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Abstract: In the paper, the verification of forecasts of precipitation conditions measured by the
standardized precipitation index (SPI) is presented. For the verification of categorical forecasts,
a contingency table was used. Standard verification measures were used for the SPI value forecast.
The 30-day SPI, moved every 10 days by 10 days, was calculated in 2013–2015 from April to September
on the basis of precipitation data from 35 meteorological stations in Poland. Predictions of the 30-day
SPI were created in which precipitation was forecasted for the next 10 days (the SPI 10-day forecast)
and 20 days (the SPI 20-day forecast). For both the 10 and 20 days, the forecasts were skewed towards
drier categories at the expense of wet categories. There was a good agreement between observed and
10-day forecast categories of precipitation. Less agreement is obtained for 20-day forecasts—these
forecasts evidently “over-dry” the assessment of precipitation anomalies. The 10-day SPI value
forecast accuracy is very good or good depending on the performance measure, whereas accuracy
of the 20-day forecast is unsatisfactory. Both for the SPI categorical and the SPI value forecast, the
10-day SPI forecast is trustworthy and the 20-day forecast should be accepted with reservation and
used with caution.

Keywords: precipitation deficit; precipitation surplus; standardized precipitation index SPI;
forecast; verification

1. Introduction

Modern economy uses natural—and at the same time highly weather-dependent—water resources.
It needs trustworthy, good quality, short-, medium-, and long-term forecasts of surpluses and shortages
of rainfall. In agriculture, knowledge of current rainfall and its forecast over the coming days enable
the prediction of soil moisture changes, which allows farmers to take appropriate mitigation measures
to reduce the negative effects of adverse weather events, mainly precipitation anomalies.

Natural and climatic conditions in Poland are generally conducive to agricultural production,
but frequent changes of weather conditions during the growing season, especially rainfall, results
in crop production periods of excessive soil moisture and, more often, deficient rainfall. Statistics
show that the average loss in yields caused by drought ranged from 10% to 40%, and in extremely
dry years (e.g., 1992 and 2000), meteorological drought covered more than 40% of Polish territory [1].
In Kujavian-Pomeranian province, losses caused by natural disasters in the years 1999–2011 totaled
about 3.4 billion PLN [2]. Comparative research conducted by Bojar et al. [3] in Kujavian-Pomeranian
(western Poland) and Lublin province (eastern Poland) showed significant differences in shortage
of rainfall in agricultural production and yields of some crops due to regional differences in the
precipitation amount and spatiotemporal distribution.

Forecasting rainfall, especially short- (1–2 days ahead) and medium-term (3–10 days ahead)
is very important and significant in agriculture production. Monitoring and early warning help
to reduce the impacts and to mitigate the consequences of weather- and climate-related natural
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disasters for agricultural production. Transfer of agrometeorological information to farmers can be
done in different ways. Meteorological services use different options, such as periodical bulletins
published on the Internet and mass media: TV, radio, and newspapers. According to Stigter et al. [4],
the agrometeorological services should be simple so that they can be properly assimilated, and
they must be used frequently to facilitate decision-making and planning. Agrometeorological
services are often exemplified by agroclimatological characterization, weather forecasting (including
agrometeorological forecasting), and other advisories prepared for farmers. Agrometeorological
forecasting, with special attention to rainfall, is indispensable for planning agrotechnical measures
such as plowing, sowing, and harvesting, not to mention irrigation, when rainfall amount is the main
determinant of when and how much to irrigate.

Forecasting rainfall is one of the most difficult meteorological forecasts and has become one of the
most important elements of forecasting weather conditions at various time scales. Powerful forecasting
models have been used increasingly in recent years [5–11]. The results of forecasting are available on
numerous web portals—of which the majority presents their own interpretations of graphic copyright
forecasts published by specialized research institutes, such as the European Centre for Medium-Range
Weather Forecasts [12] or the National Oceanic and Atmospheric Administration [10]—and by thematic
weather portals, for example, Agropogoda [13] and WetterOnline [14]. For planning management of
water in agriculture, medium- and long-term forecasts of rainfall are more valuable than the prediction
of daily precipitation. However, the latter is important in operational control of irrigation.

