this vein, we can
consider a linear regression model between mean monthly T and ET0 as benchmark to evaluate the
performance of any other empirical model, which parameters are identified through calibration.

Nevertheless, although a number of studies present alternatives to the PM formula (e.g., [3,48]),
based on the sensitivity of potential evapotranspiration to temperature and/or solar radiation,
the major advantage of our approach is the ability of point calibration of the involved parameters [25].
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Table 1. Ranges of coefficient of determination, r2, between monthly ET0 and the two explanatory
variables, Ra and T, across the full sample of 4300 CLIMWAT stations.

T vs. ET0
Ra vs. ET0

0–10% 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100% Total

0–10% 55 17 9 12 8 9 8 7 4 1 130
10–20% 38 11 7 4 11 8 3 3 5 3 93
20–30% 33 16 13 13 5 7 8 10 9 4 118
30–40% 36 14 24 10 7 5 12 12 8 15 143
40–50% 29 14 17 18 22 17 19 13 13 18 180
50–60% 34 10 17 16 17 28 26 21 26 31 226
60–70% 30 10 23 15 21 30 37 30 31 52 279
70–80% 45 11 15 19 28 20 44 48 77 135 442
80–90% 69 14 14 10 17 34 38 78 362 643 1279

90–100% 42 6 6 5 9 30 35 147 488 642 1410
Total 411 123 145 122 145 188 230 369 1023 1544 4300

4. Model Calibration

4.1. Evaluation Criteria

The large-scale PET information provided by FAO CLIMWAT database was used as reference
data, for calibrating the parametric expression (Equation (5)), thus providing local estimations of
parameters a′ and c′ at all station sites. For the evaluation of the model performance against reference
PET (i.e., ET0) we used the following statistical criteria:

1. The coefficient of determination, most commonly referred to as efficiency or Nash-Sutcliffe efficiency:

NSE = 1− ∑T
t=1

(
PETt

mod − PETt
obs

)2

∑T
t=1

(
PETt

obs − PETobs
)2 (6)

2. The mean absolute error:

MAE =
∑T

t=1

∣∣∣PETt
obs − PETt

mod

∣∣∣
T

(7)

3. The relative bias:

BIAS =
∑T

t=1(PETt
mod − PETt

obs)

∑T
t=1(PETt

obs)
(8)

where PETt
obs is the ET0 value, estimated by the PM formula at time step t, PETt

mod is the modeled
value at time step t, PETobs is the monthly average value of the reference PET, and T is total number of
time steps (in the particular case, T equals the number of months, i.e., 12).

In calibrations, we used as performance measure the NSE, while the two other statistical metrics
have been used for further evaluation. It is well-known that NSE ranges between −∞ and 1,
with NSE = 1 indicating perfect fitting of the modelled against the given reference values. Due to the
generally high linear correlations of Ra and T against ET0, we only consider values greater than 0.70 as
satisfying, whereas positive values less than 0.50 are only marginally accepted. On the other hand,
negative NSE values are definitely unacceptable, since they indicate that the mean observed value is
a better predictor than the simulated value. The mean absolute error and the bias are quite similar
metrics, quantifying in absolute (i.e., mm/month) and relative (%) terms the deviation of the mean
modelled ET0 from the corresponding mean reference value, Qobs.
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4.2. Optimization Procedure

At each station, we formulated the associated global optimization problem, based on the given
12 monthly average values of ET0, and using NSE as the objective function to maximize against
parameters a′ and c′. Within calibration, we have considered a quite extended feasible space,
by allowing a′ and c′ to vary within ranges [–0.02, 0.02] and [–5.0, 5.0], respectively. The global search
was carried out with the evolutionary annealing-simplex algorithm, which is a heuristic technique that
has been proved very effective on locating global optima in highly nonlinear spaces [49,50].

Due to the exceptionally large number of calibration problems to be solved at the full sample of
4300 stations, the computational procedure was automatized in a MATLAB environment.

