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Abstract: Demand for fresh water by the construction sector is expected to increase due to the
high increase in the growth of construction activities in Jordan. This study aims to evaluate the
potential of scale-up of the application of treated domestic wastewater in concrete from bench-scale
to a full-scale. On the lab scale, concrete and mortar mixes using Primary and Secondary Treated
Wastewater (PTW, STW) and Distilled Water (DW) were cast and tested after various curing ages
(7, 28, 120, and 200 days). Based on wastewater quality, according to IS 456-2000, the STW is suitable
for mortar and concrete production. Mortar made with STW at curing time up to 200 days has no
significant negative effect on the mortar’s compressive strength. Conversely, the PTW exceeded the
maximum permissible limits of total organic content and E coli. for concrete mixing-water. Using PTW
results, a significant increase in the initial setting time of up to 16.7% and a decrease in the concrete
workability are observed. In addition, using PTW as mixing water led to a significant reduction in
the compressive strength up to 19.6%. The results that came out from scaling up to real production
operation of ready-mix concrete were in harmony with the lab-scale results.
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1. Introduction

Wastewater reuse is seen as the main long-term strategy for the conservation of limited freshwater
resources. In Jordan, the reuse of treated wastewater for irrigation has been practiced since the 1980s
in a bid to overcome severe water shortage [1]. Treated wastewater has been officially regulated by
the Water Authority as a resource by adopting standards regulating the reuse of treated domestic
wastewater for irrigation since 1995 [2]. The quality of treated wastewater discharged by newly
operated plants in Jordan is considered very high according to the reuse requirements stated in the
Jordanian Reclaimed Wastewater Standard-JS 893\2006 [2], which presents a good opportunity to
expand the schemes of treated wastewater reuse [3]. The amount of treated wastewater is expected
to be around 262 MCM/year in 2020 [4]. One of the main objectives of the existing water demand
management policy is to expand the reuse of treated wastewater and the exploitation of new water
resources in order to have a positive influence on the water sector and other important sectors in
Jordan’s development (i.e., industry and construction) [5].

Over the past decade, Jordan has experienced a boom in the construction sector. Large construction
activities including new hotels as well as residential and commercial buildings have been started.
According to Jordan’s Economic and Commerce Bureau [6], the growth rates of Jordan’s construction
sector have increased remarkably during the last 10 years. It is also expected to continue increasing in
the coming five years due to the continuous growth of Jordan’s population and business sector.

The concrete industry in Jordan is currently consuming around 8 MCM/year of fresh water for
production, washing activities and wet curing. This volume is expected to increase due to the high

Water 2016, 8, 366; doi:10.3390/w8090366 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/journal/water


Water 2016, 8, 366 2 of 13

increase in the growth of the construction sector. According to the guidelines of Jordanian Reclaimed
Wastewater Standard-JS 893\2006 [2], it is still not allowed to reuse treated wastewater in construction
activities. Therefore, substitution of fresh water with treated wastewater partially or totally in the
concrete industry is a well thought-out move, which is expecting to save around 8 MCM of fresh water
for drinking purposes.

Globally, the concrete industry is consuming one billion tons of mixing water annually. In addition,
enormous quantities of fresh water are being used for washing of truck mixers, concrete pumps,
equipment, aggregate, curing concrete and ready mix concrete [7,8]. The increasing use of cement
in different types of construction activities using fresh water sources justifies the research into the
reuse of treated wastewater as an alternative to fresh water. Silva and Naik [9] reported that additional
research into wastewater reuse in the concrete industry is required and possibly in the near future
there will be a declaration of wastewater reuse in concrete.

Many studies have extensively evaluated utilizing wastewater in concrete mixtures in lab scale.
These studies have tested different types of wastewater such as raw sewage [10], treated
wastewater [11–13], preliminary treated wastewater, secondary treated wastewater, and tertiary treated
wastewater [14], three types of treated wastewater [7], and treated effluent [15]. These studies have
concluded from lab scale experiments that the application of treated wastewater in concrete is feasible
and meet the standard specifications and building codes. However, utilizing domestic wastewater in
concrete mixtures using a pilot scale has been rarely studied in the literature.

This study aims to evaluate the potential of scale-up of the application of treated domestic
wastewater in concrete from lab scale to a pilot production operation scale (Ready mix concrete).
Primary Treated Wastewater (PTW) and Secondary Treated Wastewater (STW) collected from As-Samra
wastewater treatment plant were used in mortar and concrete mixes.