Beside rainfall forecasts providing information of whether rainfall will occur and about the
amount of rainfall in the forecast period, a categorical precipitation forecast is often made. Such
a forecast informs on the category (class) that precipitation will be, either at a given probability or
as a deterministic phenomenon. Moreover, for operational purposes and for making comparative
assessments of precipitation anomalies in different regions, it is indispensable to apply not only
precipitation data, but standardized precipitation data. One such index is the standardized
precipitation index (SPI) [15,16]. The SPI has been defined as a key indicator for monitoring drought
by the World Meteorological Organization [17]. The SPI is a standardized deviation of precipitation, in
a particular period, from the median long-term value for this period. It represents a departure from
the mean, expressed in standard deviation units. The SPI is a normalized index in time and space.
The method ensures independence from geographical positions, as the index in question is calculated
with respect to average precipitation in the same place [18].

An important issue in the forecasting process is the assessment of forecast accuracy. The results
of verification of forecasts is the answer the question of whether the discrepancy between observed
and forecast precipitation or precipitation category is essential according to accepted criteria. In world
literature, there is a variety of assessment methods for the verification of predictive models, including
the practice recommended by the World Meteorological Organization [19]. An interesting compendium
of knowledge on forecasting is a collective work “Forecast Verification. A Practitioner’s Guide in
Atmospheric Science” [20]. In that book, Livezey [21] discusses the assessment of conformity of
the deterministic categorical forecasts with the actual situation according to the accepted multistage
verification criteria.

There are rather few studies devoted to the assessment of forecast of drought identified by
SPI. Bordi et al. [22] used two methods for forecasting the 1-month SPI: an autoregressive model
(AR) and the Gamma Highest Probability (GAHP) method. The mean squared error (MSE) was
relatively high for both methods. Mishra and Desai [23] used linear stochastic models—autoregressive
integrated moving average (ARIMA) and multiplicative ARIMA (SARIMA) models—to forecast
droughts using a series of SPI values in the Kangsabati River basin in India. Cancelliere et al. [24]
proposed methods for forecasting transition probabilities from one drought class to another and for
forecasting SPI. They showed that the SPI can be forecasted with a reasonable degree of accuracy, using
conditional expectations based on past values of monthly precipitation. Hwang and Carbone [25] used
a conditional resampling technique to generate ensemble forecasts of SPI, and found a reasonable
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forecast performance for SPI-1. Hannaford et al. [26] proposed a method for forecasting drought in the
United Kingdom based on the current occurrence of drought. Shirmohammadi et al. [27] carried out
research to evaluate the ability of wavelet artificial neural network (ANN) and adaptive neuro-fuzzy
inference system (ANFIS) techniques for forecasting meteorological drought, as identified by SPI,
in the southeastern part of East Azerbaijan province, Iran. The performances of the models were
evaluated by comparing the corresponding values of the root mean squared error, the coefficient of
determination, and the Nash–Sutcliffe model efficiency coefficient. Belayneh et al. [28] compared the
effectiveness of five data-driven models for forecasting long-term (6- and 12-month lead-time) drought
conditions in the Awash River Basin of Ethiopia. The standard precipitation index was forecasted
using a traditional stochastic model (ARIMA) and compared to machine learning techniques such as
ANNs and support vector regression (SVR). The performances of all models were compared using
the root mean squared error (RMSE), the mean absolute error (MAE), the coefficient of determination
(R2), and a measure of persistence. Maca and Pech [29] compared forecast of drought indices based on
two different models of artificial neural networks. The analyzed drought indices were the SPI and the
standardized precipitation evaporation index (SPEI), which were derived for the period of 1948–2002
on two U.S. catchments. The comparison of the models was based on six model performance measures.

Most of the methods used to forecast SPI are based purely on statistics. There are much fewer
reports in the literature of an assessment of SPI forecast based on numerical prediction models of
precipitation. Łabędzki and Bąk [30] conducted a verification of the 10-day forecasts of rainfall and
the course of meteorological drought in 2009 and 2010 for the station of the Institute of Technology
and Life Sciences (ITP) in Bydgoszcz (Poland). The authors checked the validity of the forecasts of
precipitation taken from the service WetterOnline and the forecasts of rainfall categories based on
SPI using their own verification criteria. Singleton [31] analyzed the performance of the European
Centre for Medium Range Weather Forecasts (ECMWF) variable resolution ensemble prediction system
(varEPS) for predicting the probability of meteorological drought. Drought intensity was measured by
the SPI, and forecasts of SPI-1 and SPI-3 were verified against independent observations.