4.3. Assessment against Linear Regression Estimations

In order to assess the predictive capacity of the parametric model, we compare its performance
against two benchmarks by means of linear regression models of reference PET against T and
Ra. In Figure 5 we contrast the ranges of coefficients of determination, r2, achieved by the two
linear regression models and the nonlinear parametric model, for the entire sample of 4300 stations.
The parametric model ensures very satisfying efficiency (NSE > 0.90) in 58.8% of stations, while only
32.8% and 35.9% of stations exhibit such good performance, considering the linear regression models
against T and Ra, respectively. In 2562 stations (59.6%), the parametric approach outperforms
both regression models, while in 1327 stations (30.9%) it outperforms at least one model. Only in
411 stations (9.6%) the two benchmarks achieve a higher r2 than the parametric approach. We remark
that in linear regression theory, r2 is mathematically equivalent to efficiency, which is the most widely
used goodness-of-fitting measure for evaluating nonlinear models. However, while the coefficient
of determination of a nonlinear model can take any value from −∞ to unity, in linear regression this
metric is by definition non-negative (r2). Moreover, linear regression models are by definition unbiased,
given that the least-square line is forced to pass through the observed mean.

However, there are relatively few cases where the parametric model, even after calibration,
does not ensure good predictive capacity. In particular, at 10.3% of stations, the model exhibits
marginally accepted performance (0 < NSE < 0.50), while in 4.7% of stations the model predictions are
definitely unacceptable (NSE < 0). In these cases, it is impossible to achieve acceptable predictions
of mean monthly ET0 through the parameterization implemented in Equation (5), because of the
irregular relationship of ET0 vs. the two explanatory variables, or due to the influence of additional
meteorological drivers (relative humidity and wind speed) as rationalized in Section 3.3.
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4.4. Assessment against Hargreaves-Samani Estimations

The substantial advantage of a parametric approach, allowing calibration, over an empirical
formula with given numerical constants, is further highlighted by contrasting our predictions with the
ones provided by the well-known Hargraves-Samani equation, given by:

ET0 = 0.408× [0.0023× Ra(T + 17.8)] (Tmin − Tmax)
2 (9)

where T is the mean monthly temperature.
As shown in Table 2, providing abstract information on model efficiency in terms of quartiles,

in the majority of stations the predictive capacity of Equation (9) is absolutely disappointing,
mainly due to the existence of substantial bias in ET0 estimations across stations. This bias is actually
embedded in the coefficients that are embedded in Equation (9), which have been estimated on the
basis of specific climatic regime, which cannot be representative of any conditions worldwide. On the
other hand, Equation (5) with calibrated parameters ensures very satisfactory performance in an
extended part of the station sample, since the model is adapted to local climatic conditions.

Table 2. NSE quartiles for the Hargraves-Samani against the parametric model.

Quartiles Hargreaves-Samani Parametric

Minimum value −327.204 −5.997
1 −5.834 0.721
2 −0.971 0.947
3 0.245 0.984
4 0.980 0.999

5. Assessment of Model Performance across Geographical Zones

5.1. Final Data Sample

Based on point calibration results, we excluded from further analysis the 4.7% of stations
exhibiting negative efficiency, thus the final sample was restricted to 4088 stations. For convenience,
we grouped them in five geographical zones, namely 908 stations in Africa, 352 in the wider region
of Oceania, 1854 in Eurasia, 369 in North America, and 605 in South America. As shown in Table 3,
the majority of the stations (69.9%) are located in altitudes between 0 and 500 m, 21.6% of them are
located between 500 and 1500 m, while only 8.5% of them are placed in altitudes greater than 1500 m.
We also remark that the stations located in Eurasia and in America follow a quite similar distribution,
while in the case of Africa there is a larger percentage located in higher altitudes. On the other hand,
in Oceania, the majority of stations are placed in altitudes up to 500 m.

Table 3. Altitude distribution (%) of the calibration set of CLIMWAT stations (4088 stations, in total).