2. Materials and Methodology

2.1. As-Samra Wastewater Treatment Plant

As-Samra Wastewater Treatment Plant (WWTP) is the largest wastewater treatment plant in
Jordan. The plant was upgraded in 2003 from natural treatment (Wastewater Stabilization Ponds) to
mechanical treatment (Activated Sludge). The facility was designed to treat an average design flow
of 267,000 cubic meters per day of domestic wastewater, serving a population of about 2.2 million
living in the Greater Amman and Zarqa areas, with the ability to receive a peak flow of 840,000 cubic
meters every day. As-Samra WWTP consists of a primary settling tank, eight aeration tanks and eight
secondary settling tanks, four anaerobic sludge digesters, biogas and hydro-powered generators, and
an odor control system.

Two types of treated wastewater were collected from As-Samra WWTP for lab and pilot
experiments. The first sample represents the Primary Treated Wastewater (PTW), which was collected
from the effluent of the primary settling tank, while the second sample represents the Secondary
Treated Wastewater (STW), which was collected from the effluent of the secondary settling tank.
The collected samples were transferred to the laboratory. These samples were analysed for pH and
electrical conductivity (EC). Total dissolved solids (TDS), total suspended solids (TSS), biological
oxygen demand (BOD5), chemical oxygen demand (COD), Total phosphorous (T-P), Ammonia (NH3),
Chloride (Cl−), and, finally, Escherichia coli bacteria. All these analyses were carried out according to
the standard methods for the examination of water and wastewater [16].

Fresh water (FW) sample was collected from Kingdom Concrete company mixer site,
Shafabadran/Amman, Jordan. Fresh water (FW) and distilled water (DW) were used as control
for bench-scale and full-scale experiments, respectively.
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2.2. Raw Material Preparation and Testing

2.2.1. Aggregates

Aggregates are granular materials that are usually chemically inactive. They are dispersed
throughout the cement matrix mainly to reduce the cost of the concrete because aggregates are cheaper
than cement [17]. The properties of the raw materials used in preparing mortar and concrete mixtures
were tested in RSS laboratories according to national and international standards. These materials
include coarse aggregate, fine aggregate, and cement.

Regarding concrete mixtures, two sizes of coarse aggregates and two types of fine aggregates
were used, whereas one type was used in the preparation of mortar. The physical properties of
aggregates are shown below in Table 1, while the combined aggregates’ gradations are shown in the
Figures 1 and 2.

Table 1. The physical properties of the used aggregate.

Aggregate Type Median Particle Size
(mm)

Bulk Specific Gravity
(SSD)

Absorption
(%)

Coarse Aggregate (Fouleyeh) 12.50 2.50 3.6
Coarse Aggregate (Hemseyeh) 9.50 2.67 0.9
Coarse Aggregate (Adaseyeh) 4.73 2.67 1.2
Fine Aggregate (Semsmeyeh) 2.36 2.65 1.5

Fine Aggregate (Swealeh sand) 0.30 2.62 1.0
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2.2.2. Cement

Pozzolanic Portland Cement (PPC, Type II) manufactured by Jordan cement factory company
was used in preparing mortar and concrete mixtures. The chemical properties of the cement used are
shown in Table 2.
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Table 2. The chemical properties of the Pozzolanic Portland Cement, Type II.

Property Test Result (%) Limitations Test Method

Chloride Content (Cl) 0.031 ≤0.10 [16]
Sulfate Content (SO3) 3.20 ≤3.5 [16]

Insoluble Residue 11.93 — [16]

2.3. Experimental Work for Mortar

Control mortar mix was designed according to volumetric proportion ranges suggested by
Jordanian standards. Many trial mixes were carried out to obtain the best proportions depending on
the properties of the used materials. After the preparation of control mix (using distilled water), two
types of wastewater were utilized for separate mixes. The other components of mixtures were kept
constant as those in the control one except for water type, which was added to each mix to obtain the
same workability as the control mix.

During the mortar mix design process, the flow table was used as a workability indicator for the
whole mixes. The test was conducted according to the American standard [18].