Since April 2013, the Institute of Technology and Life Sciences (ITP) has been conducting
nationwide monitoring and forecasting of shortage and excess of water in Poland [32]. The current
assessment of precipitation anomalies and earlier 20- and 10-day forecasts are based on actual and
projected values of the standardized precipitation index, SPI. The spatial distribution of deficit and
excess rainfall are shown on the maps in real-time and forecast periods. They are available on the
website of the Institute of Technology and Life Sciences (www.itp.edu.pl)—Monitoring Agrometeo
(http://agrometeo.itp.edu.pl).

The aim of the study is to evaluate the verifiability of these rainfall category forecasts predicted
in 2013–2015.

2. Materials and Methods

2.1. SPI Calculation and Precipitation Categories

The evaluation and forecasting of precipitation anomalies (rainfall deficit and surplus) are made
using the standardized precipitation index, SPI. The SPI calculation for any location is based on
the long-term precipitation record in a given period. SPI was calculated using the normalization
method. Precipitation P is a random variable with a lower limit and often positive asymmetry and
does not conform to normal distribution. Most often, periodical (monthly, half-year, or annual) sums
of precipitation conform to the gamma distribution. Therefore, precipitation sequence was normalized
with the transformation function f (P):

f (P) = u =
3√P (1)

where P is the element of precipitation sequence.
Values of the SPI for a given P are calculated with the equation:
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SPI =
f (P)− u

du
(2)

where SPI is the standardized precipitation index, f (P) is the transformed sum of precipitation, u is
the mean value of the normalized precipitation sequence, and du is the standard deviation of the
normalized precipitation sequence.

The values of SPI are compared with the boundaries of different classes. Because the SPI is
normalized, wet and dry periods can be classified symmetrically. There are many classifications used
by different authors. Originally, McKee et al. [15] distinguished four classes of drought and four
classes of wet periods: mild, moderate, severe, and extreme. The threshold value of SPI for the mild
drought and mild wet category equals to SPI = 0. Agnew [33] writes that, in this classification, all
negative values of SPI are taken to indicate the occurrence of drought—this means that for 50% of
the time drought is occurring. He concluded that it was not rational and suggested alternative, more
rational thresholds. He recommended the SPI drought thresholds corresponding to 20% (moderate
drought), 10% (severe drought), and 5% (extreme drought) probabilities (SPI =−0.84, −1.28 and−1.65,
respectively). Vermes [34] proposed seven categories, with the first class of a dry period starting at
SPI = −1 and with the wet period at SPI = 1. In this study, this classification was applied (Table 1).

Table 1. Precipitation categories according to SPI.

Category SPI

Extremely dry ≤−2.0
Very dry −2.0 < SPI ≤ −1.5

Moderately dry −1.5 < SPI ≤ −1.0
Normal −1.0 < SPI ≤ 1.0

Moderately wet 1.0 < SPI ≤ 1.5
Very wet 1.5 < SPI ≤ 2.0

Extremely wet >2.0

2.2. Data Set

The SPI values are calculated on the basis of precipitation data from 35 meteorological stations of
the Institute of Meteorology and Water Management (IMGW)—National Research Institute in Poland
(Figure 1). Series of precipitation records from the period 1961–2012, at each station, were used as
historical data.
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The SPI was calculated in 2013–2015 from April to September and for the 30(31)-day periods
moved every 10(11) days by 10(11) days (called “observed SPI”). Using the forecasted precipitation,
predictions of the 30(31)-day SPI are created in which precipitation is forecasted in the next 10(11)
(called “the SPI 10-day forecast”) and 20(21) days (called “the SPI 20-day forecast”). It means that,
for example, when the observed SPI is in the period from 11 May to 10 June, the 10-day SPI forecast
covers the period 21 May–20 June in which precipitation from 21 May to 10 June is observed and from
11 June to 20 June is forecasted. The 20-day SPI forecast covers the period from 1 June to 30 June,
in which precipitation from 1 June to 10 June is observed and from 11 June to 20 June is forecasted.
In the verification procedure, the pairs of the observed and forecast SPI in the same period are taken for
comparison separately for the 10 and 20 day forecasts. Altogether, there were 1330 observed–forecasted
pairs for each forecast type (10-day and 20-day)—10 periods in 2013, 14 periods in 2014 and 14 periods
in 2015. The period of 10, 20, and 30 days refers to the calendar decade with 10, 20, and 30 days and
the period of 11, 21, and 31 to the calendar decade with 11, 21, and 31 days. The observed and forecast
SPI was calculated in 2013–2015 using Equations (1) and (2), in which u and du were determined for
the 1961–2012 historical precipitation sequence. The historical precipitation data series from 1961 to
2012 (52 years) is indispensable and used for calculation of SPI in 2013–2015.