Region
Altitude

<500 m 500–1000 m 1000–1500 m >1500 m

Africa 53.6 14.5 16.2 15.7
Oceania 90.9 6.7 0.9 1.5
Eurasia 75.8 12.9 6.9 4.4

N. America 68.1 14 7.7 10.2
S. America 65.4 15.9 5.3 13.4

Total 69.9 13.3 8.3 8.5

5.2. Residuals Analysis for Stations with Negative NSE

In order to explain the poor performance of the model at the problematic 212 stations shown
in Figure 6 (highlighted with blue points), we investigated the model residuals, i.e., the differences
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between model predictions and PM estimations. As shown in Figure 7, the residuals are approximately
normally distributed, while as shown in Figure 8, they are uncorrelated. Therefore, the statistical
behavior of the residuals is close to the desirable one (i.e., white noise), indicating absence of systematic
errors [51,52]. The negative NSE values are attributed to local overestimation during the warm months
or underestimation during the cold months of the year, respectively, driven from the absence of relative
humidity and wind speed from the parametric model formulation.

In order to further evaluate the effect of missing information of relative humidity and wind speed
on the produced residuals, we plotted both of them along with the corresponding linear models,
as presented in Figure 9. This illustrates that there is a significant linear correlation between the relative
humidity and the estimation errors—residuals while the opposite seems to be the case for the wind
speed. The absence of these two variables as explanatory input variables within the parametric model
seem to be crucial in regions with seasonal variations of ET0 due to energy or water limitations mainly
in the tropical zone, as shown in Figure 6.
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5.3. Evaluation of Model Performance across Geographical Zones

According to the acquired values of NSE (Table 4, Figure 10), the parametric model performs well
in Eurasia, North America, and the wider region of Oceania, where 80%, 80%, and 77% of stations,
respectively, present efficiency values more than 0.80. In South America, 66% of stations achieve a
score greater than 0.80, while in Africa, this percentage falls to 50%. In particular, 22% of stations in
Africa achieved NSE values below 0.50, which indicates a poor predictive capacity.

The mean absolute error of the parametric model in every geographical unit is small (Table 5).
In South America, the MAE of the 95% of the stations is below 4 mm/month. This percentage is 88%
for the wider region of Oceania, 79% for North America, 76% for Eurasia, and 72% for Africa.

Table 6 summarizes the values of the relative bias of the parametric model against the reference
PET values, for all of the geographical units (Figure 11). It is obvious that the values are generally small,
ranging from –0.122 to +0.062 proving that the results of the parametric model are almost unbiased for
the majority of the stations. The differences between the biases across the geographical zones are not
important, since the variation between the extreme values is similar.

The overall evaluation of the model across the different geographical areas is very satisfactory.
All of the metrics prove that the predictive capacity of the model is very satisfying across Eurasia,
North America, and the wider region of Oceania. On the other hand, in the equatorial regions of South
America, Africa as well as the Indian and Indonesian Peninsula (Figure 6), the model performs poorly
according to the NSE criterion, probably because it does not account for relative humidity and wind
speed, which are key drivers of the evapotranspiration processes across these areas, influencing the
net incoming solar radiation and the evaporation demand.
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Table 4. Number of stations and associated NSE intervals across geographical zones.

Region 1.0–0.9 0.9–0.8 0.8–0.7 0.7–0.6 0.6–0.5 <0.5

Africa 34 16 12 9 7 22
Oceania 67 10 7 4 1 11
Eurasia 68 12 7 4 3 6

N. America 65 15 5 3 2 10
S. America 54 12 10 7 6 11

Table 5. Number of stations and associated intervals of monthly MAE across geographical zones.

Region 0–2 mm 2–4 mm 4–6 mm 6–8 mm 8–10 mm >10 mm

Africa 36 36 15 6 3 4
Oceania 52 36 9 3 0 0
Eurasia 39 37 17 5 1 1

N. America 40 39 17 3 1 0
S. America 69 26 4 1 0 0

Table 6. Number of stations and associated intervals of BIAS across geographical zones.

Region −0.122–0.000 0.000–0.001 0.001–0.062

Africa 65 14 21
Oceania 38 12 50
Eurasia 72 5 23

N. America 68 13 19
S. America 55 15 30
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6. Spatial Analysis and Model Validation

6.1. Spatial Interpolation of Optimized Parameters

Even though point PET estimates can be used for small-scale studies, it is the regionalisation of PET
that is of great significance in hydrological science [53]. A preliminary attempt in PET mapping was
presented by Foyster [54], and followed by several publications where different spatial interpolation
methods have been applied [55–59], with satisfying performance. In a recent study, Tegos et al. [25]
illustrated that the inverse distance method (IDW) was the most efficient than other interpolation
techniques, i.e., Kriging, Bilinear Surface Smoothing and Natural Neighbours. Furthermore, IDW is
a straightforward and computationally non-intensive method, which is capable to address the huge
spatial extent of the study area, i.e., the entire globe.