The mixing of mortar mixes was performed according to EN 196 [19]. A standard mixer was
used in the mixing process. After mix preparation, it was filled in the moulds and compacted by
Jolting table, and after that the moulds were covered with glass plates and kept in standard conditions
(21 ± 2 ◦C and 50% ± 10% R.H.) till the next day. After 24 h of casting, samples were taken out from
moulds and stored for curing in a water tank under standard temperature 21 ± 2 ◦C. For each mortar
mix, 24 prisms (40 mm× 40 mm× 160 mm) were cast. Each six prisms were tested after various curing
times (7, 28, 120 and 200 days). Fresh mortar properties were tested directly after mix preparation
such as initial setting time and soundness. Generally, initial setting is the time elapsed from adding
water to the cement until the time at which the needle cannot penetrate more than 6 ± 2 mm from
the bottom of the vicat’s mould [20]. Soundness refers to the ability to resist volume expansion. It is
determined by Le-Chatelier method IS: 4031, where a specimen of hardened cement paste is boiled for
3 h. Then, allow it to cool down to the room temperature in order to measure the distance between the
indicator points.

The compressive strength was evaluated according to EN 1015-11 [21]. The specimens were tested
at 7, 28, 120, and 200 days of age, and the average of three specimens at each age was calculated in
order to compare the results of the different mixes that were prepared. A stereo microscope analysis
was conducted for the mortar prisms. Six samples were collected randomly at various cross sections
from each mortar mixture at curing age 28 days (6 samples × 3 mortar mixture). Each slide dimension
was 4 cm × 4 cm.

2.4. Mixes Experimental Work for Concrete

Based on the mix design, the grading of combined aggregates (Hemseyeh, Adaseyeh, Semsmeyeh
and Swealeh Sand) was chosen to get the best grading mix in order to achieve workability of fresh
concrete (slump 15–18 mm) and compressive strength (30 MPa). The slump test measures the collapse
behaviour of a compacted cone of concrete under the gravity influence. The test is carried out using a
mould known as a slump cone. The cone is placed on a hard surface and filled with fresh concrete.
After that, the mould is lifted vertically upwards, and the concrete consequently subsides. This
subsidence distance is termed as slump. It indicates consistency or workability [22]. Compressive
strength is the capacity of a material to resist loads tending to reduce size. It refers to the compressive
stress at which the material fails completely [23].

The grading patterns of combined coarse and fine aggregates are shown in Figures 1 and 2.
Proportions of cement, aggregate, and water were chosen to produce the design grade of concrete

by taking the following features into consideration: workability at fresh state, characteristic strength at
a certain age, and durability at the long term. Concrete characteristic strength was specified according
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to established modern theories in concrete mix preparation and depended on probability theories by
applying the following equation:

fcm = fcu + SK (1)

where, (fcu) stands for Characteristic Strength of Concrete Mix (N/mm2); (fcm) stands for Target
Strength depending on Normal Distribution Curve; (S) stands for Standard Deviation (N/mm2); and
(K) stands for Statistical Coefficient. Based on the strength results, the following mix was adapted as
shown in Table 3.

Table 3. Concrete Design mix contents for Bench-scale and full-scale (ready mix concrete).

Quantit (kg/m3)

Mix Contents Bench-scale Full-scale
Fouleyehy * - 463
Hemseyeh * 514.728 -
Adaseyeh * 370.3 520

Semsmeyeh * 252.1 318
Swealeh Sand * 502.7 574

Cement 418.18 280
Total Water 233 190

Superplasticizer Zero 5

Note: * Local names for coarse and fine aggregates see Table 1.

2.4.1. Concrete Trial Mixes

A number of concrete trial mixes were performed to achieve fresh properties such as consistency
and flow as well as hardened concrete strength. For each mix, and after measuring concrete temperature
and making a slump test, 12 cubes (150 × 150 × 150) mm were prepared and cured according to
JS 1652-2:2004 [24], at 21 ± 2 ◦C and humidity of (100%). Three cubes for each mix were tested at
7 days for strength indication, while the other cubes were tested at 28, 120, and 200 days to obtain their
compressive strength.

After the preparation of concrete control mix, distilled water (DW) was replaced by two types
of treated domestic wastewater (PTW and STW) at different percentages (100%, 75%, and 50%) in
separate mixes. Concrete mixing procedure was performed by using pan mixer. After fresh property
evaluation, concrete mixes were cast in the moulds and compacted by using a vibration table. After
that, moulds were covered with plastic sheets and kept under standard conditions (21 ± 2 ◦C and
50% ± 10% R.H.) till the next day. Twenty-four hours after casting, samples were taken out from
moulds and stored for curing in a water tank under standard temperature 21 ± 2 ◦C until testing date.

For each concrete mix, and after the completion of mixing, fresh concrete properties including
slump were tested according to fresh concrete testing standards EN 12350-2: 2009 [25].

