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Abstract: The characteristics of solute transport within log-conductivity fields represented by
power-law semi-variograms are investigated by an analytical Lagrangian approach that accounts for
the automatic frequency cut-off induced by the initial contaminant plume size. The transport process
anomaly is critically controlled by the magnitude of the Péclet number. Interestingly enough, unlike
the case of fast-decaying correlation functions (i.e., exponential or Gaussian), the presence of intensive
transverse diffusion acts as an antagonist mechanism in the process of Fickian regime achievement.
On the other hand, for markedly advective conditions and finite initial plume size, even the ergodic
longitudinal dispersion coefficient turns out to be asymptotically constant, and the corresponding
expected concentration distribution can therefore be obtained by conventional mathematical methods.

Keywords: solute longitudinal dispersion; evolving-scale log-conductivity; first-order analytical
approach; stochastic Lagrangian framework

1. Introduction

Modeling the considerable spatial variability exhibited by the hydraulic properties of natural
porous formations such as oil reservoirs and aquifers is a key requirement for the monitoring and
control of the related flow and transport processes. The classic stochastic theories (e.g., [1,2]) assume
that the log-conductivity Y(x) = ln K(x), where K is the local hydraulic conductivity and x is the vector
of spatial coordinates, is a homogeneous random space function, normally distributed and completely
characterized by constant mean and variance and by a fast-decaying correlation function. The above
characteristics imply the existence of a single representative scale of heterogeneity, i.e., the so-called
integral scale.

However, in the case of regional transport processes (i.e., over horizontal distances of the order
of tens to hundreds aquifer thicknesses), due to the involvement of several geological units called
facies, solute transport is typically influenced by several scales of structural variability. According
to Neuman [3], the log-K distribution resulting from the coexistence of geological facies might be
represented by a complex hierarchy of scales, progressively coming into play as the travel distance
increases. In this case, the semi-variogram of Y (i.e., the variance of log-K spatial increments) tends to
increase with no asymptotic threshold and likely in a discontinuous fashion. To describe such media
in a mathematical framework, the authors of [3] adopted the simple-scaling model, represented by a
power-law semi-variogram, γY(r) = arb, where a is a dimensional constant and one-half of the scaling
exponent H = b/2 is known as the Hurst coefficient [4].

The presence of significant log-conductivity trends affects flow and transport in aquifers to
an extent that depends on the complexity of the geologic formation. Additionally, at the regional
scale, the more appropriate models of flow and transport are two-dimensional. In this case,
the hydraulic properties of the heterogeneous formation, suitably described by the log-transmissivity
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Y(x) = ln T(x), where the transmissivity T indicates the vertical average of K, are critically influenced by
the depositional process. In such context, although the existence of several scales of heterogeneity seems
reasonable, there is no direct experimental evidence supporting the power-law model. Neuman [3]
provided an indirect justification of it, analyzing the scaling behavior exhibited by the longitudinal
dispersivity of tracer plumes.

The spreading of solutes is usually investigated in terms of a longitudinal dispersion coefficient.
There are two different types of dispersion coefficient. The ergodic dispersion coefficient is given by the
time-rate of change of the single-particle position covariance and incorporates the uncertainty related
to the plume centroid location; the effective dispersion coefficient consists in the time-rate of change of
the expected longitudinal central spatial moment and only accounts for the heterogeneity at the plume
scale. The difference between them was discussed by Fischer et al. [5] in the context of turbulent mixing;
by Kitanidis [6], Dagan [7], and Rajaram and Gelhar [8] in the context of transport in natural single-scale
porous formations; and by Glimm et al. [9] in the context of transport in natural evolving-scale porous
formations. The investigation of longitudinal dispersion in a stochastic framework was later extended
by Pannone to river-flow solute transport in the presence of random morphological heterogeneities
based on a first-order formulation [10,11], and to strictly uniform river-flows by an exact closed-form
solution based on the Taylor-Aris method of moments [12].

The implications of the ergodic or non-ergodic assumption for transport in evolving-scale
formations were further discussed by Dagan [13]. In this study, among other things, the author
obtained first-order analytical solutions for the effective dispersion coefficient in formations described
by power-law semi-variograms. The main finding of the paper was that the ergodic assumption,
implicit in most theoretical results of stochastic models, cannot be assumed as generally valid.
As a consequence, rather than showing an anomalous continuous growth, effective dispersion in
evolving-scale formations reaches a Fickian asymptotic limit for b < 1. The transport anomaly was only
recovered for b > 1, but, in this case, the hypothesis of stationarity (on which the analytical treatment
of transport was based) becomes strongly questionable.

The analytical solutions provided by Bellin et al. [14] substantially confirmed Dagan’s conclusions
concerning the occurrence of anomalous dispersion for b > 1 and asymptotically Fickian dispersion
for b < 1. Additionally, the assumption of linearity typical of any analytical approach was relaxed
and tested by solving fully nonlinear flow and transport problems. For b < 1, the analytical and
numerical solutions provided by [14] were in good agreement. Conversely, for large b (i.e., b = 1.75),
the numerical solutions slightly overestimated the analytical ones. The anomalous dispersion predicted
by the analytical solution was confirmed by the numerical results, at least in the explored range of
variability of the log-conductivity variance (σ2

Y < 2). Furthermore, the effective dispersion coefficient
turned out to be not affected by the travel-distance cutoff, which was a consequence of the use of finite
2-D field dimensions in the numerical simulations.