Formally, the IDW method is used to estimate the unknown value ŷ(S0) in location S0 given the
observed y values at sampled locations Si in the following manner:

ŷ(S0) = ∑n
i=1 λiy(Si) (10)

Essentially, the estimated value in S0 is a linear combination of the weights (λi) and observed
y values in Si, where λi is defined as:

λi =
d–a

0i
∑n

i=1 d–a
0i

(11)

with:
n

∑
i=1

λi = 1 (12)

In Equation (10), the numerator is the inverse of distance d0i between S0 and Si with a power α,
and the denominator is the sum of all inverse-distance weights for all locations i (in the particular case,
all stations exhibiting positive efficiency).
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6.2. Spatial Distribution of Parameters

Our approach allows for mapping the spatial distribution of the optimized model parameters
a′ and c′, instead of its response, i.e., PET. This is a major advantage, since it allows implementing
Equation (5) wherever in the globe, using interpolated values of the point (i.e., locally calibrated)
parameters. It is interesting to note that the two parameters are negatively correlated (Figure 12),
thus reflecting the significant correlation of the associated meteorological variables of the parametric
formula (extraterrestrial radiation, in the numerator, and temperature, in the denominator).
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In this context, based on the optimized parameters from the final data set of 4088 stations
(as already explained, the rest of stations are not acceptable, and hence the corresponding parameter
values will be unreliable), we created maps of spatially-interpolated parameters over the globe.
The IDW method was employed in a GIS environment, considering for practical reasons (i.e., in order
to avoid extreme computational burden), a relatively large grid size of 0.1 decimal degrees in WGS84
coordinate system and a variable search radius including the 12 nearest stations, in order to tackle the
measurement of large distances across the globe.

Figure 13 illustrates the spatial distribution of parameter a′. The highest values are generally
observed around the equatorial zone, while they are getting lower as we move away from it. This is a
reasonable outcome since this parameter is associated with solar radiation. This means that around
the equatorial zone, where the incoming solar radiation is higher, the values of parameter a′ are to be
higher while around the poles, where solar radiation is lower, the values of parameter a′ were expected
to be lower. Another observation is that in the case of two stations, one located at Brazil and one at the
Democratic Republic of Congo, the calculated values for parameter a′ were low, creating “sinkholes” in
the corresponding maps. This is explained from the fact that at those areas, the hydro-meteorological
network is not dense enough, thus the influence of the specific stations extends, as a direct effect
of the IDW implementation. Apart from this, the spatial analysis of parameter a′ is normal and
physically explained.

In contrast to parameter a′, the spatial distribution of parameter c′, depicted in Figure 14,
the lowest values around the equatorial zone, while these are getting higher as we move away
from the equator. Since c′ is inversely proportional to temperature, it was expected that its values get
higher as temperature is getting lower and vice versa. In the case of the above stations, i.e., one at
Brazil and one at the Democratic Republic of Congo, the values of parameter c′ were extremely high,
contrariwise to parameter a′. The explanation for this phenomenon is the same as above, yet in this
case the interpolation method resulted in a ridge-type distribution over the specific areas.
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Conclusively, the model results can be considered reliable, since the spatial distribution of both
parameters around the globe is physically explained, while minor irregularities are also attributed to
physical reasons, i.e., inadequate representation of humidity and wind processes.
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6.3. Model Validation

The validation of the model was performed by comparing monthly ET0 predictions provided by
the parametric formula (Equation (5)), using interpolated parameters against PM estimates in a number
of independent stations. In particular, we considered two validations sets, a “local” and a “global”
one. The former comprises 37 stations across California, for which monthly meteorological time series
are available from the California Irrigation Management Information System [60]. The “global” set
comprises 17 stations from countries with different hydroclimatic regimes (Spain, Germany, Ireland,
Greece, Iran, and Australia), for which we obtained full time series of the required meteorological data,
at the monthly scale, form various data sources.

