* water m\py

Article

Development of Dynamic Ground Water Data
Assimilation for Quantifying Soil Hydraulic
Properties from Remotely Sensed Soil Moisture

Yongchul Shin !, Kyoung Jae Lim 2, Kyungwon Park 3 and Younghun Jung %*

1 School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University, 80 Daehak-ro,

Buk-gu, Daegu 41566, Korea; ycshin@knu.ac.kr

Department of Regional Infrastructures Engineering, Kangwon National University,

1 Kangwondaehak Street, Chuncheon 200-701, Korea; kjlim@kangwon.ac.kr

Climate Research Department, APEC Climate Center, 12 Centum 7-ro, Haeundae-gu, Busan 612-020, Korea;
kwpark@apcc21.org

Water Resources Research Center, K-water Institute, 125, Yuseong-daero, 1698 beon-gil, Yuseong-gu,
Daejeon 34045, Korea

*  Correspondence: younghun@kwater.or.kr; Tel.: +82-42-870-7473

Academic Editors: Alexander Léw and Jian Peng
Received: 18 May 2016; Accepted: 19 July 2016; Published: 22 July 2016

Abstract: Several inversion modeling-based approaches have been developed/used to extract
soil hydraulic properties (&, #, Ores, Bsat, Ksat) from remotely sensed (RS) soil moisture footprints.
Hydrological models with shallow ground water (SGW) table depths in soils simulate daily root zone
soil moisture dynamics based on the extracted soil parameters. The presence of SGW table depths in
soils significantly influences model performances; however, SGW table depths are usually unknown
in the field, thus, unknown SGW table depths might cause uncertainties in the model outputs. In order
to overcome these drawbacks, we developed a dynamic ground water (DGW) data assimilation
approach that can consider SGW table depths across time for quantifying effective soil hydraulic
properties in the unsaturated zone. In order to verify the DGW data assimilation scheme, numerical
experiments comprising synthetic and field validation experiments were conducted. For the
numerical studies, the Little Washita (LW) watershed in Oklahoma and Olney (OLN)/Bondville
(BOND) sites in Illinois were selected as different hydroclimatic regions. For the synthetic conditions,
we tested the DGW scheme using various soil textures and vegetation covers with fixed and
dynamically changing SGW table depths across time in homogeneous and heterogeneous (layered)
soil columns. The DGW-based soil parameters matched the observations under various synthetic
conditions better than those that only consider fixed ground water (FGW) table depths in time.
For the field validations, our proposed data assimilation scheme performed well in predicting the soil
hydraulic properties and SGW table depths at the point, airborne sensing, and satellite scales, even
though uncertainties exist. These findings support the robustness of our proposed DGW approach in
application to regional fields. Thus, the DGW scheme could improve the availability and applicability
of pixel-scale soil moisture footprints based on satellite platforms.

Keywords: dynamic ground water; fixed ground water; remote sensing; shallow ground water;
soil hydraulic properties; SWAP

1. Introduction

Root zone soil moisture is the pivotal component of hydrology, meteorology, and agriculture
across the world. Direct and indirect schemes can be used for estimating root zone soil moisture
in the spatial and temporal domains. In general, the direct approach has relatively high accuracy
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at the point scale, with some disadvantages (e.g., high cost, time-consuming, limited availability at
spatial-temporal scales). In order to overcome these drawbacks, remotely sensed (RS) soil moisture
footprints as an indirect method have been suggested as an alternative [1-3]. The land surface soil
moisture estimates were derived based on thermal infrared remote sensing [4]. Furthermore, Njoku and
Entekkabi [5] developed direct active/passive microwave remote sensing schemes for estimating land
surface soil moisture values.

A few inversion models linked with hydrological models have been developed/used for deriving
the soil hydraulic properties (, 71, Ores, Osat, Ksat) that can represent the soil surface layer (0-1/0-5 cm)
from RS products. Near-surface soil moisture data assimilation approaches [6-8] have been developed
for deriving the soil parameters that can represent the RS scale. Shin et al. [9] improved the
near-surface data assimilation scheme in estimating the soil hydraulic properties by considering
an evapotranspiration component in the vertical soil domain. Their approaches successfully estimated
the soil hydraulic parameters from RS soil moisture footprints. Thus, many studies (e.g., [5-13]) have
been conducted for deriving the soil parameters, and their derived parameters were used to predict
soil water flow along the soil profile (more than 200 cm from the soil surface) using physics-based
hydrological models.