For compressive strength test, specimens were tested at 7, 28, 120, and 200 days, and the average
of three specimens at each age was calculated in order to compare the results of the different mixtures
that were prepared. The whole strength tests were performed according to JS 1652 parts 3, 5, and 6 [24].

2.4.2. Scaling up to Real Concrete Production

It is important to investigate the effect of PTW, STW and fresh water (FW) when scaling up to
make concrete in a real production operation. Therefore, three concrete mixtures were carried out
and tested at various curing times in a private ready mix company. A fully automated Belt type was
used to transport the aggregates from weighting machine to the main mixer according to mix design
(Table 3). Ninety minutes is a maximum time from the moment of water addition to mixture until
casting it in the site. During this experiment, all these ordinary operation conditions were the same at
the mixer except the mix-water type. The produced three mixtures were used for pavement of the side
road in the rural area near Amman city. This experiment was carried out to ensure that the results of
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the full-scale are in harmony with bench-scale experiments and to give more insight into the impact of
PTW and STW on the real job site and production scale. After a fresh property evaluation, concrete
mixes were cast in the moulds and compacted by using a vibration table. Samples were stored for
curing in a water tank under standard temperature 21 ± 2 ◦C until the testing date.

Based on the mix design of the ready-mix concrete company, grading of aggregate (Fouleyeh,
Adaseyeh, Semsemeyeh, and Swealeh Sand) was chosen to achieve workability of fresh concrete
(slump 18–22 cm) and compressive strength (25 MPa).

After the completion of mixing for each concrete mix, fresh concrete properties including slump
were tested. For compressive strength test, specimens were tested at 7, 28, and 120. The average of
three specimens at each age was calculated.

3. Results and Discussion

3.1. Treated Domestic Wastewater Quality

Mixing water quality plays an essential role in the preparation of concrete [26]. Drinkable water
can be used as mixing water for concrete production. Furthermore, some water types that are not
suitable for drinking may be fit for concrete making [27,28]. Table 4 shows that the TSS concentration
of PTW (148 mg/L) and STW (10.5 mg/L) were below the tolerated limit of suspended fine particles
in mixing water (2000 mg/L) according to the Portland Cement Association (PCA) [27]. However, a
suspended solid of 50,000 mg/L is still tolerated in case of reusing of wastewater from mixer washout
operations. The results also showed that the TDS concentrations of PTW and STW (900 and 974 mg/L)
are lower than the maximum permissible concentration (2000 mg/L). The total organic content of
the STW (46.9 mg/L) is lower than the maximum permissible level while the organic concentration
of PTW (538 mg/L) exceeded the maximum permissible level. The values of chloride and pH are
under the maximum permissible limits. E. coli is still considered as the most important indicator of
public health [29].

Based on the acceptable criteria for water to be used in concrete (Table 4), the STW is suitable for
concrete production whereas the PTW should be tested and compared with specimens made with FW
or DW to ensure that the impurities in PTW do not adversely affect the mechanical properties of the
concrete [30]. The PTW should be pretreated to reduce the microorganism content before the water
can be in direct contact with humans [31]. Regarding the Jordanian standard specifications, there are
no available limits for dissolved impurities in mixing water and their possible negative impact on
concrete properties.

Table 4. Water quality analysis of Treated wastewater (Primary Treated Wastewater (PTW) and
Secondary Treated Wastewater (STW)), Fresh water (FW), Distilled Water (DW) and the mixing water
permissible limits for concrete.

Parameter Unit PTW STW FW DW * Maximum Concentration

TSS mg/L 148 10.5 <2 <2 2000
TDS mg/L 900 974 499 <2 2000
COD mg/L 538 46.9 <5 <5 500
BOD mg/L 226 2.6 <2 <2 -

Cl mg/L 251 291 107 <5 500
SO4 mg/L 106 106.2 78.4 <5 2000
NH3 mg/L 54.4 <4.5 <0.08 <0.08 No specific limit
pH - 7.2 7.5 7.59 6 6–8

E. coli MPN/100 mL 1.70 × 107 <1 <1 <1 ** <200

Notes: * Mixing water permissible limits according to [28,29,32,33]; ** The maximum limits for an open system
application of wastewater [34].
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3.2. Effects of Treated Wastewater on Cement Paste

The results presented in Table 5 show that the initial setting time of cement paste mixed with PTW
and STW were up to +5 and +30 min compared to control. Furthermore, the water/cement ratio shows
a slight increase of up to 0.4% and 0.6% for PTW and STW, respectively. Moreover, the results of the
soundness test of cement by the Le-Chateliers method show no significant differences between using
PTW, STW, and control. According to the requirement of the Jordanian standard (No. 30-1/2007) [35],
the maximum expansion must be ≤10mm.