Anomalous transport manifests itself in different forms, typically appearing as long tails in the
spatial and/or temporal distributions of solute concentrations at given locations [15]. This tailing
is classically interpreted as a result of peculiar solute spreading, associated with the existence of
multiple scales of medium heterogeneity. Establishing a direct connection between continuous time
random walk parameters and randomly heterogeneous hydraulic conductivity within uniform- mean
flow domains, the authors of [15] showed that the features of transport cannot be explained by the
structural disorder of the geologic formations only. On the contrary, dynamic/flow factors such as
low-conductivity transition zones and preferential flow paths critically control the process. Based on
that, it can easily be understood how the occurrence of non-Fickian behavior is a highly probable event
in cases of transport through fractures [16,17].

Using first-order approximations in velocity fluctuations, the study by Suciu et al. [18] showed
how anomalous super-diffusive behavior may result from the linear combination of independent
random fields characterized by short-range correlation functions and increasing integral scales,
e.g., [3,19]. According to the same type of linear decomposition of log-conductivity fluctuations,
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the present work proposes a new theoretical approach for the determination of an ergodic
macro-dispersion coefficient depending on the initial plume size and the Péclet number magnitude,
which is a measure of the relative importance of advective and diffusive-like transport mechanisms.

Detailed investigations of the relationship between injection modes and heterogeneity in the
dispersion of solute particles in fracture networks able to store parts of solute mass were recently
conducted by [20–22]. Based on the results in [20,21], the type of injection mode has a significant
persistent impact on dispersion in a fracture network; more so for larger heterogeneity. The late
arrivals for resident injection are several orders of magnitude larger than those related to flux injection,
indicating that dispersion along the macroscopic flow direction is significantly enhanced by resident
injection. Conversely, the study by [22] showed that, after accounting for a pre-asymptotic regime,
the mean travel time of particles inserted using both resident and flux-weighted injection conditions
scales linearly, and the tails of the corresponding breakthrough curves exhibit almost identical power
laws. Demmy et al. [23] had previously studied the effect of injection modes in heterogeneous
porous media. They had found that, for a general case of three-dimensional heterogeneity, uniform
resident injection was associated with the nonlinear propagation of mean arrival time, whereas
injection in flux was associated with linear propagation. Both injection modes yielded nonlinear
arrival time variances, tending to some common asymptotic linear behavior. The moments of the
flux-weighted curves were persistently lower than those characterizing the uniform resident injection
case, although their propagation rates were converging toward some common value. Dentz et al. [24]
developed a continuous time random walk approach for the evolution of Lagrangian velocities in
steady heterogeneous flows based on a stochastic relaxation process for the streamwise particle
velocities. They predicted Lagrangian particle dynamics starting from an arbitrary initial condition
based on the Eulerian velocity distribution and a characteristic correlation scale. The main result
of the study can be synthesized in the detection of strong Lagrangian correlation and anomalous
dispersion for velocity distributions that are tailed toward low values, as well as in pronounced
differences depending on the initial conditions. Note that all mentioned studies ([20–24]) investigate
the relationship between injection modes and advective heterogeneity on solute dispersion without
discussing the effect of local dispersion magnitude. This effect is expected to be definitely more
pronounced for transport in porous media, which is the focus of the present study.

The crucial role of local dispersion (sometimes simply named ‘diffusion’) in solute
macro-dispersion and dilution was already explored in the context of subsurface flow and transport by
Pannone and Kitanidis [25] and in the context of river-flow and transport by Pannone [26,27]. Overall,
these studies showed that, in the case of heterogeneous structures characterized by short-range
correlations, macro-dispersion and dilution are singularly driven by the interplay of advective
heterogeneities and diffusive-like mechanisms.

The results of the present investigation, which focuses on the interplay between evolving-scale
heterogeneity and diffusion in longitudinal dispersion for uniform instantaneous injections of different
sizes, and invariably predicts asymptotically Fickian macro-dispersion for purely advective regimes
and super-diffusive transport in the presence of non-negligible local dispersion (regardless of scaling
exponent value), are partly in contrast with what has previously been found by similar studies on
this topic.