For the local validation set (Table 7), the model predicts monthly ET0 with significant accuracy,
thus exhibiting an average efficiency up to 0.855, and an average bias of only −0.07. Except for three
stations (Bishop, Castroville, De Laveaga), the NSE exceeds 0.70, while in 17 out of 37 stations it
exceeds 0.90. This indicates an almost perfect performance, particularly when taking into account
that the model has been calibrated using abstract (i.e., mean monthly) meteorological information
over the entire globe, while the validation set comprises detailed data, both in terms of spatial
extent and temporal resolution. Similarly satisfying are the outcomes from the global validation set,
which are summarized in Table 8 (average efficiency 0.852, average bias 0.02), thus confirming the
model predictive capacity across different climates.

Table 7. Statistical indices for the local validation dataset (CIMIS stations, California, USA).

a/a Station Validation Period NSE MAE (mm) BIAS

1 Five Points June 1982–June 2013 0.880 20.4 −0.09
2 Davis October 1982–June 2013 0.857 13.8 −0.01
3 Firebaugh/Telles October 1982–June 2013 0.897 16.8 −0.09
4 Gerber October 1982–June 2013 0.896 17.9 −0.10
5 Durham October 1982–June 2013 0.870 19.7 −0.14
6 Carmino November 1982–June 2013 0.952 11.3 −0.01
7 Stratford November 1982–June 2013 0.913 17.2 −0.06
8 Castroville December 1982–June 2013 0.442 23.7 −0.23
9 Kettleman December 1982–June 2013 0.903 18.8 −0.10

10 Bishop March 1983–June 2013 0.475 16.5 0.03
11 Parlier June 1983–June 2013 0.858 22.1 −0.16
12 McArthur December 1983–June 2013 0.940 11.5 0.01
13 U.C. Riverside June 1985–June 2013 0.858 13.2 0.08
14 Brentwood May 1986–October 2006 0.930 13.2 −0.06
15 San Luis Obispo May 1986–June 2013 0.856 12.0 −0.08
16 Blackwells corner May 1987–June 2013 0.939 13.7 −0.05
17 Los Banos June 1988–June 2013 0.926 14.0 −0.06
18 Buntingville May 1986–June 2013 0.953 11.1 0.03
19 Temecula December 1986–June 2013 0.769 12.9 0.02
20 Santa Ynez December 1986–June 2013 0.842 13.6 −0.10
21 Seeley June 1987–June 2013 0.845 18.4 0.03
22 Manteca December 1987–June 2013 0.796 25.2 −0.10
23 Modesto October 1987–June 2013 0.922 14.7 −0.06
24 Irvine November 1987–June 2013 0.803 13.2 −0.10
25 Oakville October 1989–June 2013 0.930 13.3 −0.10
26 Pomona April 1989–June 2013 0.701 19.0 −0.15
27 Fresno State November 1988–June 2013 0.906 18.4 −0.12
28 Santa Rosa January 1990–June 2013 0.894 11.5 −0.09
29 Browns Valley May 1989–June 2013 0.856 22.3 −0.16
30 Lindcove June 1989–June 2013 0.782 31.0 −0.22
31 Alturas May 1989–June 2013 0.916 10.4 −0.02
32 Cuyama October 1989–June 2013 0.950 11.5 0.05
33 Tulelake FS May 1989–June 2013 0.922 11.9 0.05
34 Windsor January 1991–June 2013 0.905 11.4 −0.09
35 De Laveaga October 1990–June 2013 0.676 21.8 −0.19
36 Westlands May 1992–June 2013 0.932 15.0 −0.03
37 Sanel Valley February 1991–June 2013 0.939 11.0 −0.02

Average 0.855 16.0 −0.07
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Table 8. Statistical indexes for the global validation dataset.