Table 5. Fresh properties of cement paste.

Water Type Wt. of
Cement (gm)

Water
(CC)

Water/Cement
(%)

Initial Setting
Time (min)

* Needle
Penetration (mm)

Soundness
(mm)

PTW 500 149 29.8 210 4 1
STW 500 148 29.6 185 4 1

Control 500 146 29.2 180 6 1

Note: * Standard consistency is 6 ± 2 mm [30].

These results are in harmony with ASTM C94 [24] requirements on initial setting time where the
initial setting time of cement paste made with the questionable water must not be more than 60 min
earlier than that made with the same cement using DW. Shekarchi et al. [7] and Al-Ghusain et al. [14]
reported that the dissolved salts can increase the initial setting time up to +70 min in case of using
treated domestic wastewater on cement paste.

3.3. Effects of Treated Wastewater on Mortar Properties

The results depicted in Figure 3 reveal that mortar made with STW at curing time (7, 28, and
200 days) has no significant negative effect on the mortar’s compressive strength. However, at 120 days
there is a slight reduction in compressive strength. Using PTW as mixing water led to a reduction in
the compressive strength at curing time (7, 28, 120, and 200 days). This could be due to the effect of
organic contents, which may have contributed to mortar strength reduction.
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Mortar relative strength index (Rs) can be defined as the ratio of the compressive strength of
mortar or concrete to that of the control [36]. Table 6 represents the mortar Rs of mixes using PTW
and STW at the wet curing ages of 7, 28, and 120 days. The relative index in Table 6 indicates that
using PTW as mixing water for mortar production led to a significant reduction in the compressive
strength between 13.6% and 16.2%, while addition of the STW led to a slight increase in Rs at curing
age (28 days) and a slight decrease in Rs at long term curing time (120 days). According to the ASTM
C109 [20], water is suitable for production concrete if the mortar which was made with it has strength
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at 7 days curing time that is equal or less than 10% reduction compared to control samples made with
drinkable water.

Table 6. Mortar and concrete relative strength index of mixes using PTW and STW.

Curing Age (Day)
Mortar Relative Strength Index (%) Concrete Relative Strength Index (%)

PTW STW PTW STW

7 −14.9 −3.7 −4.5 −9.8
28 −16.2 +0.7 −13.5 −5.1
120 −13.6 −5.3 −19.6 −7.2
200 −12.9 −2.24 −13.2 −10.1

A stereo microscope is employed to produce three-dimensional photos and low magnification
observation. Figure 4 apparently shows that there are no significant differences in air void size and
distribution between mortar specimens made with PTW, STW, and DW. There is no micro-crack effect
on the surface of mortar specimens. The mortar specimen structure and the matrix between aggregates
are structurally intact.
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3.4. Effects on Concrete Properties

The best indicator for concrete workability is slump value. The results of slump test on concrete
using PTW, STW, and Control (FW for full-scale or DW for bench-scale) as mixing water are presented
in Figure 5. In the case of the bench-scale mixtures, the results reveal that using PTW and STW
led to a decrease in slump by 2.5 and 1.5 cm, respectively. In the case of the full-scale mixtures,
using PTW and STW led to a decrease in slump by 4 and 1 cm, respectively. The difference between
bench-scale and full-scale the slump value is attributed to apply superplasticizer by 0 and 5 kg/m3,
respectively. Application of PTW led to a decrease in the concrete workability and increase in the
concrete viscosity. The total dissolved solids and SO4

2− in the PTW and STW are higher than the
control mixing water (Table 4). The achieved observations are consistent with previous studies [7,10].
One possible explanation is that the dissolved solids in the PTW reduce the concrete slump value.
Tang and Gartner [37] and Lawrence [38] reported that the major dissolved solids in the solution phase
(Ca2+, K+, Na+, SO4

2−, and OH−) were very important factors in governing the characteristics of early
cement paste hydration. They found that also presence of relatively soluble sulfates retarded the initial
C3A hydration.
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Figure 5. Slump of concrete using PTW, STW, and Control as mixing water. (A): Lab scale mixtures;
(B): scale up mixtures to ready mix concrete.