2. Formulation

Let us consider a first type of isotropic power-law semi-variogram, with an exponent ranging
between 0 and 1:

γY(r) = arb 0 < b < 1 (1)

It can be shown that such a semi-variogram is obtained by the superposition of an infinite
hierarchy of independent stationary log-conductivity fields characterized by an exponential covariance
function, an increasing integral scale, and variance proportional to it (see also [3]). The total fluctuation
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of the random function Y(x) = lnK(x) = < Y > + Y’(x), where the angle brackets indicate the (assumed
constant) ensemble mean and the prime indicates the deviation about that mean, is given by:

Y′(x) =
∞

∑
Λ=0

Y′Λ(x) (2)

where Y′Λ is the fluctuation associated with the Λth order of the hierarchy. The generic heterogeneous
sub-unit is therefore represented by the superposition of a given finite number of stationary fields of
increasing order:

Y(m)(x) =
∞

∑
Λ=m

Y′Λ(x) (3)

For each stationary field, one has:

γYΛ(r) = σ2
YΛ(IYΛ)[1− exp(−r/IYΛ)] (4)

where the integral scale IYΛ can be viewed as the inverse of the wave-number Λ, which represents the
spatial periodicity of the associated log-conductivity heterogeneity:

IYΛ =
1
Λ

(5)

Let us assume that the corresponding variance σ2
YΛ is a negative power of Λ:

σ2
YΛ =

c
Λ1+β

0 < β < 1 (6)

where c is a dimensional constant. Integrating over all the possible wave-numbers:

γY(r) =
∞∫

0

c
Λ1+β

[1− exp(−rΛ)]dΛ (7)

one obtains [28]:
γY(r) = −cΓ(−β)rβ (8)

where the symbol Γ indicates a Gamma function. Equation (8) coincides with Equation (1) if:

b = β a = −cΓ(−b) (9)

For semi-variogram exponents ranging between 1 and 2:

γY(r) = arb 1 ≤ b < 2 (10)

it can be shown that the statistically independent components of the hierarchy must be characterized
by a Gaussian log-conductivity covariance function (see also [18]):

γYΛ(r) = σ2
YΛ(IYΛ)

[
1− exp

(
−r2/l2

YΛ

)]
(11)

where lYΛ indicates the corresponding correlation length (lYΛ = 2IYΛ/
√

π) and the variance is
given by:

σ2
YΛ =

c
Λ2+β

0 ≤ β < 1 (12)
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Integrating over Λ:

γY(r) =
∞∫

0

c
Λ2+β

[
1− exp

(
−πr2Λ2/4

)]
dΛ (13)

one obtains [28]:

γY(r) = −cΓ
(
− β + 1

2

)(π

4

) β+1
2 rβ+1 (14)

Equation (14) coincides with Equation (10) if:

b = β + 1 a = −cΓ
(
− b

2

) (√
π

2

)b

(15)

Given the mutual independence of the short-range log-conductivity fields, one can consider the
whole hierarchy as decomposed into two different macroscopic components:

Y′(x) = Ỹ(x) + Y(x) (16)

where

Ỹ(x) =
∞

∑
Λ=N+1

Y′Λ(x) (17)

identifies the log-conductivity fluctuation due to the (N+1)th heterogeneous sub-unit and

Y(x) =
N

∑
Λ=0

Y′Λ(x) (18)

is the log-conductivity fluctuation induced by the larger scales of heterogeneity.
From Darcy’s law combined with the equation of continuity for incompressible fluids in

incompressible solid matrices, one obtains the following steady flow equation:

∇2h(x) +∇h(x) · ∇Y(x)
= ∇2h′(x)− J · ∇Y′(x) +∇h′(x) · ∇Y′(x) = 0

(19)

where h indicates the hydraulic head and

J = −∇ < h(x) > (20)

indicates the mean head loss. In the Fourier domain, Equation (19) becomes:

|k|2ĥ(k) +
∫
k′

k′ ·
(
k− k′

)
Ŷ
(
k− k′

)
ĥ(k′)dk′ =

j
2π

J · kŶ(k) (21)

where j =
√
−1 and the circumflex accent indicates Fourier transforms:

ĥ(k) =
∫
x

h′(x) exp(−j2πk · x)dx (22)

Ŷ(k) =
∫
x

Y′(x) exp(−j2πk · x)dx (23)

Let us assume that constant c is so small that, even for the larger sub-units, the log-conductivity
variance is always finite and not larger than 1. Physically speaking, that means that the present theory
concerns geologic formations made of nested (fractal-like), though mildly heterogeneous, porous
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structures. In this case, flow and transport linear theory (e.g., [1]) applies and the convolution term in
Equation (21) can be neglected:

|k|2ĥ(k) =
j

2π
J · kŶ(k) (24)

Incidentally, as mentioned above, the 2-D numerical simulations by Bellin et al. [14] allowed it to
be established that linear theory practically applies for log-transmissivity variance up to two. Similarly,
from the first-order Darcy’s law (e.g., [1]):

v̂i(k) = Ŷ(k)

(
Ui −

3

∑
j=1

kik j

|k|2
Uj

)
(25)

where v̂i is the Fourier transform of the ith component of velocity fluctuation and U = (U1,U2,U3) is the
constant ensemble mean velocity. From Equations (24) and (25) one can see that, at the first-order in the
log-conductivity variance, each Fourier component of the log-conductivity field corresponds to a single
component of hydraulic head and velocity. Therefore, the same properties of linear superposition
holding for Y (see Equation (2)) apply to h and v as well. Consider now an initial solute injection at a
uniform concentration C0, confined within a volume

V0 = l3
0 (26)

such that
IYN+1 < l0 < IYN (27)

