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Abstract: Inappropriate use of land and poor ecosystem management have accelerated land 
degradation and reduced the storage capacity of reservoirs. To mitigate the effect of the increased 
sediment yield, it is important to identify erosion-prone areas in a 287 km2 catchment in Ethiopia. 
The objectives of this study were to: (1) assess the spatial variability of sediment yield; (2) quantify 
the amount of sediment delivered into the reservoir; and (3) prioritize sub-catchments for watershed 
management using the Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated 
and validated using SUFI-2, GLUE, ParaSol, and PSO SWAT-CUP optimization algorithms. For 
most of the SWAT-CUP simulations, the observed and simulated river discharge were not 
significantly different at the 95% level of confidence (95PPU), and sources of uncertainties were 
captured by bracketing more than 70% of the observed data. This catchment prioritization study 
indicated that more than 85% of the sediment was sourced from lowland areas (slope range: 0–8%) 
and the variation in sediment yield was more sensitive to the land use and soil type prevailing in 
the area regardless of the terrain slope. Contrary to the perception of the upland as an important 
source of sediment, the lowland in fact was the most important source of sediment and should be 
the focus area for improved land management practice to reduce sediment delivery into storage 
reservoirs. The research also showed that lowland erosion-prone areas are typified by extensive 
agriculture, which causes significant modification of the landscape. Tillage practice changes the 
infiltration and runoff characteristics of the land surface and interaction of shallow groundwater 
table and saturation excess runoff, which in turn affects the delivery of water and sediment to the 
reservoir and catchment evapotranspiration. 

Keywords: land use change; watershed prioritization; reservoir sedimentation; Blue Nile River 
Basin; sediment yield; SWAT-CUP 

 

1. Introduction 

The Ethiopian Highlands, here defined as an area extending from about 1000 m above mean sea 
level (a m.s.l.) up to the highest peak in Ethiopia, Mount Ras Dashen (4533 m a m.s.l.), cover over half 
of the country and are home to the majority of the country’s population. More than 90% of the 
Highlands were once forested; today the percentage of forest cover is less than 4% [1]. This extensive 
deforestation has led to severe soil erosion and increased land degradation throughout the Ethiopian 
Highlands. 
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Excessive soil erosion in the mountainous Ethiopian Highlands has brought about reduced soil 
fertility and caused sedimentation in lakes and water storage reservoirs. Soil erosion and 
sedimentation processes have affected the whole upper Blue Nile in general [2] and the Koga 
catchment in particular. The Koga dam reservoir is one of the seriously affected reservoirs in the Blue 
Nile Basin. Most of the contributing sub-catchments are highly erodible, resulting in plenty of coarse 
sediments deposited in the reservoir. Since impoundment in 2008, the reservoir storage capacity has 
been substantially reduced because of siltation. The reduction in the flow velocity due to 
impoundment is a cause for deposition of sediments and a rapid decrease in the reservoir storage 
capacity [3,4]. This, in turn, is reducing the operational value and the life span of both the reservoir 
and irrigation canals. 

The high soil erosion rate in the Ethiopian Highlands resulted from erosive rains, steep slopes 
due to the rapid tectonic uplift during the Pliocene and Pleistocene, and human impact through 
deforestation, overgrazing, and agricultural production [5–7]. In addition, the soil erosion complies 
with the density of forest cover in the cultivated lands to reduce the impact of high-intensity rainfall 
with high runoff potential [8–10]. Past studies from experimental small (1 km2) to large catchments 
(98–82,350 km2) indicated the spatial variability and temporal dynamics of sediment yield in the 
Ethiopian highlands (Table 1).  

Table 1. Soil loss estimates from different studies in the Ethiopian highlands. 

N° References Soil Loss in t ha−1 yr−1 
Scale

Spatial Temporal
1 [11] 42 Plot based on cultivated fields  
2 [12] 31 Entire highlands  
3 [13] 14.8 199 ha agriculture-dominated *  

4 [14] 
130 Plot based on cultivated lands 

 
35 Entire highlands 

5 [15] 93 34,690 ha  

6 [16] 
Tekezie (8,235,000 ha) basin tributaries  

2.49–3.27 Genfel (66,000 ha) seasonal 
15.62–18.5 Lower Tankwa (21,300 ha)  

7 [17] 4.97–65.43 513,300-ha agriculture-dominated 
catchment in Northern highlands * 

 

8 [18] 25.6 Small size catchment (9838 ha) ** 

9 [8] 

Small experimental watersheds *  
5.2 Andit Tid (477 ha) seasonal 

24.7 Anjeni (113 ha)  
7.4 Mayba (112 ha)  

10 [19] 24.95 Small size catchment (2500 ha)  
Notes: * Soil & Water conservation measures ** Fine temporal resolution (10 min) continuous 
discharge and sediment data. 

Sediment supply in a catchment is heterogeneous in space and time [20], depending on the land 
use, vegetation cover, climate, and landscape characteristics: soil type, topography, slope, and 
drainage conditions [21]. The Ethiopian highlands are noted for their dynamic variation in sediment 
yield. The spatial variation in erosion rates and total sediment yield within the Blue Nile and Atbara 
River systems have shown the presence of considerable spatial variability in specific sediment yield 
(erosion rate per unit area) ranging between 4 and 4935 t km−2 yr−1 [22]. Studies have shown how this 
variation in the specific sediment yield can be explained by surface vegetation cover, the mean annual 
rainfall, air temperature, and livestock density [22,23]. With a top-down approach [24], (i.e., 
generalization achieved by fingering down into the smaller-scale processes from above, catchment 
scale), the sediment yield in the Koga catchment (a tributary of the Blue Nile Basin) varies spatially 
with land cover, soil type, terrain characteristics, and climate variability. Hence, estimation of the 
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total amount of sediment yield delivered to the Koga dam reservoir and identification of the source 
area of the coarse sediments that are likely to be trapped in the reservoir are critical steps in 
developing mitigation strategies to increase the operating life span of the reservoir. 

There are a number of empirical, conceptual, and physical models to simulate catchment soil 
erosion. Selecting the right hydrological model for a specific catchment has always been a challenge, 
and field testing of watersheds and previous applicability of the model in hydrologically similar 
catchments could help researchers to use the proper model for their purposes. Most physical models 
[25] generally require hydro-meteorological, soil, topographical, and land use data as input. Besides 
these data, models such as APEX, EPIC, SWAT, and TOPOG [25,26] also require crop management 
data. Erosion modeling is even more difficult in data-scarce environments using models like EPIC, 
EUROSEM, KINEROS, OPUS, SPUR, and WEPP that require a large number of field input 
parameters for execution. The flow and sediment yield model applied in this study was the Soil and 
Water Assessment Tool (SWAT). SWAT was selected in the belief that the lumping nature, 
stationarity, and linearity problems of the rating curve could be avoided by replacing it by distributed 
and process-based runoff and sediment yield models. The model’s ability to predict catchment soil 
erosion and sediment yield at different scales from small, 0.15 km2 [27] to basin-scale, 491,700 km2 
[28,29] studies and its ability to account for the spatial heterogeneity in different land management 
practices are additional benefits [25,26,30–34]. The calibration/uncertainty analyses procedures for 
SWAT are carried out in an integrated platform using the standalone SWAT-CUP program that links 
to SWAT's output text files set. 