In the case of the lab mixtures, the compressive strength of concrete utilizing PTW, STW, and DW
at curing ages 7, 28, 120, and 200 days are shown in Figure 6. In comparison with concrete made by DW,
the compressive strength of concrete made by PTW and STW at 7 days shows a slight decrease with no
significant differences. The compressive strength of STW at 28 days curing age shows no significant
differences. However, at curing ages of 120 and 200 days, it shows a significant reduction up to 10%.
The concrete made with PTW shows a significant reduction in the compressive strength of up to 19.6%
at 120 days (Table 6). In the case of scale-up mixtures to ready-mix concrete (Figure 7): In comparison
with concrete made by FW, the compressive strength of concrete made by PTW and STW at 7 days
shows with no significant differences. The compressive strength of STW at 28 days curing age shows
a slight decrease with no significant differences. In addition, at curing age of 120 days, it shows a
significant reduction of up to 7.2%. The concrete made with PTW shows a significant reduction in the
compressive strength of up to 19.6% at 120 days. This reduction in the compressive strength is placed
on the concrete which is made by PTW outside the allowable threshold.
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Figure 6. The compressive strength of lab scale concrete utilizing PTW, STW, and DW at curing age 7,
28, 120, and 200 days.

The present results are not in disagreement with AbdolChini and Mbwambo [39] who reported
that the properties of concrete are not affected by the use of recycled water (washing wastewater from
ready–mixed concrete plant). However, these study results show that the type of recycled water may
influence concrete properties.
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Figure 7. The compressive strength of scale up mixtures to ready mix concrete utilizing PTW, STW,
and FW at curing age 7, 28, and 120 days.

Domestic wastewater has different pollutant contents. Therefore, its impact on concrete properties
should be different. According to the IS 456-2000 [40] and Kucche et al. [26], the reduction of
compressive strength of concrete should not exceed 15% of the mean compressive strength of concrete
specimen made with drinkable water.

The effect of dilution of PTW, using dilution ratio of (PTW:DW) 1:0, 3:1 and 1:1, on the
development of strength is presented in Figure 8. It is clear that there are no significant effects
of dilution of PTW on compressive strength at various curing ages. Based on these results, dilution of
PTW is not the solution to enhance the PTW properties as mixing water.
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Figure 8. The effect of dilution ratio of PTW ((PTW: DW); 1:0, 3:1, 1:1) on the development of concrete
compressive strength at curing age 7, 28, 120, and 200 days.

The water absorption parameter is one of the most important indicators of the concrete’s potential
durability and quality [28]. The average water absorption of concrete performed with PTW, STW,
and DW is 1.70%, 1.74% and 1.74%, respectively. The result shows that the effect of using domestic
wastewater as mixing water on water absorption is not significant. This result is in agreement with
Shekarchi et al. [7] who reported that utilizing treated wastewater as mixing water does not affect the
concrete’s durability and water absorption.
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4. Conclusions

This study has evaluated the use of PTW and STW for concrete and mortar production in bench
and full scales. The water quality analysis showed that STW is suitable for concrete and mortar
production according to permissible limits of mixing water for concrete while PTW is not.

The initial setting time of cement paste performed with PTW and STW is increased by 30 and
5 min, respectively. The water/cement ratio shows a slight increase by 0.6%. These results are satisfied
and in harmony with ASTM C94 requirements. Mortar made with STW at curing time up to 200 days
has no negative effect on the mortar’s compressive strength. However, using PTW as mixing water led
to a reduction in the compressive strength. The relative strength index indicates that using PTW as
mixing water for mortar production led to a significant reduction in the compressive strength by up
to 16.2%. Furthermore, there is no significant effect of using PTW or STW on the soundness value of
mortar. According to the ASTM C109 or AASHTOT 106, STW is suitable for mortar production. PTW
has a more significant negative effect on concrete workability than the STW; however, the effect of
PTW and STW on concrete water absorption and durability is not significant. Moreover, there is no
significant effect of dilution of PTW with DW on compressive strength improvement at various curing
ages. Therefore, dilution of PTW is not the way to enhance its properties as mixing water. At curing
age up to 200 days, the compressive strength of concrete made with STW and PTW shows a significant
negative impact up to 10% and 19.6%, respectively. According to the IS 456-2000, STW is suitable
for concrete production. Regardless of the type of mixing water (PTW, STW, FW, or DW), there is
continuous increase in the concrete and mortar’s compressive strength. However, the compressive
strength growth rate is water type dependent.

In conclusion, this study has shown that STW is a potential alternative for fresh water in
the concrete industry. Therefore, the current guidelines for wastewater recuse should be revised
by the governmental authorities to encourage the use of STW as a substitute for fresh water in
concrete production.
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