a/a Station Country Validation Period NSE MAE (mm) BIAS

1 Aachen Germany January 1951–May 2011 0.955 6.8 0.06
2 Bremen Germany January 1951–May 2011 0.954 5.5 0.03
3 Alicante Spain January 1980–September 2010 0.916 11.1 0.00
4 Badajoz Spain January 1961–May 2005 0.921 13.0 −0.09
5 Valencia Spain September 1954–August 1964 0.893 10.0 −0.06
6 Zaragoza Spain February 1974–January 1996 0.953 10.8 −0.01
7 Herakleion Greece January 1968–December 1989 0.947 10.2 −0.00
8 Kerkyra Greece January 1968–December 1989 0.936 9.8 −0.09
9 Kavala Greece January 1968–December 1989 0.835 13.5 0.04
10 Limnos Greece January 1968–December 1989 0.762 24.3 0.12
11 Athens Greece January 1968–December 1989 0.924 13.6 0.03
12 Melbourne Australia January 2009–January 2016 0.752 18.5 0.17
13 Dublin Ireland January 2013–June 2016 0.870 5.1 −0.09
14 Bandar-Anzali Iran January 1990–December 2005 0.875 13.9 −0.16
15 Ramsar Iran January 1990–December 2005 0.788 16.2 0.15
16 Khorram-Abad Iran January 1990–December 2005 0.400 38.3 0.37
17 Kashan Iran January 1990–December 2005 0.804 19.6 −0.13

Average 0.852 14.1 0.02

7. Conclusions

In the present study, the concept of parametric PET modelling was thoroughly analyzed,
by performing a global survey of its applicability. The model has a very simple structure and uses easily
retrieved information, by means of air temperature and extraterrestrial radiation. Therefore, the model
is simultaneously simple and parsimonious, in terms of both parameterization and data requirements.

Preliminary analysis of the extended climatic data at 4300 stations worldwide, provided by the
FAO CLIMWAT database, allowed for justifying the use of temperature and extraterrestrial radiation
as key explanatory variables of reference PET over the globe. However, it also indicated that in few
cases the two variables exhibit irregular seasonal patterns, which cannot be adequately represented
through simple modelling structures. The statistical analysis of the residuals, in these cases, showed
that the model is consistent in terms of parameters estimation and model validation.

At all CLIMWAT stations, we provided optimal estimations of model parameters c′ and a′,
by calibrating them against given Penman-Monteith values at the mean monthly scale. Using typical
goodness-of-fitting criteria (efficiency, mean absolute error, relative bias), we evaluated the model
performance, which was generally very satisfying in a large portion of stations. However, in less than
10% of the data set the calibrated model exhibited negative efficiency. Further analysis across broader
geographical regions showed that the model deviates from the Penman-Monteith PET estimates in
some locations, which is rather expected due to the significant influence of relative humidity and wind
speed, which are not accounted for in the parametric model.

An important outcome of this research was the generation of spatially distributed maps of model
parameters, by employing the IDW interpolation technique against their optimized values at 4088 out
of 4300 stations, exhibiting non-negative efficiency (the dataset of point parameter estimations is
available at http://www.itia.ntua.gr/en/docinfo/1738/). The spatial pattern of both parameters over
the globe is fully reasonable, which is a strong indicator of their physical consistency. These maps can
be straightforwardly used to provide suitable parameter values at both the local and regional scale,
thus allowing for the direct use of the parametric model wherever in the world.

The validation procedure against PM estimates from detailed meteorological information
(i.e., monthly time series) from 37 stations across California, as well as 17 independent stations
across Europe, Asia, and Australia, proved that the application of the parametric model using spatially
interpolated parameters provides reliable estimates, thus being a promising alternative of the widely
recognized yet data demanding Penman-Monteith approach, when there is lack of the full data set that
the latter requires.

Future research steps include a detailed investigation of the factors affecting the model poor
performance in specific areas over the globe, in order to recognize whether these can be handled

http://www.itia.ntua.gr/en/docinfo/1738/
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through a slightly different model structure or they do require the use of additional explanatory
variables or parameters. Apparently, this will require the use of full meteorological time series instead
of climatic data, which is a very challenging task at global scale. A survey of the calibration results
against different climatic zones is another challenging task that will further highlight the model
advantages, as well as potential shortcomings.
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