The trajectory of the generic solute particle belonging to the dispersing plume can be expressed as:

X(t, a) = a +
t∫

0
v[X(τ, a)]dτ + XB(t)

= a +
t∫

0
〈v[X(τ, a)]〉dτ +

t∫
0

v′[X(τ, a)]dτ + XB(t)
(28)

where vector a represents its initial position within V0, t is the time, and XB the zero-mean Brownian
component. Given Equations (16) and (25), it is also:

X(t, a) = a + Ut + X′(t, a) + XB(t) = a + Ut + X̃(t, a) + X(t, a) + XB(t) (29)

where, at the first order:

X̃(t, a) =
∞

∑
Λ=N+1

X′Λ(t, a) =
t∫

0

ṽ[X(τ, a)]dτ ∼=
t∫

0

ṽ[a + Uτ + XB(τ)]dτ (30)

and

X(t, a) =
N

∑
Λ=0

X′Λ(t, a) ∼=
t∫

0

v[a + Uτ + XB(τ)]dτ (31)

Notice that, due to the linearization involved in Equations (30) and (31), the solute particles
sample the velocity distribution along longitudinal deterministic trajectories (a + Uτ), disturbed only
by the local-dispersive contribution represented by XB. Such an assumption is common to all first-order
(linearized) analytical formulations of subsurface flow and transport. Its physical meaning is that one
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neglects the self-feeding mechanism of advective dispersion that would emerge from the solution of
the exact integro-differential equation:

X′(t, a) =
t∫

0

v′
[
a + Uτ + X′(τ, a) + XB(τ)

]
dτ (32)

A possible theoretical justification of it is that, overall, the reduced spreading of the particle
sampling cloud left to the only Brownian component of fluctuation balances the more persistent
correlation (and, therefore, the slower spreading) that would be induced by the advective fluctuation.

The concentration spatial moments, i.e., total mass, centroid and inertia, can respectively be
calculated from:

M =
∫

nCdx (33)

R(t) =
1
M

∫
nCxdx (34)

and
Sij(t) =

1
M

∫
nC(xi − Ri)

(
xj − Rj

)
dx (35)

where C = C(x,t) indicates the concentration in x at time t. For a single-particle injection in x = a
(e.g., [1]):

∆C(x, t) =
∆M

n
δ[x− X(t, a)] =

C0(a)n0da
n

δ[x− X(t, a)] (36)

where δ indicates Dirac’s distribution, ∆M is the associated mass, C0 is the associated initial
concentration, n is the generic volume porosity, and n0 is the volume porosity at injection site.
Integrating over the whole initial volume V0 for n ∼= n0 gives:

C(x, t) =
∫
V0

C0(a)δ[x− X(t, a)]da (37)

The substitution of Equation (37) into Equations (34) and (35) for C0 = const and M = n0C0V0

yields:

R(t) =
1

V0

∫
V0

X(t, a)da = a + Ut +
1

V0

∫
V0

[
X′(t, a) + XB(t)

]
da (38)

and
Sij(t) = 1

V0

∫
V0

[Xi(t, a)− Ri(t)]
[
Xj(t, a)− Rj(t)

]
da

= Sij(0) + 1
V0

∫
V0

[
X′i(t, a)− 1

V0

∫
V0

X′i(t, a′)da′
][

X′j(t, a)− 1
V0

∫
V0

X′j(t, a′′ )da′′
]

da

+XBi(t)XBj(t)

(39)

where
Sij(0) =

1
V0

∫
V0

(ai − ai)
(
aj − aj

)
da (40)

is the generic initial inertia moment and

ar =
1

V0

∫
V0

arda (41)
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is the rth component of initial centroid vector position. Ensemble averaging will be performed on
Equation (39) recalling that, by definition, the ensemble mean of a random fluctuation is zero and that
Equation (16) and flow linear treatment allow it to be assumed that:

〈X̃(t, a)X(t, a)〉 = 0 (42)

Additionally, we know that, for Brownian displacements:〈
XBi(t)XBj(t)

〉
= 2Dδijt (43)

where D is the coefficient of the (assumed isotropic) local dispersion and δij is Kronecker’s Delta. Based
on Equation (31), for negligible local dispersion and provided that the integral scales of all fields of the
Y-hierarchy are larger than the initial plume size, the corresponding components of particle positions
can be viewed as almost fully correlated (i.e., as if the particles were concentrated in a single point) at
any time: 〈

Xi
(
t, a′
)
X j(t, a′′ )

〉 ∼= 〈
Xi
(
t, a′
)
X j
(
t, a′
)〉

(44)

Thus: 〈
Sij(t)

〉
= Sij(0) + 1

V0

∫
V0

〈
Xi(t, a)X j(t, a)

〉
da− 1

V2
0

∫
V0

∫
V0

〈
Xi(t, a′)X j(t, a′′ )

〉
da′da′′

+ 1
V0

∫
V0

〈
X̃i(t, a)X̃j(t, a)

〉
da− 1

V2
0

∫
V0

∫
V0

〈
X̃i(t, a′)X̃j(t, a′′ )