Rainfall forecasts necessary to develop predictions of precipitation anomalies for the next 10
and 20 days come from the meteorological service of MeteoGroup [9]. MeteoGroup has developed
its own system of forecasting called multi-model MOS (model output statistics), which is based on
numerical model calculations of the most respected meteorological centers—ECMWF model (European
Centre for Medium-Range Weather Forecasts), EPS model (Ensemble Prediction System), GFS (Global
Forecast System) model (National Centers for Environmental Prediction), UKMO model (United
Kingdom Met Office)—as well as on the measurement and observation data from all available sources
(national synoptic meteorological stations, aerodrome meteorological stations, satellite images, and
radar images). The calculation results of each model are included with different weights. For each
location, where historical measurements are available (with at least 1 year), for each meteorological
element are assigned appropriate weights based on the degree of verifiability of each of the models in
the past. Weighting is held every year with the new data. Major updates of MOS forecasts are held
four times a day (7, 9, 19, and 21 UTC) based on the new model results (2–4 times a day depending
on the model). In addition, MOS forecast is updated continuously as the inflow of the measurement
data (1–3 h). Also, a special tool (Meteobase) is developed that, if necessary, allows meteorologists
to enter manual adjustments to the forecasts at any time. MeteoGroup can provide forecast for any
location specified by the user. For this purpose, the method of so-called “smart interpolation” is used,
taking into account the results of the forecasts for the neighboring measuring stations, with weights
dependent on their distance from the location and degree of similarity in terms of location (height
above sea level, distance from the sea, location in a mountain valley, etc.). There is also the possibility
of including measurement data supplied by the user, which further improves the quality of predictions
for the location.

The forecasts, presented and analyzed in the paper, are deterministic forecasts of a nominal
variable. The variable is the standardized precipitation index, SPI, whose value in a given period is
qualified to the one of the SPI categories. The short-range forecast of SPI issued 10 days ahead and
medium-range forecast covering the next 20 days were made.

2.3. Verification Procedure

Verification of two types of the SPI forecast was made: the SPI category forecast and the SPI
value forecast.

For the verification of categorical forecasts, the distribution approach was used. This approach
relies on the analysis of the joint distribution for forecasts and observations and examines the
relationship among the elements in the multicategory contingency table, which is considered a good
tool for this purpose [21,35]. A contingency table is a type of table in a matrix format that displays
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the multivariate frequency distribution of the variables. It provides a basic picture of the interrelation
between two variables and can help find interactions between them.

A contingency table shows the distribution of one variable in rows and another in columns to study
the association between the two variables. The two-way contingency table is a two-dimensional table
that gives the discrete joint sample distribution of deterministic forecasts and categorical observations
in cell counts [21]. The contingency table is a combination of two or more frequency tables arranged
in such a way that each cell in the table clearly represents a combination of specific values of the
analyzed variables. Such a multiway table enables the analysis of the frequencies corresponding to the
categories designated by more than one variable. By analyzing these frequencies, you can identify the
relationships that exist between the variables.

Each cell of the contingency table contains the relative frequency pij of forecast category i and
observed category j. It is calculated as the cell count nij divided by the total forecast–observation
pair sample size n. The sums of pij for a given forecast category i and observed category j are called
marginal frequencies.

To test if frequencies in each category of observed and forecasted SPI values are strongly
dependent (i.e., there is a significant relationship between them) the Pearson chi-squared test (χ2) was
used. The null hypothesis is that they are not dependent (there is no relationship between them) and
the contingency table is the result of independent forecast–observation pairs for categorical events.
High statistical significance of the dependence of observed and forecasted SPI category indicates high
forecast accuracy. The χ2 test consists of comparing observed frequencies with expected frequencies
with the assumption of the null hypothesis (no association between observed and predicted values).
Expected frequency Eij is calculated using the empirical marginal distributions as:

Eij =
k

∑
j=1

pij

k

∑
i=1

pij

/ k

∑
i=1

k

∑
j=1

pij i, j = 1, . . . , k (3)

where:

pij—relative frequency of forecast category i and observed category j

k—number of observed and forecast categories

The test statistic, called the Pearson chi-squared statistic, takes the form:

χ2 =
k

∑
i=1

k

∑
j=1

(
pij − Eij

)2

Eij
(4)

Assuming the veracity of the null hypothesis, this statistic has the asymptotic χ2 distribution with
the degrees of freedom df equal to:

d f = (k− 1)2 (5)

The results of observed–forecast frequencies depend on the relation of the number of categories
and the sample size. For more than two categories forecast, a sample size required for proper
estimates should be of the order of 10k2 [21]. In the presented study, k = 7 and the sample size
of 1330 forecast–observation pairs is thus completely sufficient.