The main aim of this study was to estimate catchment streamflow and sediment yield for 
watershed prioritization and the specific objectives of the research were: (1) to simulate streamflow 
and sediment yield using the SWAT model and to evaluate the model performance through 
calibration and validation; (2) to undertake sensitivity analysis of streamflow and sediment yield 
with respect to model parameters; (3) to assess the spatial variability of sediment yield and identify 
the erosion hotspot sub-catchments; and (4) to quantify the amount of coarse sediment delivered into 
the reservoir from contributing sub-catchments. 

2. Materials and Methods 

2.1. Study Area 

The Koga catchment is a tributary of the Gilgel Abay in the headwaters of the Blue Nile Basin. 
Within the catchment, there is a 21.5 m high and 1860 m long earth dam built to irrigate more than 
7000 and 5600 hectares of land for dry and wet season irrigation, respectively. Since part of the 
northeast boundary of the reservoir (6 km upstream of the main dam) has a low spot, a saddle dam 
measuring 18.50 m in height and 1106 m in length was constructed to limit the extent of the reservoir. 
The storage capacity of the reservoir at full supply level (2015.25 m a m.s.l.) is 83.1 × 106 m3. 

The catchment is located approximately 36 km southwest of Bahir Dar, between 11°10′ to 11°32′ 
N and 37°04′ to 37°17′ E with an altitude range from 1830 m at the dam site to 3082 m a m.s.l. towards 
the headwater region of the catchment. The total drainage area of the catchment is 287 km2 and the 
length of Koga River before joining Gilgel Abay River (a major tributary of the Blue Nile) is 64 km. 
Upper Blue Nile river basin (Figure 1, top right) is one of the 12 river basins of the country with Lake 
Tana sub-basin as its main tributary (Figure 1, lower left). The study catchment (Figure 1, bottom 
right) is dominantly covered by mixed grass, marsh, and bush land units. 
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Figure 1. Location map of the study area: (a) geographical setting of the upper Blue Nile river basin 
in the country map; (b) network of rivers in the upper Blue Nile river basin; (c) Lake Tana sub-basin 
and its tributary river network; and (d) land use units in the study area. 

2.2. Input Data 

The datasets on landscape attributes included land use, soil and digital elevation model, DEM 
(Figure 2). The data collected from the Ethiopian ministry of water and Energy (MoWE) [35] indicated 
that the dominant land use in the area was agricultural (72.1%) followed by pasture (21.2%) and bush 
land (6.7%). The majority of the area is covered with two soil types: Haplic Luvisols (48.3%) and 
Haplic Alisols (26.6%). The remaining soil classes (Lithic Leptosols, Eutric Vertisols, and Haplic 

(a) 
(b) 

(d)(c) 
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Nitisols) covered 25.1% of the area. The catchment elevation ranges from 1830 to 3082 m a m.s.l. and 
majority of the area is below 15% (Figure 2, bottom left). 

 
Figure 2. Koga catchment GIS data attributes: (a) soil, river network, and elevation lines; (b) land use; 
(c) sub-catchment boundaries and slope distribution; (d) terrain elevation map. 

The climate of the catchment is largely controlled by distinct dry and wet seasons, receiving its 
moist air masses from the Indian and South Atlantic Oceans following the north–south movement of 
the Inter Tropical Convergence Zone [36]. The area has a unimodal rainfall pattern, with the rainy 
season extending from June to September, when it receives about 70 to 90% of its annual rainfall. The 
mean annual rainfall in the area is about 1475 mm, which varies considerably from year to year, with 
pronounced wetter and drier cycles [37]. The mean annual temperature of the area varies between 7 
and 30 °C. The model climate data were collected from the Ethiopian National Metrological Service 
Agency (NMSA) [38] for a period of 19 years, 1989–2007 (Figure 3). There are two river gauges at 
Koga Merawi (since 1959) and the dam site (installed in 2003). The long-term (19 years) mean annual 
catchment discharge as obtained from MoWE [35] was 604 mm yr−1.  

(a) (b) 

(c) (d) 
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Figure 3. Catchment long-term mean monthly rainfall and streamflow (1989–2007). 

Koga dam reservoir has a dynamically varying surface area, with a maximum water level (i.e., 
2015.25 m a m.s.l.) in the rainy season from May to October and the water level dropping during 
active irrigation periods, November to April. The reservoir extends from sub-catchment #13 in the 
northwest to the low area around the saddle dam in the northeast, sub-catchment 6. Sub-catchment 
8 (Figure 4) is almost always completely inundated throughout the year, with only sediment loading. 
SWAT model-based catchment sediment yield simulation is related to the sediment resulting from 
erosion in the land phase portion of the model only. In this case, inundated sub-catchments (i.e., sub-
catchments lying in the reservoir) have no effect on the sediment yield, but instead affect the sediment 
loadings from erosion in the water phase of the model. 

 
Figure 4. Koga dam reservoir and the contributing sub-catchments. 
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2.3. Model Description 

SWAT is a continuous time step spatially distributed hydrological model designed to simulate 
water, sediment, nutrient, and pesticide transport at a catchmentsscale [32,39]. 

The model can be divided into a number of components and modules including weather, 
hydrology, soil temperature and properties, bacteria and pathogens, erosion/sedimentation, nutrient, 
pesticide, agricultural management, plant growth, channel routing, and pond/reservoir routing 
components [32,40]. SWAT accounts for the impact of land management practices on streamflow, 
sediment discharge, and nutrient load from complex catchments with varying land use, soil, and 
management conditions for long periods of time [41]. SWAT, as a process-based distributed-
parameter hydrological model, accounts for the spatial variability of datasets to minimize modeling 
errors resulting from the assumption of lumped, stationary, and linear systems. 

Previous hydrological studies have also shown wide applicability of SWAT for hydro-
meteorologically similar catchments and in other parts of Ethiopian basins [42–48]. 

Modeling streamflow and sediment discharge at the catchment outlet involves SWAT project 
setup, watershed delineation, hydrological response units (HRUs) analysis, preparing and editing 
input tables, and model simulation. Based on the topographical characteristics of the terrain from 
DEM, the SWAT model describes catchment spatial variability by further splitting sub-catchments 
into homogeneous characteristics, lumped land areas, and smallest spatial unit (HRUs) based on 
topography, soil, land use, and slope [49]. The multiple land use/soil/slope method was used to define 
the HRU with land use (20%), soil (10%), and slope (20%) threshold [50]. The number of HRUs is 
defined by eliminating the percent land use, soil, and slope values that cover a percentage of the sub-
catchment area less than the threshold level (Figure 5). Alternatively, a catchment can be subdivided 
into only sub-catchments that are characterized by dominant land use, soil type, and terrain slope. 

Catchment water, sediment, and nutrient transformations and losses are predicted separately 
for each HRU, with predictions summed to obtain the total for each sub-catchment. Sub-catchment 
simulations are then routed to the associated reach and catchment outlet through the channel 
network [49]. 

 
Figure 5. Hydrologic response unit (HRU) map. 
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Simulation of the hydrology of a watershed contains two major phases of the hydrologic cycle: 
the land phase and the water or routing phase. The former simulates the amount of water, sediment, 
nutrient, and pesticide loading carried by surface runoff from the sub-basin to the corresponding 
main channel. The latter controls the movement of water, sediment, nutrients, and pesticides through 
the channel network of the watershed [49]. Specific to the main objective of our research, the 
estimation of streamflow and sub-catchment sediment yield for watershed prioritization, the surface 
runoff and sediment yield components of the SWAT model are described. The land phase of the 
hydrologic cycle is simulated based on the water balance as in Equation (1): 

SWt = SW0 + ∑ (ܴௗ௔௬ − ܳ௦௨௥௙ − ௔ܧ − ௦ܹ௘௘௣ − ܳ௚௪)௧௜ୀଵ , (1) 

where SWt is the final soil water content (mm), SW0 is the initial soil water content on day i (mm), t 
is the time (days), Rday is the amount of precipitation on day i (mm), Qsurf is the amount of surface 
runoff on day i (mm), Ea is the amount of evapotranspiration on day i (mm), Wseep is the amount of 
water entering the vadose zone from the soil profile on day i (mm), and Qgw is the amount of return 
flow on day i (mm). 