〉
da′da′′

= Sij(0) + X̃ij(t)− R̃ij(t)

(45)

where
X̃ij(t) =

1
V0

∫
V0

〈
X̃i(t, a)X̃j(t, a)

〉
da (46)

indicates the single-trajectory covariance due to the Ỹ-hierarchy and

R̃ij(t) =
1

V2
0

∫
V0

∫
V0

〈
X̃i
(
t, a′
)
X̃j(t, a′′ )

〉
da′da′′ (47)

indicates the related centroid covariance. The Ỹ-hierarchy is equivalent to a geological sub-unit
characterized by a finite correlation length (or integral scale), which is smaller than the initial plume
size. Therefore, at large times, and unlike the case of the Y-hierarchy, the corresponding components
of different particle positions will tend to become asymptotically uncorrelated. As a result:

R̃ij(t)→
1

V2
0

∫
V0

∫
V0

〈
X̃i
(
t, a′
)〉〈

X̃j(t, a′′ )
〉

da′da′′ = 0 (48)

In this case: 〈
Sij(t)

〉
= Sij(0) + X̃ij(t) (49)

and the effective large-time macro-dispersion coefficient coincides with the ergodic macro-dispersion
coefficient:

DMij(t) =
1
2

d
〈
Sij
〉

dt
=

1
2

dX̃ij

dt
(50)

The novelty of Equations (49) and (50) as compared to the results by Kitanidis [6], Dagan [7],
and Rajaram and Gelhar [8] in the context of transport in natural, single-scale, porous formations
consists in the definition of the ergodic dispersion coefficient. Indeed, in the case of the evolving-scale
heterogeneity represented by power-law semi-variograms and based on a first-order approach, there is
an automatic cutoff in terms of the scales of heterogeneity actually involved in the dispersion process.
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Such cutoff, the effects of which are synthesized by Equation (44) for negligible local dispersion,
is determined by the finite initial plume size.

Due to the linearity implied by Equations (2), (24), and (25), the derivation of DMij
for log-conductivity fields characterized by evolving scales of heterogeneity and power-law
semi-variograms can be pursued by computing the corresponding coefficient for any stationary
field of the continuous hierarchy (exponential covariance for 0 < b <1 and Gaussian covariance for
1 ≤ b < 2) and by integrating the result over the truncated frequency domain. See Appendix A for
the derivation of DMij(∞, Λ) in the case of 3-D stationary exponential and Gaussian log-K covariance.
To obtain the global asymptotic macro-dispersion coefficient, given by the linear combination of the
macro-dispersion coefficients characterizing the heterogeneous single-scale fields of the hierarchy,
one has to compute:

D̃Mij(∞) = limt→∞

(
1
2

dX̃ij

dt

)
= limt→∞

(
1
2

∞

∑
Λ=N+1

dXijΛ

dt

)
(51)

where

limt→∞

(
1
2

dXijΛ

dt

)
= DMij(∞, IYΛ) (52)

and

limt→∞

(
1
2

∞

∑
Λ=N+1

dXijΛ

dt

)
=

l0∫
0

DMij(∞, IYΛ)dIYΛ =

∞∫
Λ0

DMij(∞, Λ)dΛ (53)

with Λ0 = 1/l0. From Equation (A7), respectively for exponential and Gaussian hierarchy:

DM11(∞, Λ) =
cU

Λ2+β
(54)

and
DM11(∞, Λ) =

cU
Λ3+β

(55)

Thus:

D̃M11(∞) =
∞∫

Λ0

cU
Λ2+β dΛ = − aU

Γ(−b)
1

(1+b)Λ1+b
0

= − aU
Γ(−b)

l1+b
0

(1+b) 0 < b < 1
(56)

and

D̃M11(∞) =
∞∫

Λ0

cU
Λ3+β dΛ = − aU

Γ(− b
2 )
(√

π
2

)b
1

(1+b)Λ1+b
0

= − aU

Γ(− b
2 )
(√

π
2

)b
l1+b
0

(1+b) 1 ≤ b < 2
(57)

Therefore, for any value of exponent b, transport turns out to be asymptotically ergodic
and Fickian.

Note that the truncated semi-variograms for the exponential and the Gaussian hierarchy are
respectively given by:

γYt(r) =
∞∫

Λ0

c
Λ1+b [1− exp(−rΛ)]dΛ 0 < b < 1 (58)

and

γYt(r) =
∞∫

Λ0

c
Λ1+b

[
1− exp

(
−πr2Λ2

4

)]
dΛ 1 ≤ b < 2 (59)
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with the following large-distance approximations:

γYt(r) ∼= −
alb

0
bΓ(−b)

[
1−

bl1−b
0 exp(−r/l0)

r1+b

]
0 < b < 1 (60)