If the values of the computed statistic according to Equation (4) exceed the critical χ2
cr for their

chance probabilities to be less than e.g., 0.05, 0.01, 0.001 (χ2 > χ2
cr) the null hypothesis can be rejected at

a given probability level. The asymptotic distribution of χ2 for different degrees of freedom is tabulated
in different sources from which χ2

cr can be determined for a given probability and the sample size n.
For categorical forecasts presented in the form of a contingency table, the following measures of

accuracy were used based on the frequencies and the marginal distributions:
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(1) Proportion correct PC

PC =
k

∑
i=1

pii (6)

(2) Bias B

Bi =
k

∑
j=1

pij

/ k

∑
j=1

pji i = 1, . . . , k (7)

(3) Probability of detection POD

PODi = pii

/ k

∑
j=1

pji i = 1, . . . , k (8)

(4) Heidke skill score HSS

HSS =

(
k

∑
i=1

pii −
k

∑
i=1

pi pi

)/(
1−

k

∑
i=1

pi pi

)
(9)

in which

pi =
k

∑
j=1

pji i = 1, . . . , k (10)

pi =
k

∑
j=1

pij i = 1, . . . , k (11)

Besides the verification of the SPI category forecasts on the basis of the contingency table,
the verifiability of the SPI value forecasts was assessed. The following measures of goodness of
fit were used to evaluate the forecast performance:

(1) Ratio of the number of the periods in which the criterion∣∣∣SPI f orecast − SPIobserved

∣∣∣ ≤ 0.5 (12)

was met to the number of all periods.
(2) Mean systematic error (bias) b

b =
1
n

n

∑
i=1

(
SPI f orecast − SPIobserved

)
(13)

where n is the number of forecast–observation pairs.
(3) Mean absolute error MAE

MAE =
1
n

n

∑
i=1

∣∣∣SPI f orecast − SPIobserved

∣∣∣ (14)

(4) Root mean squared error RMSE

RMSE =

√
1
n

n

∑
i=1

(
SPI f orecast − SPIobserved

)2
(15)
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(5) Pearson’s linear correlation coefficient r

r =
∑n

i=1

(
SPI f orecast − SPI f orecast

)(
SPIobserved − SPIobserved

)√
∑n

i=1

(
SPI f orecast − SPI f orecast

)2√
∑n

i=1
(
SPIobserved − SPIobserved

)2
(16)

In the above equations, SPIforecast denotes the forecast SPI value in the 30(31)-day period in which
the 20(21)-day rainfall sum was measured and the 10(11)-day rainfall sum was forecast in the case of
the 10-day forecast, and the 10(11)-day rainfall sum was measured and the 20(21)-day rainfall was
forecast in the case of the 20-day forecast. SPIobserved denotes the observed SPI value in the same
30(31)-day period on the basis of the measured rainfall sum in this period.

3. Results and Discussion

3.1. SPI Category Forecast

The joint distribution of forecast and observed SPI is presented in the contingency tables for
the 10-day forecasts (Table 2) and for the 20-day forecasts (Table 3). The contingency tables show
the relative frequencies and the empirical margins distributions in seven categories of precipitation.
The forecasts were made for 35 stations and for the years 2013–2015 for April through September. Each
table is constructed from a sample of 1330 forecasts–observations.

Table 2. Relative frequency (in percent) for the standardized precipitation index (SPI) 10-day forecasts
(n = 1330).

Forecast
Observed

Extremely
Dry

Very
Dry

Moderately
Dry Normal Moderately

Wet
Very
Wet

Extremely
Wet

Forecast
Distribution

Extremely dry 3 1 1 1 0 0 0 6
Very dry 1 3 3 1 0 0 0 8

Moderately dry 1 2 5 5 0 0 0 13
Normal 0 0 3 56 3 1 0 63

Moderately wet 0 0 0 2 3 1 0 6
Very wet 0 0 0 1 1 1 0 3

Extremely wet 0 0 0 0 0 0 1 1
Observed distribution 5 6 12 66 7 3 1 100

Notes: n—the number of observation–forecast pairs.