SWAT calculates the surface erosion within each HRU using the inbuilt Modified Universal Soil 
Loss Equation (MUSLE). The MUSLE model [51], which is a modified version of the USLE [52], 
replaced the R-factor in the USLE with a term for runoff intensity to eliminate the need for a delivery 
ratio, improve sediment yield prediction, and allow the equation to be applied to individual storm 
events [41]. MUSLE estimates sediment yield from surface runoff volume, peak runoff rate, area of 
the HRU, soil erodibility, support practice, topographic, cover and management, and coarse fragment 
USLE factors. The USLE as a model estimates average annual soil loss by sheet and rill on those 
portions of landscape without deposition. The modified universal soil loss equation [51] is given by: Sy = ߙ  ൫ܳ௦௨௥௙ ∗ ௣௘௔௞ݍ ∗ ுோ௎൯ஒܣ ∗ ௎ௌ௅ாܭ ∗ ௎ௌ௅ாܥ ∗ ௎ܲௌ௅ா ∗ ௎ௌ௅ாܵܮ ∗  (2) ,ܩܴܨܥ

where Sy = HRU sediment yield (t/day); Qsurf = daily surface runoff volume (mm water/ha); qpeak = 
runoff peak discharge (m3 s−1); AHRU = HRU area (ha); KUSLE is the USLE soil erodibility factor (0.013 
metric ton m2 h/(m3 metric ton cm), CUSLE, PUSLE, and LSUSLE are dimensionless factors accounting for 
HRU crop cover, soil protection, and topography as defined in the original Universal Soil Loss 
Equation [53,54], and CFRG is a dimensionless factor to account for coarse fragment cover (stoniness). 

Williams (1975) used data collected from 18 small unequal area watersheds with considerably 
varying land use and collection periods for a total of 778 individual storms. To determine the most 
accurate prediction equation, each form of the runoff and sediment yield factors were substituted 
into the universal soil loss equation and evaluated by optimization [55]. The equation that best fits 
the data (Equation (2)) gave α and β factor values of 11.8 and 0.56, respectively. The value of the unit 
conversion factor α is 11.8 for metric units of the USLE soil erodibility factor, KUSLE [56,57]. 

However, there are changes in the spatiotemporal landscape datasets compared to the 
physiographic characteristics since the development of the MUSLE equation [51,58], and the 
modification of Williams α and β coefficients [51] in the original erosion model accounting for the 
possible overestimation of the MUSLE equation is state of the art [59,60]. It is also reasonable to 
consider current conditions of a particular catchment instead of employing the one-size-fits-all 
approach to modeling [61,62]. 

The importance of accounting for current physiographic characteristics in the MUSLE equation 
was supported by the developer of the MUSLE model, J.R. Williams (1975). According to Williams 
(1975) [51], although the runoff factor is a good sediment yield predictor, more research is needed to 
ensure that MUSLE is applicable for various size catchments under different agro-climatic zones. All 
the available watershed sediment data should also be analyzed to determine the optimum values of 
α and β coefficients in the prediction equation. 

In addition, Madeyski and Banasik (1989) [60] verified the need to modify universal soil loss 
equation in their study of six small Carpathian experimental watersheds ranging in area from 32 to 
77 km2. In their findings, they underlined that MUSLE with the parameters given by Williams (1975) 
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overpredicts the observed results and thus the equation should not be transferred to other regions 
without prior verification. 

As a result, SWAT is designed to consider these modeling gaps through an inbuilt erosion 
prediction algorithm that accounts for the spatial variation of the system using soil, land use, terrain, 
and management practice data inputs to predict catchment soil erosion and sediment yield [33,34]. 
In addition, the model’s ability to estimate erosion at different spatiotemporal scales, down to HRUs 
and small contributing sub-catchments [27], would address the default catchment geography and 
climate-dependent simulation errors of the original erosion prediction model, MUSLE (Equation (2)). 
The possible modeling errors were accounted for by calibrating the sensitive catchment flow and 
sediment parameters related to surface soil and cover conditions. In this phase of modeling, 
catchment landscape parameters were varied within the recommended range to assess the changes 
in the seasonal infiltration, runoff characteristics, and low and high flow and sediment extremes. The 
location-dependent flow and sediment-sensitive spatial parameters are grouped as soil (SOL_K.sol, 
SOL_AWC.sol, SOL_BD.sol); groundwater (ALPHA_BF.gw, GWQMN.gw, GW_DELAY.gw, 
GW_REVAP.gw,REVAPMN.gw); channelrouting (CH_EROD.rte, ALPHA_BNK.rte, CH_K2.rte, 
CH_N2.rte, CH_COV.rte); management (CN2.mgt, USLE_P.mgt); and Basin parameters (SPEXP.bsn 
and SPCON.bsn). Model sensitivity analysis is described in Sections 2.3.1, 3.1, and 3.3. 

Sediment transport in the channel network is a function of two simultaneous processes, 
deposition and degradation [49]. SWAT computes the maximum concentration of sediment in the 
reach at the beginning of the time step. Depending on the concentration of sediment in the reach and 
transport capacity of the channel, a deposition or degradation process will occur. The final amount 
of sediment in the reach is determined as: ܵ݁݀௖௛ = ܵ݁݀௖௛,௜ – ܵ݁݀ௗ௘௘௣ + ܵ݁݀ௗ௘௚ , (3) 

where Sedch is the amount of suspended sediment in the reach (metric tons), Sedch,i is the amount of 
suspended sediment in the reach at the beginning of the time period (metric tons), Seddep is the amount 
of sediment deposited in the reach segment (metric tons), and Seddeg is the amount of sediment that 
reenters the reach segment (metric tons). The amount of sediment transported out of the reach is 
calculated with Equation (4) as: ܵ݁݀௢௨௧ = ܵ݁݀௖௛ × ௏೚ೠ೟௏೎೓ , (4) 

where Sedout is the amount of sediment transported out of the reach (metric tons), Sedch is the amount 
of suspended sediment in the reach (metric tons), Vout is the volume of outflow during the time step 
(m3 s−1), and Vch is the volume of water in the reach segment (m3). The details of the model description 
can be found in the SWAT theoretical documentation [49]. 

2.3.1. SWAT Model Sensitivity Analysis 

Sensitivity analysis describes how model output varies over a range of given input variables and 
is a means to accommodate a large number of parameters and multiple output variables [63]. This 
procedure limits the number of model parameters to the most sensitive ones that have a significant 
effect on calibration of hydrological models for a given catchment. The different techniques to 
conduct sensitivity analysis can be broadly grouped into local and global approaches [64,65]. The 
local technique fixes all other factors to constant nominal values while sequentially varying each of 
the input factors to determine the output responses. Sampling one input at a time by fixing all other 
inputs at constant values does not account for the interaction between inputs [66]. The global 
sensitivity, on the other hand, explores the entire range of input factors, and all input factors can be 
simultaneously varied, allowing for an investigation of output variation as a result of all inputs and 
their possible interaction, where output uncertainty is averaged over all input factors. 