γYt(r) ∼= −
alb

0

bΓ
(
− b

2

)(√
π

2

)b

[
1−

(
21+b

π1+b/2

)
bl2−b

0 exp
(
−r2π/4l2

0
)

r2+b

]
1 ≤ b < 2 (61)

where

limr→∞γYt(r) = σ2
Y0 = −

alb
0

bΓ(−b)
0 < b < 1 (62)

limr→∞γYt(r) = σ2
Y0 = −

alb
0

bΓ
(
− b

2

)(√
π

2

)b 1 ≤ b < 2 (63)

indicate the truncated-field variances. Thus,

D̃M11(∞) =
σ2

Y0bUl0
(1 + b)

0 < b < 2 (64)

In dimensionless terms:

DM11 =
D̃M11(∞)

σ2
Y0Ul0

=
b

(1 + b)
0 < b < 2 (65)

In the case of non-negligible local dispersion, the subdivision expressed by Equations (30) and
(31) is a mobile one. Indeed, even if the Y-hierarchy is characterized by integral scales larger
than l0, particles’ displacement includes a local-dispersive component that makes the original
distances increase as ~

√
2Dt. Thus, the threshold sub-unit corresponding to the subdivision

into X̃- and X-displacement hierarchy changes in time, and the boundary wave-number is now

Λ′0 =
(

l0 + χ
√

2Dt
)−1

, with χ indicating a suitable constant related to the assumed width of the
Brownian-Gaussian bell. Equations (56) and (57) transform into:

D̃M11(t) =
∞∫

Λ′0

cU
Λ2+β

dΛ + D = − aU
Γ(−b)

(
l0 + χ

√
2Dt

)1+b

(1 + b)
+ D 0 < b < 1 (66)

and

D̃M11(t) =
∞∫

Λ′0

cU
Λ3+β

dΛ + D = − aU

Γ
(
− b

2

)(√
π

2

)b

(
l0 + χ

√
2Dt

)1+b

(1 + b)
+ D 1 ≤ b < 2 (67)

or

D̃M11(t) =
σ2

Y0bU
(1 + b)

(
l0 + χ

√
2Dt

)1+b

lb
0

+ D 0 < b < 2 (68)

In dimensionless terms:

DM11(τ) =
D̃M11(t)
σ2

Y0Ul0
=

b
(1 + b)

(
1 + χ

√
2τ

Pe0

)1+b

+
1

σ2
Y0Pe0

0 < b < 2 (69)

with
Pe0 =

Ul0
D

(70)
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and
τ =

tU
l0

(71)

Thus, in these conditions, transport tends to be asymptotically non-ergodic, due to the mobile

threshold wave number Λ′0 =
(

l0 + χ
√

2Dt
)−1

that makes the travel time needed to achieve condition
(48) larger and larger, and non-Fickian or super-diffusive (DM11 increases in time).

Equation (69) can be integrated to obtain the dimensionless particle covariance:

X11(τ) =
X̃11(t)
σ2

Y0l2
0
= 2

τ∫
0

DM11dτ = 2bPe0
χ(1+b)(2+b)

(
1 + χ

√
2τ
Pe0

)2+b√
2τ
Pe0

+

2bPe0
χ2(1+b)(2+b)(3+b)

(
1 + χ

√
2τ
Pe0

)3+b
+ 2bPe0

χ2(1+b)(2+b)(3+b) 0 < b < 2
(72)

Finally, it should be emphasized that, due to the invariance of the longitudinal large-time
macro-dispersion coefficient for both types of short-range correlations (exponential and Gaussian)
with respect to the dimensionality of the flow domain, the longitudinal macro-dispersion coefficient
obtained for isotropic 3-D evolving-scale formations (Equations (56) and (57), Equations (66)–(67))
applies also to 2-D cases, with Y referring now to log-transmissivity.

3. Results

Based on the statistical equivalence between the evolving-scale log-conductivity fields represented
by power-law semi-variograms and the superposition of independent log-conductivity fields
characterized by short-range correlations (exponential or Gaussian) and increasing integral scale,
the present work allowed it to be established that:

1. Assuming the validity of the linear mathematical treatment for subsurface flow and transport,
it is always possible to subdivide the solute particle displacement in two big components (Equations (30)
and (31)), respectively influenced by the fields of the log-conductivity hierarchy characterized by
integral scales smaller and larger than the initial plume size.

2. In the presence of markedly advective regimes and negligible local dispersion (or diffusion),
the second component of the displacement hierarchy referred to different particles is characterized by
almost perfect correlation at any time. For that reason, it is possible to rewrite a well-known relation
involving ensemble mean inertia moment, particle position covariance, and centroid covariance
(e.g., [6,7]) in a formally identical but substantially different way:〈

Sij(t)
〉
= Sij(0) + X̃ij(t)− R̃ij(t) (73)

where the statistical moments on the right-hand side are now dependent on the truncated
log-conductivity hierarchy only. Thus, unlike what was inferred by Dagan [13], there is no need
to invoke the non-ergodicity of the process and to a priori define the longitudinal macro-dispersion
coefficient as one-half of the time-derivative of <Sij> in order to cut-off the long tail of the
log-conductivity spectrum, obtaining an asymptotically constant value. As a matter of fact, the
centroid covariance R̃ij is affected by a restricted range of heterogeneity scales and tends to zero at
large times. As a consequence, the time derivative of <Sij> tends to coincide with the time-derivative of
X̃ij, which envisions an asymptotically ergodic transport process. Additionally, the assumed linearity
of the problem and the integration of the asymptotic macro-dispersion coefficient obtained for a generic
single-scale log-conductivity field over the truncated hierarchy domain lead to an invariably constant
asymptotic macro-dispersion coefficient and, therefore, to Fickian transport conditions. It should be in
any case emphasized that the never-decaying dependence of this coefficient on the initial plume size l0
in Equation (64) which means that the system is characterized by persistent memory.