Table 3. Relative frequency (in percent) for SPI 20-day forecasts (n = 1330).

Forecast
Observed

Extremely
Dry

Very
Dry

Moderately
Dry Normal Moderately

Wet
Very
Wet

Extremely
Wet

Forecast
Distribution

Extremely dry 3 2 3 4 0 0 0 12
Very dry 1 2 2 7 0 0 0 12

Moderately dry 1 1 3 11 0 0 0 16
Normal 0 1 4 42 6 1 1 55

Moderately wet 0 0 0 2 1 1 0 4
Very wet 0 0 0 0 0 1 0 1

Extremely wet 0 0 0 0 0 0 0 0
Observed distribution 5 6 12 66 7 3 1 100

Based on the distribution of the observed SPI, it can be concluded that in 2013–2015, the periods
drier than normal dominated (23%) in comparison with the wetter periods (11%). Normal periods
occurred most often (66%). A similar frequency distribution was found for the forecasts, both for
10 and 20 days ahead. These forecasts are skewed towards forecasts of drier categories at the expense
of wet categories—27% of the periods were predicted to be drier than normal in the case of 10-day
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forecasts and 30% in the case of 20-day forecasts. Comparing the distribution of observations and
forecasts, it seems reasonable to conclude that there is a good agreement between observed and 10-day
forecast categories of precipitation. Less agreement is obtained for 20-day forecasts—these forecasts
evidently “over-dry” the assessment of precipitation anomalies. The observed normal category of
precipitation is almost as often as the 10-day forecast of this category (66% and 63%, respectively).
The 20-day forecast of normal category is less frequent (55%) than the observed normal category.
The frequency of 20-day forecast of dry periods distinctly increased, while that of normal and wet
periods decreased.

To answer the question of whether the constructed contingency tables are the result of dependent
forecast–observations pairs for categorical events, a chi-squared test (χ2) was performed with the
assumption of the null hypothesis that no association between observed and predicted values occurred.
For the 10-day forecast, the test statistics χ2 are greater than the critical values χ2

cr at the 0.05, 0.01, and
0.001 level (Table 4). For the 20-day forecast the test statistic χ2 is greater than the critical values χ2

cr at
the 0.05 level. This means that the null hypothesis should be rejected at the 0.001 level for the 10-day
forecast and at the 0.05 level for 20-day forecast. The relation between the frequency distribution in
SPI categories is statistically significant at least at the 0.001 level for the 10-day forecast and at the
0.05 level for the 20-day forecast. A crucial point is whether these levels of statistical significance
are satisfactory or not (i.e., at which level the results given in the contingency table are statistically
significant). I proposed to assume the level of 0.001. Thus, the 10-day categorical forecasts of SPI are
satisfactory and acceptable and the 20-day forecasts are not.

Table 4. Chi-squared (χ2) values for SPI forecasts in seven categories (n = 1330; df = 36).

Test Statistic 10-Day Forecast 20-Day Forecast

χ2 calculated 155.7 51.5
χ2

cr for α = 0.05 51.0
χ2

cr for α = 0.01 58.6
χ2

cr for α = 0.001 68.0

Notes: n—the number of observation-forecast pairs; df —degree of freedom.

For categorical forecasts, the measures of accuracy based on the frequencies and the marginal
distributions are shown in Table 5.

Table 5. Measures of accuracy for SPI forecasts in seven categories.

Measure Extremely Dry Very Dry Moderately Dry Normal Moderately Wet Very Wet Extremely Wet

10-day forecast

PC 0.72
HSS 0.47

B 1.63 1.15 1.08 0.94 0.85 0.92 1.38
POD 0.64 0.52 0.46 0.83 0.42 0.42 0.69

20-day forecast

PC 0.51
HSS 0.19

B 3.13 1.89 1.49 0.80 0.50 0.45 0.56
POD 0.67 0.28 0.27 0.62 0.13 0.18 0.19

Notes: PC—proportion correct; HSS—Heidke skill score; B—bias; POD—probability of detection.

The proportion of correct PC shows the proportion of correct categorical forecasts. PC is rather
high for 10-day forecasts (72%) and lower for 20-day forecasts (51%).