SWAT model prediction uncertainties were analyzed using SWAT-CUP programs that integrate 
five different optimization techniques: Sequential Uncertainty Fitting (SUFI-2) [67,68], Generalized 
Likelihood Uncertainty Estimation (GLUE) [69], Parameter Solution (ParaSol) [70], Particle Swarm 
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Optimization (PSO) [71], and Markov Chain Monte Carlo (MCMC) [72,73]. We used the first four 
methods of optimization in this particular catchment. 

The parameter sensitivities is determined by calculating the multiple regression system, which 
regresses the Latin hypercube “one-at-a-time” and global sensitivity generated parameters against 
the objective function values [74–76] derived by the following equation: 

g = α + ∑ β௜ܾ௜௡௜ୀଵ , (5) 

where g is the goal function and bi is the parameter. A t-test is then used to identify the relative 
significance of each parameter bi. The sensitivities given by Equation (5) are estimates of the average 
changes in the objective function resulting from changes in each parameter, while all other 
parameters are changing. Thus, the global sensitivity equation gives relative sensitivities based on 
linear approximations and, hence, only provides partial information about the sensitivity of the 
objective function to model parameters. Since parameters are meant to represent the process, we 
thereby identified the important processes to better focus on the global sensitivity analysis in a given 
catchment identified by a measured data outlet [67,68,75]. However, it is apparent that the measures 
of sensitivity in Equation (5) are different from the sensitivities calculated in absolute sensitivity 
analysis, a sensitivity analysis carried out by keeping all parameters constant to realistic values, while 
varying each parameter within a range [68]. 

2.3.2. Model Prediction Uncertainty 

Distributed hydrological models are designed to account for the spatial variability of climate, 
terrain, soil, land use, and vegetation. These watershed models are increasingly used to assess 
alternative strategies for improved water resources management [77,78]. However, manipulating 
model parameters during calibration is a challenge [79] because of overparametrization of hydrologic 
models [80]. Taking into account various sources of uncertainty is therefore an essential and 
integrated part of hydrological modeling for reliable predictions of streamflow and sediment yield. 

SWAT is one of the physically-based, continuous watershed simulation models that minimize 
modeling errors resulting from assumption of lumped, stationary, and linear systems. Yet, the SWAT 
model has prediction uncertainties even if the model has been properly calibrated. This is attributed 
to the incomplete information on the quality and quantity of input data for model calibration, 
capability and appropriateness of the selected search algorithm for parameter estimation, and model 
structural complexity, i.e., simplifications and misrepresentation of natural catchment phenomena 
and processes [66,68]. 

In addition, SWAT uses the curve number method to estimate runoff based on the relationship 
between precipitation, hydrologic soil group, and land use, assuming constant parameter values 
throughout the catchment. However, the value and order of parameter sensitivity may vary 
considerably with soil, land use, and climate spatial detailing down to contributing sub-catchments 
for the same watershed [81]. 

Using SWAT’s stochastic weather generator to fill in missed weather data and improve the 
quality of measured flow and sediment discharge is also another source of uncertainty that may result 
in model over/underestimation. To minimize the effect of spatial variability in precipitation [23,48] 
and the possible climate input data uncertainty in extending point estimates to the whole catchment 
(i.e., assumption of uniform climate information), we have taken advantage of nearby multiple 
gauging stations in developing the climate database for SWAT. 

2.3.3. Model Calibration and Validation 

The SWAT model has a unique set of soil, land use, and topography parameters at HRU levels 
and initial estimates of parameter values from soil, land use, and other surface and subsurface process 
parameters were adjusted during calibration [44]. The adequacy of the SWAT model to accurately 
simulate streamflow and sediment yield was tested by calibrating and validating the model with 
streamflow and sediment data for a period of 13 calibrations (1989–2001) and six validation years 
(2002–2007). The first three years (1989–1991) in the flow calibration run were used for model initialization. 
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The time period for calibration and validation years was determined by the length of the 
observed data record. For sufficiently long observed data that represent different climate conditions, 
it is possible to split the available data equally for calibration and validation. However, when the observed 
record is not sufficient for equal split, the length of the data may be different in such a way that the 
calibration period is sufficiently long. In addition, since optimized model parameters during calibration 
are used for model verification without further adjustment, the data quality and information contained 
in the calibration data are more important than the length of the dataset considered. 

Since soil erosion is directly impacted by surface runoff, the model was first calibrated for 
hydrology balance and streamflow, followed by sediment [32,68,82,83]. As a result, for each of the 
SWAT-CUP packages (SUFI-2, GLUE, ParaSol, and PSO), catchment flow parameters were first 
optimized and kept constant during sediment calibration. Values of flow and sediment-sensitive 
parameters were varied iteratively within a reasonable range for various calibration runs until a 
satisfactory agreement between simulated and observed datasets was achieved. The calibrated model 
parameters were then verified using an independent set of streamflow sediment and a sediment 
dataset that was not used for model calibration. 

During calibration, we first fitted the average annual water balance and then the shape of the 
hydrograph. This was carried out in a logical order for the most sensitive parameters using SUFI-2, 
GLUE, ParaSol, and PSO for a combined calibration and uncertainty analysis of SWAT model. 

For both calibration and validation analysis in the automatic SWAT-CUP optimization, the 
agreement between observed and simulated catchment streamflow and sediment data was 
determined using subjective and quantitative measures for recommended parameter thresholds 
[48,84,85]. In each of the calibration and uncertainty procedures, the final value of each model 
parameter that showed optimal model efficiency during calibration was used for model validation 
without further modification [41]. To evaluate the effect of the calibration objective function, the 
model was calibrated for daily and monthly flow and monthly sediment yield at the catchment outlet 
(sub-catchment 4). 

Gauged catchment model parameters are mostly estimated by employing an ordinary least 
squares objective function Equation (6) and minimization of the relative error RE Equation (7). The 
former maximizes the Nash–Sutcliffe coefficient of efficiency by minimizing the sum of squares of 
errors (Equation (6)) and the later involved minimization of the relative error RE Equation (7). The 
least squares objective function which minimizes the sum of squares of errors is given by: 

min sum of squares of errors = ∑ [௡௧ ܳ௠ − ܳ௦]ଶ, (6) 

where Qm and Ys are the measured and simulated flows, respectively (the difference between which 
is the model residual error εt). Equation (6), as an objective function, implies certain assumptions 
about the residuals εt [86,87]: (a) εt have zero mean and constant variance δεt (i.e., E(εt = 0), E(εt2) = δεt2; 
(b) the εt are independent (zero covariance). 

The other objective function used in the monthly flow and sediment calibration was a 
minimization of the relative error RE (for minimum percent bias) between measured and simulated 
flow at the gauging location (sub-basin #4): 

RE = ቚ∑ ∑ି࢓ࡽ ∑࢙ࡽ ࢓ࡽ ቚ ∗ 100%, (7) 

where Qm and Qs are the measured and predicted monthly flow and sediment values. 

2.3.4. Model Performance Evaluation 

The performance of the model was evaluated to assess the correlation between simulated and 
observed values. Both distance and weak form-based objective functions (Table 2) were used to 
evaluate the performance of hydrologic models [88,89]. The performance of SWAT-CUP (calibration 
and uncertainty program), SUFI-2, GLUE, ParaSol, and PSO was then evaluated using objective 
functions; viz. P-factor (ranges between 0% and 100%), R-factor (ranges between 0 and infinity), 
coefficient of determination R2, Nash–Sutcliffe coefficient, NSE [90], bR2 (coefficient of determination 
multiplied by the coefficient of regression line), PBIAS (percent bias), KGE (Kling–Gupta efficiency) 
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and RSR (the ratio of root mean square error (RMSE) to the standard deviation of the measured data). 
The first four objective functions were mainly used for both daily and monthly flow and monthly 
sediment calibration–validation uncertainty analysis. 