3. The nature of solute transport in evolving-scale heterogeneous formations is critically controlled
by the magnitude of the initial Péclet number, intended as the ratio of the product between the ensemble
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mean velocity and the initial plume size to the local dispersion coefficient. Generally speaking, the
Péclet number is a measure of the relative importance of advective and diffusive-like transport
mechanisms. In this specific case, the initial Péclet number can be interpreted as the ratio of the
largest period of log-conductivity intercepted by the initial plume to the solid matrix diffusivity.
When the Péclet number is not exceedingly large and the diffusive-like transport mechanisms play
a non-negligible role in the dispersion process, the truncation of the hierarchy cannot be univocally
defined. As a matter of fact, the boundary between the first and the second component of the
displacement hierarchy (Equations (30) and (31)) tends to change in time due to the advection-free
effect of diffusion that increases the distance between different particles, even when they undergo
highly correlated (and, therefore, identical) advective displacements.

4. For a finite Péclet number, the dimensionless longitudinal macro-dispersion coefficient and the
trajectory second-order statistical moment (particle covariance) are respectively given by Equations (69)
and (72).

Equations (69) and (72) are graphically represented in Figures 1 and 2, respectively, for χ = 3 and
a travel distance equal to 30l0. As one can see, the effect produced by high Péclet (Pe0) numbers is
opposite to the effect produced by high scaling exponents (b). Specifically, the higher the Péclet number,
the closer the transport process to asymptotic Fickian conditions, represented by a constant longitudinal
macro-dispersion coefficient (although, for τ→ 0, the dispersion coefficient is higher for higher Péclet
numbers due to the larger number of heterogeneity scales initially sampled). Conversely, the higher the
scaling exponent, the faster the macro-dispersion coefficient increases. Notice that, in Figure 2, the red
dotted line represents the Fickian, linear behavior corresponding to a single-scale log-conductivity
field (exponential or Gaussian log-K covariance) characterized by the truncated-hierarchy variance and
by an integral scale equal to the initial plume size. Thus, unlike the case of fast-decaying correlation
functions, the coexistence of evolving-scale advective heterogeneity and intensive diffusive mixing
acts as an antagonist mechanism in the process of solute dilution and Fickian regime achievement.
Such a behavior, which is in definite contrast with what was previously found for stationary porous
media, was detected here for the first time.Water 2017, 9, 751 13 of 17 
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4. Discussion and Conclusions

The present study has shown that the dispersion of solutes in evolving-scale heterogeneous porous
formations represented by power-law semi-variograms can be ergodic and Fickian or non-ergodic and
super-diffusive, based on the magnitude of the Péclet number, where the Péclet number is intended as
the ratio of the product of the ensemble mean velocity and the initial plume size to the local dispersion
coefficient, and the scaling exponent value.

Specifically, the larger the Péclet number, the closer the transport process to asymptotically
ergodic-Fickian conditions. Conversely, the higher the scaling exponent, the closer the transport
process to a non-ergodic super-diffusive regime. In the limit for Péclet tending to infinity (negligible
local dispersion), transport is always asymptotically Fickian (regardless of the scaling exponent),
with the longitudinal macro-dispersion coefficient that increases with the initial plume size and
scaling exponent.

The most important result is that, whereas in weakly heterogeneous formations characterized
by short-range correlation functions the local dispersive/diffusive transport mechanisms enhance
solute mixing and dilution by a faster achievement of Fickian conditions, the opposite happens in
the case of heterogeneous porous formations characterized by persistent correlations represented by
power-law semi-variograms.

This result is different from what has been found by previous studies on the same topic.
Dagan [13] predicted invariably non-ergodic conditions (the uncertainty related to the centroid
location, which is directly dependent on the incomplete dilution, never decayed) and adopted the
effective macro-dispersion coefficient as representative of longitudinal dispersion. Dispersion turned
out to be asymptotically Fickian for 0 < b < 1 and anomalous for 1 ≤ b < 2. On the other hand,
Suciu et al. [18] did not deal with ergodicity issues, defined the macro-dispersion coefficient as
one-half of the time-derivative of the particle trajectory covariance X11, and detected invariably
super-diffusive regimes.

The different conclusions reached by the present study come from the acknowledgement of the
effective-heterogeneity frequencies selection imposed by the finite initial plume size in such very
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peculiar hydraulic conductivity fields. Practically speaking, the present study recognizes that, in these
cases, it is the initial dilution degree that plays a crucial role in terms of further possible dilution.