The HSS measures the fractional improvement of the forecast over the standard forecast.
It answers the question of what the accuracy of the forecast in predicting the correct category is,
relative to that of random chance. It measures the fraction of correct forecasts after eliminating those
forecasts which would be correct due purely to random chance. The range of the HSS is −∞ to 1.
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Negative values indicate that the chance forecast is better, 0 means no skill, and a perfect forecast
obtains an HSS of 1. According to these criteria, the 10-day forecast may be evaluated as good and the
20-day forecast is not satisfactory due to HSS being close to 0.

The bias B reveals whether some forecast categories are over- or under-forecast. In the case of
the 10-day forecasts, the forecast–observation set has little bias B for the normal as well as for the
moderately and very dry and wet categories (value close to 1). The forecasts and observations are
rather dissimilar for the extreme category. The values of bias B are worse for the 20-day forecasts.
For both the 10-day and 20-day forecasts, the dry categories are above-forecast (B > 1) and the wet
categories are under-forecast (B < 1).

The probability of detection POD quantifies the success rate for detecting different categorical
events. The probability of detection is only satisfactory for the 10-day normal category forecast
(POB = 0.83); other forecasts are modestly under-detected.

3.2. SPI Value Forecast

In this section, the verification of the SPI value forecast is presented (Table 6).

Table 6. Measures of accuracy for SPI value forecasts.

Measure 10-Day Forecast 20-Day Forecast

Ratio 72% 40%
b −0.10 −0.53

MAE 0.39 0.80
RMSE 0.543 1.037

Correlation coefficient r 0.870 0.648

Notes: MAE—mean absolute error; RMSE—root mean squared error; b—mean systematic error (bias).

Performance measures and corresponding performance evaluation criteria are important aspects
of forecast verification. A forecast is high quality if it predicts the observed conditions well according
to some objective or subjective criteria. A logical question to ask is about these criteria is which values
of the above measures show that the forecasts are satisfactory and acceptable. The answer can be
approached by comparing the obtained results with the thresholds. The problem is that there is no
unique standard classification of these measures in relation to meteorological forecasts and, especially,
the SPI forecasts. The forecasts are naturally more trustworthy when verification measures are as close
as possible to the perfect score. There is a need to put some error bounds on the verification results.
According to [35], the perfect score for bias b, MAE, and RMSE is 0 and for r is 1. The other approach is
to refer the forecast errors to the standard deviation of the observed values or to determine confidence
intervals for the verification measures. In this study, evaluation of the gained errors—referring them to
the possible most often occurring SPI range and to the standard deviation—was performed. Using the
criteria described by Moriasi et al. [36,37]—that RMSE may be regarded as low when it is less than 50%
of the standard deviation of the observations—the forecast meeting this criterion is treated as being
very good. When the ratio of RMSE to the standard deviation is between 0.5 and 0.6, the forecast is
good; between 0.6 and 0.7—satisfactory; and when greater than 0.7—unsatisfactory. The same criterion
is used in relation to MAE in this study.

The first measure of the accuracy—the ratio of the number of the periods in which the absolute
value of the difference between the forecast and observed SPI was not greater than 0.5 of the number of
all periods—averaged for all stations, was 72% for the 10-day forecast and 40% for the 20-day forecast.
At different stations, the ratio changes from 54% to 85% for the 10-day forecast and from 18% to 58%
for the 20-day forecast.

The mean systematic error (bias) is negative (−0.10 for 10-day forecast and −0.53 for 20-day
forecast). This means that the forecasts are too dry on average. This verification measure in not fully
adequate because negative errors can be compensated by positive errors. The mean absolute error
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MAE avoids this disadvantage since it takes into the account absolute values of the individual forecast
error. The MAE is used to measure how close forecasted values are to the observed values. It is the
average of the absolute errors. Results show that the positive and negative errors of the SPI forecast
are twice greater for the 20-day forecast than for the 10-day forecast. However, the MAE of 10-day
forecast (0.39) is relative small—10% compared to the range of the most often observed SPI values
(from −2 to 2) and is 38% compared to the standard deviation of the observed SPI equal to 1.03.

The root-mean-squared error (RMSE) is the square root of the mean squared error of the forecast,
which measures the average of the squares of the errors, which is the difference between the forecast
and observed SPI. RMSE is the square root of the second moment of the error, and thus incorporates
both the variance of the forecast and its bias. The value RMSE = 0.54 for the 10-day forecast seems
to be acceptable, taking into account the possible range of SPI and its ratio to the standard deviation.
This ratio is equal to 52% and it qualifies the 10-day forecast as good, according to the criteria proposed
by Moriasi et al. [36,37]; the 20-day forecast is unsatisfactory (RMSE > 1).