Table 2. Classical objective functions and model performance ratings for simulations of flow and 
sediment yield. 

Statistical Efficiency Criterion  Model Performance Ratings 
Objective 
Function 

Characteristics Function Category Reference Value range 
Performance 
Classification 

References 

R2 Emphasize on high 
flows 

Weak form-based [91] 

0.7 < R2 < 1 
0.6 < R2 < 0.7 
0.5 < R2 < 0.6 

R2 < 0.5 

Very good 
Good 

Satisfactory 
Unsatisfactory 

[83] 

ENS 

Most common; 
emphasize on high 
flows; neglect the 

low flows 

Distance-based [92,93] 

0.75 < ENS ≤ 1.00 
0.65 < ENS ≤ 0.75 
0.50 < ENS ≤ 0.65 
0.4 < ENS ≤ 0.50 

ENS ≤ 0.4 

Very good 
Good Satisfactory 

Acceptable Unsatisfactory 
[83,94] 

BIAS 
Monotony; cannot be 

used alone Weak form-based [88] 

PBIAS < ±10 
±10 ≤ PBIAS < ±15 
±15 ≤ PBIAS < ±25 

PBIAS ≥ ±25 

Very good 
Good 

Satisfactory 
Unsatisfactory 

[91] 

RSR 
Monotony; cannot be 

used alone Distance-based [95] 

0.00 ≤ RSR ≤ 0.50 
0.50 < RSR ≤ 0.60 
0.60 < RSR ≤ 0.70 

RSR > 0.70 

Very good 
Good 

Satisfactory 
Unsatisfactory 

[83] 

The coefficient of determination, R2, is expressed as the squared ratio between the covariance 
and the multiplied standard deviations of the observed and predicted values. It estimates the 
combined dispersion against the single dispersion of the observed and predicted [96]. The range of 
R2 lies between 0 and 1. 

R2 = ቎ ∑ [(ொ೘ିொത೘)(ொೞିொതೞ)]೙೔సభට∑ (ொ೘ିொത೘)మ೙೔సభ ට∑ (ொ௒೘ିொതೞ)మ೙೔సభ ቏ଶ
 (8) 

The Nash–Sutcliffe efficiency, NSE, proposed by Nash and Sutcliffe [90], is related to the 
deviation from unity of the sum of the absolute squared differences between the predicted and 
observed values normalized by the variance of the observed values. The normalization of the 
variance of the observation series results in relatively higher and lower values of NSE in catchments 
with higher and lower dynamics, respectively [91]. 

NSE = 1 − ൤ ∑ (ொ೘೙೔సభ ିொೞ)మ∑ (ொ೘೙೔సభ ିொത೘)మ൨ (9) 

where i is the time series of the measured and simulated pairs; n is the number of pairs of measured 
and simulated variables; m and s stand for the measured and simulated data, respectively, and the 
bar stands for average. 

The percent difference or percent bias (PBIAS) describes the tendency of the simulated data to 
be greater or smaller than the observed data values over a specified period (usually the entire 
calibration or validation period). A value close to 0% is best, with lower values indicating satisfactory 
model simulation [83]. 

PBIAS = ∑ (ொ೘ିொೞ)೙೔సభ∑ (ொ೘)೙೔సభ × 100% (10) 

RSR is the ratio of the RMSE to the standard deviation of the observations. RSR varies from 0, 
i.e., perfect prediction, which indicates zero residual variation, to a large positive value. In general, 
the lower the value of RSR, the lower the RMSE and the better the model simulation performance 
[83]. 
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RSR = ୖ୑ୗ୉ୗ୘ୈ୉୚౥ౘ౩ = ට∑ (ொ೘ିொೞ)మ೙೔సభ∑ (ொ೘ିொത೘)మ೙೔సభ  (11) 

The Kling–Gupta efficiency, KGE, [97] is an inbuilt objective functions in the SUFI-2 and PSO 
SWAT-CUP programs. 

KGE = 1 − ඥ(ݎ − 1)ଶ + (α − 1)ଶ + (β − 1)ଶ, (12) 

where α = δs/ δm, β = μs/μm and r is the linear regression coefficient between simulated and measured 
variable, μs and μm are means of simulated and measured data, and δs and δm are the standard 
deviation of simulated and measured data. 

bR2 = Maximize: φ = ൜ |ܾ|ܴଶ ݂݅ |ܾ| ≤ 1|ܾ|ିଵܴଶ ݂݅ |ܾ| > 1, (13) 

where the coefficient of determination R2 is multiplied by the coefficient of the regression line 
between measured and simulated data, b, [75]. This function allows for the discrepancy in magnitude 
of the two signals (depicted by b) as well as their dynamics (depicted by R2). 

3. Results and Discussion 

3.1. Parameter Sensitivity 

Parameter sensitivity and ranking are measured using the t-stat value, which is the coefficient 
of a parameter divided by its standard error. The p-values are used to determine the significance of 
the sensitivity. Parameters are significant for a larger absolute t-stat and lower p-values. A larger p-
value suggests that changes in the predictor values are not associated with changes in the response 
variable [75]. The detail of sensitivity analysis is presented in Section 2.3.1. 

In this study we have evaluated the relative sensitivity values found in the parameter estimation 
process. The global sensitivity of parameters has been calculated using the Latin hypercube “one-at-
a-time” regression systems. Table 3 illustrates the variation of ENS as a function of variation of each 
of the 13 most sensitive flow parameters, parameters considered for model calibration. Changes in 
the remaining parameter values do not cause significant changes in the model output. From Table 3, 
it is evident that the main sensitive streamflow parameters for the four SWAT-CUP calibration 
uncertainty analysis programs were initial SCS CN II value (CN2) (%), soil evaporation compensation 
factor (ESCO), base flow alpha factor for bank storage (ALPHA_BNK), saturated hydraulic 
conductivity (SOL_K), Effective hydraulic conductivity in main channel (CH_K2) [mm h−1], Moist 
bulk density(SOL_BD), Baseflow alpha factor (ALPHA_BF) [days], available water capacity of the 
layer (SOL_AWC) [mm WATER/mm soil], Treshold depth of water in the shallow aquifer required 
for return flow to occur (GWQMN) [mm H2O], Groundwater delay (GW_DELAY) [days], 
Groundwater “revap” coefficient (GW_REVAP), Threshold depth of water in the shallow aquifer for 
“revap” to occur (REVAPMN) [mm H2O], and Manning’s “n” value for the main channel (CH_N2). 
The table clearly shows differences in the rank and optimum parameter values for the four SWAT-
CUP programs. 

Table 3. Calibration flow parameter statistics: lower and upper boundary, global sensitivity, and 
optimized parameter values using SUFI-2, GLUE, ParaSol, and PSO uncertainty techniques. 