Indeed, a very concentrated solute spot in high-Péclet number transport processes would remain
a very concentrated solute spot at any time: in the presence of long-range log-K correlations, a small
solute body does not intercept a band of heterogeneity frequencies sufficient to induce solute dispersion
about the center of mass. Conversely, the presence of a non-negligible local dispersive contribution
would determine a continuous though slow involvement of larger heterogeneity scales, with the
band of effective frequencies that becomes wider and wider. In these conditions, the evolving cut-off
would tend to become ineffective in that all scales of heterogeneity would gradually affect both
the macro-dispersion coefficient and the uncertainty related to the centroid location. In both cases,
however, transport would be non-ergodic:

d〈S11〉
dt

6= dX̃11

dt
(74)

and anomalous. In the first case, Pe→ ∞ and there is no frequency selection due to the infinitesimal
plume size:

d〈S11〉
dt

=
dX11

dt
− dR11

dt
= 0 (75)

In the second case, Pe is finite and the frequencies cut off is mobile:

d〈S11〉
dt

=
dX̃11

dt
− dR̃11

dt
+ 2D 6= 0 (76)

Only with a finite initial plume size (already diluted solute) and negligible local dispersion,
one would recover asymptotically ergodic conditions:

d〈S11〉
dt

→ dX̃11

dt
(77)

and a Fickian regime:
dX̃11

dt
→ 2Dm11 = const (78)

Since local dispersion is related to laboratory-scale formation structure, the local analysis of
long-range correlation porous media is a crucial issue in predicting the fate of fluids or pollutants
subject to release and migration through them. Additionally, it must be emphasized that the linear
treatment of flow and transport may hide some relevant second-order effects such as those coming from
the interplay of the heterogeneity scales allowed by the complete solution of the flow equation (see
Equation (21)) and from the Lagrangian solution of transport based on the complete integro-differential
Equation (32), instead of on its linearized version:

X′(t, a) ∼=
t∫

0

v′[a + Uτ + XB(τ)]dτ (79)

Finally, provided that any numerical approach would be to some extent biased by the dimensions
of the computational domain, it would be desirable that field experiments in highly heterogeneous
and complex porous formations validate the theoretical conclusions.

Conflicts of Interest: The author declares no conflicts of interest.
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Appendix A

From Pannone and Kitanidis [29], we know that the general expression of the asymptotic
macro-dispersion coefficient in the case of short-range correlations and the mean velocity U directed
along x1 is:

DMij(∞) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
4π2D

3
∑

r=1
λ2

r /I2
Y

)
Suij(λ1, λ2, λ3)

(2πλ1U/IY)
2 +

(
4π2D

3
∑

r=1
λ2

r /I2
Y

)2
dλ1dλ2dλ3

I3
Y

+ D (A1)

where λr = krIY and Suij is the velocity spectrum. If the axes of the Cartesian reference frame (x1, x2, x3)
coincide with the principal axes of the dispersing plume, the velocity spectrum and log-conductivity
spectrum SY are related by the following expressions (e.g., [1]):

Su11(λ1, λ2, λ3) = U2SY(λ1, λ2, λ3)

(
1−

λ2
1

λ2
1 + λ2

2 + λ2
3

)2

(A2)

Su22(λ1, λ2, λ3) = U2SY(λ1, λ2, λ3)

(
λ1λ2

λ2
1 + λ2

2 + λ2
3

)2

(A3)

Su33(λ1, λ2, λ3) = U2SY(λ1, λ2, λ3)

(
λ1λ3

λ2
1 + λ2

2 + λ2
3

)2

(A4)

The spectrum of the isotropic log-conductivity can, in turn, be derived from the definition of
Fourier transform. For the exponential covariance:

SY(k) =
∫
r

CY(r) exp(−j2πk · r)dr =
2
k

∞∫
0

σ2
Y exp

(
− r

IY

)
sin(2πkr)rdr =

8π I3
Yσ2

Y(
1 + 4π2k2 I2

Y
)2 (A5)

while, for the Gaussian counterpart:

SY(k) = 2
k

∞∫
0

σ2
Y exp

(
− r2

l2
Y

)
sin(2πkr)rdr = π3/2σ2

Y l3
Y exp

(
−π2l2

Yk2)
= 8I3

Yσ2
Y exp

(
−4π I2

Yk2) (A6)

where k2 = k2
1 + k2

2 + k2
3. The advective part of DM11 for both exponential and Gaussian covariance

is therefore:
DM11A(∞, IYΛ) = σ2

YΛUIYΛ (A7)

Equation (A7) is obtained from Equation (A1) after the substitution ν1 = λ1Pe/2π, where
Pe = UIY/D >> 1, from [28]:

∞∫
−∞

1

ν2
1 +

(
λ2

2 + λ2
3
)2 dν1 =

π(
λ2

2 + λ2
3
)2 (A8)

by switching to polar coordinates for the subsequent integration over λ2 and λ3:
λ =

√
λ2

2 + λ2
3

λ2 = λ cos φ

λ3 = λ sin φ

dλ2dλ3 = λdλdφ

(A9)
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