The last measure most often used for evaluation of the forecasts is simply the correlation coefficient
r between forecast and observed values. This coefficient measures the degree of association among the
forecast and observed values. It is satisfactory for 10-day forecast (0.87) and unsatisfactory for 20-day
forecast (0.65).

Those low values of bias b, MAE, and RMSE and the high value of r for the 10-day forecast indicate
that the predicted estimates are close to the measured values.

Belayneh et al. [28] validated different models of forecasting SPI by comparing the errors and, on
this basis, showing which is model is better. For SPI-6 and SPI-12, they obtained MAE = 0.20 ÷ 0.39,
RMSE = 0.32 ÷ 0.90, and r = 0.72 ÷ 0.96 for different models and stations. These values are comparable
with the values obtained for the 10-day forecast in this study. Unfortunately, these authors do not
refer the errors to any classification. Maca and Pech [29], analyzing the forecast of SPI using two types
of neural network models, found similar MAE and RMSE values. The performances of the different
wavelet models for forecasting meteorological drought—identified by SPI in southeastern part of East
Azerbaijan province, Iran—were evaluated by comparing RMSE and R2 [27]. The best performance
measures were obtained for the wavelet ANFIS model predicting SPI one, two, and three months
ahead—RMSE was about 0.1 and R2 = 0.90 ÷ 0.98. They are a little better than the results obtained in
this study.

Comparison of the results presented in this paper with the results found in the other studies
warrants the statement that forecasting the 30-day SPI with the 10-day precipitation forecast is
burdened with similar errors as those obtained when forecasting SPI with other methods, mainly
neutral network and wavelet analysis. The performance measures were used mostly to compare
different models and to indicate the model or the method which gave the better indicators.
Unfortunately, there is no guidance on how to classify the received errors and measures. Further work
should be focused on the development of the objective evaluation standards and classification of the
SPI forecast performance.

4. Conclusions

This study investigated the accuracy of forecasts of precipitation conditions measured by the
standardized precipitation index, SPI. Verification of two types of the SPI forecast was performed:
the SPI category forecast and the SPI value forecast. For the verification of categorical forecasts,
a contingency table was used. Standard verification measures were used for the SPI value forecast.
The SPI was calculated for the 30(31)-day periods, moved every 10(11) days by 10(11) days. Using
the forecasted precipitation, predictions of the 30(31)-day SPI were created in which precipitation was
forecasted for the next 10(11) and 20(21) days.

In 2013–2015, for both the 10 and 20 days, the forecasts were skewed towards forecasts of drier
categories at the expense of wet categories. Comparing the distribution of observations and forecasts,
there was a good agreement between observed and 10-day forecast categories of precipitation. Less
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agreement is obtained for 20-day forecasts—these forecasts evidently “over-dry” the assessment of
precipitation anomalies. The observed normal category of precipitation was almost as often as the
10-day forecast of this category. The 20-day forecast of normal category was less frequent than the
observed normal category. The frequency of 20-day forecast of dry periods distinctly increased, while
that of normal and wet periods decreased. The Heidke skill score shows that the 10-day forecast may
be evaluated as good and the 20-day forecast is not satisfactory. Considering the SPI values, the ratio
of the number of the periods in which the absolute value of the difference between the forecasted
and observed SPI was not greater than 0.5 to the number of all periods, averaged for all stations,
was 72% for the 10-day forecast and 40% for the 20-day forecast. Considering the measures of the
SPI value forecast accuracy, the accuracy of the 20-day forecast was shown to be weaker than of the
10-day forecast. The mean absolute error MAE of the SPI forecast was twice greater for the 20-day
forecast than for the 10-day forecast. The MAE of the 10-day forecast was relatively small compared to
the range of the most often observed SPI values and the standard deviation of the observed values.
It indicates that this forecast as very good. Other measures (the square root of mean squared error
RMSE, the correlation coefficient) also shows that the 10-day forecast accuracy is good, whereas for the
20-day forecast is unsatisfactory.

The performed analysis shows that, both for the SPI categorical and the SPI value forecast,
the 10-day SPI forecast is trustworthy and the 20-day forecast should be accepted with reservation and
used with caution. Whatever the case, the SPI forecasts should be viewed critically, especially in an
operational mode, as it is made in the system of monitoring and forecasting water deficit and surplus
conducted in Poland by ITP (http://agrometeo.itp.edu.pl).
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