Daily Flow Calibration

Parameter Name Range 
SUFI-2 GLUE ParaSol PSO 

Rank OM * Rank OM * Rank OM * Rank OM *
V__ALPHA_BNK.rte 0–1 1 0.11 1 0.13 1 0.07 1 0.12 

R__CN2.mgt +0.2 2 0.13 3 0.12 2 0.12 2 0.14 
A__ESCO.hru 0.01–1 3 0.04 4 0.01 7 0.03 8 0.13 

R__SOL_K(..).sol −0.8–0.8 4 0.49 9 0.67 12 0.27 9 0.19 
V__CH_K2.rte 5–130 5 72.68 5 84.38 3 76.42 3 84.10 

R__SOL_BD(..).sol −0.5–0.6 6 0.24 6 0.23 5 0.25 12 0.24 
V__ALPHA_BF.gw 0–1 7 0.56 8 0.61 11 0.55 13 0.57 
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R__SOL_AWC(..).sol −0.2–0.4 8 −0.17 10 −0.14 8 −0.15 11 −0.16 
A__GWQMN.gw 0–5000 9 9.69 12 8.24 10 9.00 10 8.14 

V__GW_DELAY.gw 30–450 10 351.27 13 269.37 9 307.70 5 223.89 
V__GW_REVAP.gw 0–0.2 11 0.04 2 0.05 4 0.04 7 0.05 
V__REVAPMN.gw 0–500 12 7.20 11 5.39 13 7.23 6 5.17 

V__CH_N2.rte 0–0.3 13 0.16 7 0.17 6 0.20 4 0.19 
Monthly Flow Calibration

Parameter Name Range 
SUFI-2 GLUE ParaSol PSO 

Rank OM * Rank OM * Rank OM * Rank OM *
V__ALPHA_BNK.rte 0–1 1 0.17 1 0.12 2 0.12 1 0.11 

R__CN2.mgt +0.2 2 0.11 2 0.16 1 0.16 2 0.16 
A__ESCO.hru 0.01–1 5 −0.05 3 0.05 4 0.07 4 0.09 

R__SOL_K(..).sol −0.8–0.8 3 0.16 4 0.57 13 0.69 11 0.39 
V__CH_K2.rte 5–130 4 71.65 5 76.45 5 80.55 5 75.54 

R__SOL_BD(..).sol −0.5–0.6 12 0.33 6 0.24 9 0.24 7 0.24 
V__ALPHA_BF.gw 0–1 8 0.54 7 0.53 10 0.58 10 0.56 

R__SOL_AWC(..).sol −0.2–0.4 6 −0.13 8 −0.16 11 −0.17 8 −0.17 
A__GWQMN.gw 0–5000 13 17.62 9 9.72 12 9.47 12 7.22 

V__GW_DELAY.gw 30–450 9 267.66 10 375.54 7 379.18 13 284.70 
V__GW_REVAP.gw 0.02–0.2 7 0.16 11 0.03 3 0.00 3 0.02 
V__REVAPMN.gw 0–500 11 3.98 12 6.03 6 6.27 9 6.44 

V__CH_N2.rte 0–0.3 10 0.19 13 0.19 8 0.20 6 0.16 

Note: OM *—Optimized parameter value. 

Figure 6 shows a sample dot plot based on 12,000 ParaSol simulations on a monthly basis. The 
relative significance of parameters is as indicated in Table 3, ranked with t-stat and p-values. The x 
axis shows the range of values for the sensitive flow parameters and the y axis indicates the value of 
the objective function, NSE. 

 
Figure 6. Dot plot of NSE coefficient against each aggregate SWAT parameters conditioning with 
ParaSol based on 12,000 monthly calibration streamflow simulations.  

3.2. Flow Calibration and Validation 

The daily streamflow datasets used for calibration and validation of the SWAT model were 
obtained from the hydrology department of the Ethiopian Ministry of Water and Energy (MoWE) [2]. 
The hydrometric gauging station, Koga Merawi gauging station, has been in place since 1959. The 
station is equipped with staff gauges and an automatic water level recorder (AWLR). In this research, 
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19 years of continuous daily streamflow data, measured from 1989 to 2007, were used for model 
calibration and validation. The details of model calibration and validation are presented in Section 
2.3.3. 

Flow model performance rating criteria results (Table 4) showed that the agreement between 
measured and simulated monthly flows was indicated by NSE values of 58, 57, 58, and 59% for 
calibration and 58, 54, 59, and 55% for validation flows in the SWAT-CUP SUFI-2, GLUE, ParaSol, 
and PSO simulations. The relatively low statistical measures (NSE and R2) during the calibration and 
validation may have resulted from parameter and model prediction uncertainties, as explained in 
Sections 2.3.1 and 2.3.2. The other source of uncertainty may be the quality of the observed 
streamflow data used for model calibration and validation. On the other hand, some missed climate 
data records were also estimated by SWAT’s stochastic weather generator. This, in turn, may result 
in model prediction errors. 

For the purpose of determining the extent to which parameter uncertainty affects model 
simulation, the degree of uncertainty was quantified by a P-factor, 95PPU (95% prediction 
uncertainty), calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output 
variable obtained through Latin hypercube sampling. The goodness of fit and strength of the model 
calibration and uncertainty procedure can also be analyzed by the R-factor, which is the relative 
width of 95% probability band [98]. 

Hence, if the model captures the observed data in the 95PPU (Figures 7 and 8), all uncertainties 
are accounted for by the parameter range. In addition, monthly predicted p values for all the SWAT-
CUP simulations are considerable. For flow, a practical value of 0.6–0.8 for the P-factor and a value 
around 1 for the R-factor are suggested [76]. 

The results also showed that the model slightly underestimated flow during both calibration 
and validation periods, as indicated by PBIAS values (Table 4). Positive PBIAS values indicate model 
underestimation bias, and negative values indicate model overestimation bias [99]. This could be 
attributed to uncertainties related to input data quality, using the SCS curve number (CNII) method 
in SWAT model simulation, misrepresentation of the watershed processes, and the assumption of 
unique optimized parameter values throughout the catchment [68,75]. Minimizing such uncertainties 
could result in a well-calibrated SWAT model that can efficiently predict flows in the catchment for 
different management scenarios. 

Table 4. Daily and monthly streamflow calibration (1992–2001) and validation (2002–2007) statistics 
using SUFI-2, GLUE, ParaSol, and PSO. 

SWAT-CUP Calibration

Variables 
SUFI-2 GLUE ParaSol PSO 

Daily Monthly Daily Monthly Daily Monthly Daily Monthly
P-factor 0.8 0.73 0.53 0.6 0.76 0.62 0.55 0.67 
R-factor 0.81 0.93 0.5 0.64 0.6 0.65 0.47 0.61 

R2 0.37 0.65 0.38 0.63 0.47 0.64 0.37 0.63 
NSE 0.33 0.58 0.32 0.57 0.31 0.58 0.32 0.59 
bR2 0.17 0.39 0.16 0.41 0.16 0.42 0.16 0.4 

PBIAS 21.7 24.5 24.2 17.56 25.8 18.6 23.1 18.1 
KGE 0.46 0.6 0.43 0.72 0.4 0.7 0.53 0.66 
RSR 0.79 0.65 0.78 0.65 0.83 0.68 0.79 0.66 

SWAT-CUP Validation

Variables 
SUFI-2 GLUE ParaSol PSO 

Daily Monthly Daily Monthly Daily Monthly Daily Monthly
P-factor 0.72 0.65 0.46 0.64 0.5 0.69 0.53 0.65 
R-factor 1.09 0.88 0.56 0.62 0.39 0.64 0.54 0.7 

R2 0.43 0.67 0.31 0.58 0.4 0.62 0.3 0.58 
NSE 0.36 0.58 0.21 0.54 0.35 0.59 0.22 0.55 
bR2 0.25 0.47 0.15 0.43 0.12 0.4 0.13 0.43 

PBIAS 23 8.8 6.94 2.70 21.5 4.32 17.3 1.5 
KGE 0.62 0.66 0.53 0.78 0.51 0.72 0.5 0.72 
RSR 0.77 0.64 0.86 0.74 0.8 0.76 0.86 0.73 

Figures 7 and 8 show the 95PPU for calibration and validation of daily and monthly river 
discharge predictions, respectively. For monthly calibration and validation years, P- and R-factor 
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values indicated a desirable certainty. For the daily simulations, however, the values of P and R are 
relatively low. 

 

Figure 7. Daily observed flow, 95% model uncertainty, and best estimates for calibration (1992–2001) 
and validation (2002–2007): SUFI-2 (A), GLUE (B), ParaSol (C), and PSO (D). 
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Figure 8. Monthly observed flow, 95% model uncertainty, and best estimates for calibration (1992–
2001) and validation (2002–2007): SUFI-2 (A), GLUE (B), ParaSol (C), and PSO (D). 
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3.3. Sediment Yield Calibration and Validation 

To determine the rate of change in model output with respect to changes in model inputs and to 
assess the magnitude and distribution of catchment sediment yield, initial sensitive sediment 
parameters were calibrated using the global sensitivity analysis procedure. Five sensitive ParaSol–
SWAT–CUP sediment parameters, USLE support practice factor (v_USLE_P.mgt), Linear factor for 
channel sediment routing (v_SPCON.bsn), Exponential factor for channel sediment routing 
(v_SPEXP.bsn), Channel Erodibility factor (v_CH EROD.rte), and Channel Cover factor (v_CH 
COV.rte), were identified. The most sensitive parameters were calibrated with the recommended 
range for the whole calibration period, as indicated in Table 5. 

Table 5. Result of monthly sensitivity analysis and final calibrated sediment parameters for the 
ParaSol–SWAT–CUP package. 

Parameter Range Rank t-Stat p-Value Fitted Value 
v__USLE_P.mgt 0–1 1 −111.8 0 0.07 
r__CH_COV.rte −0.001−1 2 0.85 0.40 0.17 
v__SPEXP.bsn 1–2 3 0.79 0.43 1.82 
v__SPCON.bsn 0.0001−0.01 4 0.28 0.78 0.0015 

r__CH_EROD.rte 0–1 5 −0.16 0.87 0.26 

Model performance rating criteria for observed and simulated monthly average sediment yield 
(Table 6) indicated NSE and R2 values of 73 and 75% for calibration and 79 and 80% for validation 
periods, respectively. The relatively low statistical measures (NSE and R2) during model calibration 
may result from data quality and scarcity, streamflow processes and simulation simplifications in 
using observed data generated from rating curve equation (S = aQb), peak flow prediction errors, and 
model prediction uncertainties, as explained in Section 2.3.2. 

Comparison of time-series of observed and simulated sediment yield (Figure 9) shows that the 
shape and timings of the peak of observed and simulated sedigraphs agree well for most of the study 
period. The positive PBIAS value also showed that the model slightly underestimated predicted 
sediment yield during both the calibration and validation periods, as indicated by PBIAS values of 
7.8% and 6.4%, respectively. The results of monthly sediment calibration and validation indicate the 
temporal variation of outputs between the observed and simulated sediment yield. 

Table 6. Monthly measured and simulated sediment yield calibration (1991–2000)—validation (2002 
–2007) model performance statistics. 

Component P-Factor R-Factor R2 NSE bR2 PBIAS KGE RSR
Calibration 0.64 0.75 0.75 0.73 0.61 7.8 0.83 0.52 
Validation 0.67 0.84 0.80 0.79 0.62 6.4 0.81 0.45 

The goodness of sediment calibration and validation uncertainty analysis can also be indicated 
by P-factor and R-factor, ratio of average thickness of the 95PPU band to the standard deviation of 
the corresponding measured variable. A P value of 64% for calibration and 67% for validation (Table 
6) shows that most of the observed values were bracketed by the 95PPU; a smaller P-factor and a 
larger R-factor is acceptable for SWAT-CUP model sediment predictions [75]. In addition, the model 
prediction uncertainty is quantified by the bR2, KGE and RSR ParaSol SWAT-CUP objective function 
values. RSR value of 0.52 for calibration and 0.45 for validation (Table 6) shows that the ratio of root 
mean squared error (RMSE) to the standard deviation of the measured data, RSR, was in an 
acceptable range, as explained by Moriasi et al. (2007) [83]. 

In general, the graphical results during calibration and validation (Figure 9) indicated adequate 
model prediction over the range of sediment discharge. As explained in Section 2.3.4 (Table 2), the R2 
[83], NSE [83,94], PBIAS [91], and RSR [83] statistical results are acceptable. 
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Figure 9. Monthly catchment sediment yield for calibration (1991–2000) and validation (2002–2007) 
(A); scatter plot of observed and simulated monthly sediment discharge (Qs) for calibration (1991–
2000) (B); and validation (2002–2007) (C). 

3.4. Spatial Distribution of Sediment Generation and Its Implications 

3.4.1. Effect of Distributed Inputs of Soil Type and Land Use on Soil Erosion 

Soil erosion is a dominant process responsible for physical degradation of the topsoil in 
agricultural areas. Erosion is more aggravated when the soil in the area is fertile, suitable for a wide 
range of agricultural uses, and susceptible to structure deterioration with tillage (e.g., Luvisols). To 
quantify the effects of the spatial distribution of soil type and land use on soil erosion, five main 
erosion source area sub-catchments (3, 7, 11, 13 and 16) covering 27.5% of the total catchment area 
and more than 60% of the total average annual sediment yield, were selected (Table 7). 

.
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Table 7. Effect of the spatial distribution of soil and land use on soil erosion. 

Area, A, in km2 and Percentage Area of Soil, Land Use, and Slope for Each Sub-Catchment

Catchment 
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Sum 
A 15.8 9.8 19.3 9.5 1.5 36.1 8.5 1.6 16.3 6.8 10.9 5.4 7.8 2.9 20.8 32.3 11.4 23.9 6.6 18.5 6.4 14.8 287

Land use 1 

AGRC 
A  2.8 19.3 9.5 1.5 20.2 6  16.3 6.8 10.9 1.9 7.8 1.1 14.5 32.3 11.4 16.7 3 18.5 6.4  207 
%  28 100 100 100 56 71  100 100 100 36 100 38 69 100 100 70 45 100 100   

PAST 
A  3.7   15.8 2.5 1.6   3.5 1.8 6.4  7.2 3.6   14.8 60.9 
%  38   44 29 100   64 62 31  30 55   100  

SPAS A 15.8 3.3                19.1 
% 100 34                 

Soil 2 

SqLp A 10.3                 10.3 
% 65                  

VeVr 
A 2.3 4 1.9  20 2 1.6   3.5 2.1 3.4       40.8 
% 15 41 20  56 24 100   64 70 16        

RhLv 
A   19.3 7.6 1.5 16 6.5  16.3 6.8 10.9 1.9 7.8 0.5 6.1 32.3 5.2      139 
%   100 80 100 44 76  100 100 100 36 100 16 29 100 45       

VhNt 
A           2.5  13.7 4.6    20.8 
%           12  58 70     

RhAl 
A 3.2 5.8        0.4 8.9 6.2 10.1 2 18.5 6.4 14.8 76.3 
% 20 59        13 43 55 42 30 100 100 100  

Slope class in percent 

0–2 
A     3.8     0.9        4.7 
%     11     30         

2–8 A 15.1 7.4 14.4 6 0.9 32.3 7.9 1.6 16.3 6.8 10.9 5.4 6 2 20.8 32.3 7.7 7.5     201 
% 95 76 74 64 61 89 93 100 100 100 100 100 76 70 100 100 68 32      

8–15 A 0.7 2.4 4.9 3.5 0.6  0.6     1.8   3.7 8.8 2    29 
% 5 24 26 36 39  7     24   32 37 30     

15–30 A             7.2 4.6 18.5 3.1 8.2 41.6 
%             30 70 100 49 55  

>30 
A             0.4   3.3 6.6 10.3 
%             2   51 45  

Sediment yield (t ha−1 yr−1) 0.01 0.18 2.87 1.48 1.19 0.72 2.12 0.61 1.05 0.85 2.84 0.56 2.63 0.38 1.26 3.55 1.52 0.18 0.24 0.01 0.01 0.01 24.3

Notes: 1 AGRC, PAST, and SPAS denote agricultural, pasture, and bush land, respectively. 2 SqLp, RhLv, RhAl, VeVr, and VhNt represent Lithic Leptosols, Haplic Luvisols, 
Haplic Alisols, Eutric Vertisols, and Haplic Nitisols. 
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These sub-catchments were characterized by a single soil type (Luvisols) and one land use class 
(agricultural). In addition, the research employing catchment prioritization indicated that more than 
85% of the annual average simulated suspended sediment yield was found in lowland areas (i.e., 
slope ranging from 0 to 8%), with one land use (agricultural) and one soil type (Luvisol). This 
indicates that the variation of sediment yield is more sensitive to the land use and soil type 
dominating the area, regardless of the terrain slope. It is also clear that lowland erosion (slope 0–8%) 
was more dominant than upland erosion for this particular catchment (Figure 10), which contradicts 
the perceived relationship between erosion and topography. The SWAT model sub-catchment 
sediment contribution result using the MUSLE equation and the work of Tewodros et al. (2015) [4] to 
identify catchment areas at risk of erosion using GIS and multi-criteria evaluation technique revealed 
the same dominancy of lowland erosion for the same catchment. This may result from catchment 
terrain slope and shallow depth ground water table in the lowland areas and near the Koga dam 
reservoir. 

Assessing the soil formation rates of an area is vital for the evaluation of soil loss rate (the extent 
to which soil loss can be tolerated) and the potential of soil regeneration once soil erosion is 
substantially reduced. A study of soil formation rates in different agro-ecological zone of Ethiopia 
indicates that the range of the tolerable soil loss level for the various agro-ecological zones of Ethiopia 
is 2 to 18 t ha −1 yr−1 [100]. 

 

Figure 10. Variation of catchment sediment yield with terrain slope and the effect of spatially 
heterogeneous distributed inputs of soil and land use. 

3.4.2. Sediment Source Identification 

SWAT model sediment yield analysis was made to identify erosion hotspot areas and the major 
sources of sediment yield among the 22 contributing sub-catchments. The annual average suspended 
sediment yield was estimated to be 24.3 t ha−1 yr−1 and the distribution of catchment sediment yield 
as simulated by the model is presented in Figure 11. From the figure it can be seen that the 17 SWAT 
sub-catchments produced average annual sediment yields ranging from 0 to 2 t ha−1 yr−1 in high lands 
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and 2–3.55 t ha−1 yr−1 in lowland areas. Catchment sediment yield was found to vary reasonably well 
with land use and soil types at each HRU. 

 

Figure 11. SWAT classified sub-catchments for prioritization (Sub-catchments 1–22) and distribution 
of SWAT simulated annual sediment yield in t ha−1 yr−1. 

4. Conclusions 

Regardless of the SWAT model’s ability to minimize errors resulting from assumption of 
lumped, stationary, and linear systems, catchment modeling in a data-scarce environment is still 
challenging. The challenge is even greater in data-scarce regions of Africa. In addition, model 
structural complexity, simplifications and misrepresentation of natural catchment phenomena and 
processes, parameter uncertainty, and processes unknown to the modeler may result model 
prediction uncertainty. It is obvious that a well-calibrated SWAT model with minimal uncertainties 
can efficiently predict catchment runoff and sediment yield in the study area. 

The calibration processes considered sensitive flow and sediment parameters to evaluate the 
degree of agreement between measured and simulated monthly datasets. The SWAT-CUP ParaSol 
model performance criteria for flow simulation resulted in (NSE = 0.58, R2 = 0.64) for calibration and 
(NSE = 0.59, R2 = 0.62) for validation periods, respectively. In addition, we used the 95PPU, P, and R-
factors to assess the goodness of fit and strength of model calibration and uncertainty procedure. For 
monthly flow calibration and validation, the model captures the observed data with considerable P-
factor values. The value of the R-factor was also below 1 for all SWAT-CUP programs. The agreement 
between observed and predicted sediment yield was indicated by NSE and R2 values of 0.73 and 0.74 
for calibration and 0.79 and 0.80 for validation periods, respectively. Model sediment prediction 
resulted in P-factor and R-factor values of 64% and 0.75 for calibration and 67% and 0.84 for validation 
periods, respectively. Smaller P and larger R-factor values are also acceptable for SWAT-CUP model 
sediment predictions. Details of the model performance statistics for the four SWAT-CUP programs 
are presented in Section 3.2. 

Sediment yield estimated with the SWAT model was found to correlate reasonably well with 
soil, land use, and topography for each HRU. The long-term (19-year) mean annual catchment 
discharge was 604 mm yr−1 and the model sediment yield prediction indicated an annual average 
catchment suspended sediment yield of 24.3 t ha−1 yr−1. As with unimodal rainfall distribution in the 
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catchment, individual sub-catchment sediment yield and streamflow varied with the maximum 
value during the heavy rainfall season of the year, July to September. 

In this research, attempts were made to determine the factors aggravating soil erosion and loss 
of storage capacity in the reservoir, to identify the potential sediment source areas for catchment 
prioritization and erosion control, and to provide informed estimates of the extent of sediment yield 
and reservoir sedimentation. Among the 22 sub-catchments, five (sub-catchments 3, 7, 11, 13, and 16) 
produced the highest sediment yield and are more exposed to erosion. These sub-catchments were 
typified by a single soil type (Luvisol) and one land use class (Agricultural). Slopes in the lowland 
area typically ranged from 2% to 8%. Based on this study, lowland erosion was a more important 
source of sediment than the upland erosion. 

The research showed that lowland erosion-prone areas are typified by extensive agriculture over 
a single dominant soil type (Luvisols), which causes significant modification of the landscape. Tillage 
changes the infiltration and runoff characteristics of the land surface, which in turn affects recharge 
to ground water, delivery of water and sediment to the reservoir, and evapotranspiration. These 
processes affect the interaction of the shallow groundwater table and saturation excess runoff in 
lowland areas. The upland part of the watershed, on the other hand, is not a significant source of 
erosion due to negligible ground water saturation and minimal land disturbances. 

To alleviate the alarming level of siltation in the Koga dam reservoir, we recommend the 
implementation of effective sub-catchment scale watershed management plans, and extensive 
afforestation immediately upstream of the reservoir, as well as sub-catchments that collectively 
contribute the majority of sediment delivery to and deposition in the reservoir. Prior to applying 
catchment management options, regardless of the terrain environment, the order of priority for each 
sub-catchment should be assessed by optimizing among the terrain, economic, labor, manmade, and 
natural factors. 
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