Hydrological models require an initial condition (IC) and bottom boundary condition (BBC) prior
to model simulations. A few hydrological models, such as the Community Land Model (CLM) [14]
and Noah land surface model (Noah LSM) [15], adapt the spin-up scheme for conditioning their IC
and BBC in soils, whereas the soil-water-atmosphere-plant (SWAP) [16] and HYDRUS-1D [17] require
that the IC and BBC be set by users for estimating the root zone soil moisture dynamics. Usually,
the IC is only used in modeling for the initial simulation period, but the BBC with the presence of
shallow ground water (SGW) table depths influence the model performance for the entire period. SGW
table depths from the soil surface vary with time based not only on rainfall amounts/frequencies, but
also environmental factors (e.g., soil textures, vegetation, topography) in the field. This means that
SGW table oscillations across time may cause uncertainties in hydrological models [16]. Furthermore,
SGW table depths influence crop productivity and degrade soil properties [17]. Vazquez-Amadbile
and Engel [16] incorporated some knowledge of DRAINMOD [18] into the soil water assessment
tool (SWAT) [19] model for considering SGW tables in predicting surface flow at watershed scales.
However, no studies with respect to SGW oscillations across time have been conducted to estimate
root zone soil moisture dynamics in soils.

In this study, we aimed to consider SGW table dynamics for quantifying the pixel-based
soil hydraulic properties from RS soil moisture footprints at multiple scales. The objectives of
this research are threefold: (1) to develop a dynamic ground water (DGW) data assimilation
approach that can consider SGW dynamics for estimating soil hydraulic properties; (2) reduce model
structural uncertainties due to the presence of SGW dynamics in the unsaturated zone under various
hydroclimatic conditions; and (3) to improve the availability of RS soil moisture footprints.

2. Materials and Methods

2.1. Conceptual Framework of the Dynamic Ground Water (DGW) Data Assimilation Approach

We developed a dynamic ground water (DGW) data assimilation scheme that can consider
SGW oscillations in time for predicting the effective soil hydraulic properties (, #, Ores, Osat, Ksat)
that determine the soil water content (8(/1)) and hydraulic conductivity (K(%)) in soils from RS soil
moisture footprints. DGW adapts a near-surface soil moisture data assimilation scheme [6] based on an
inversion model. Figure 1 shows the schematic diagram of our proposed approach. The DGW scheme
is integrated with a soil-water—atmosphere—plant (SWAP) [20] model that simulates root zone soil
moisture dynamics with the model input variables (e.g., soil parameters, vegetation, SGW table depths,
weather forcings). Our DGW data assimilation scheme provides not only the soil parameters, but also
the dynamically changing SGW table depths (SGWy,) in time to the SWAP model, whereas existing
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data assimilation schemes only estimate the soil parameters with the fixed SGW table depths across
time in their modeling. The DGW approach adapts a newly developed optimization scheme (Iteration
Algorithm-IA) for searching the optimized input variables (k = {«, 1, Ores, Osat, Ksat, SGWm =1, , M})-
Based on the objective function (Z(k)) in Equation (1), IA can provide the optimized model input
variables (k) by minimizing the differences between the observed and simulated results.

T
Z(k) = min{2 Y (6% — 0™(k)} )
t=1

where 6% the observed soil moisture with time (t), 8;™: the simulated soil moisture with time (t),
t: the running index, T: the given time, and M: the total number of months during the simulation period
(t=1,...,T). Note that we only generate the monthly SGW dynamics (1st day for individual months).

Initialized Parameters
k=001, B, Bq0, Ko, SGW )
¥
Transfer k
Evaluate k

. ‘L Output variable l
'ﬁ' (B,m(K)) Soil-Water-Atmosphere-Plant
2 . . (SWAP)
Z| Normal distribution Fitness Evaluation
c NU\ 5) (A{B“"‘-S““‘(k}})
E In-sindRS soil moisture data
2 Observed variable

(eabs)
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Optimized the 6(h) and K(h)
functions with considering
the presences of SGW , table
depths

Figure 1. Schematic diagram of the newly developed dynamic ground water (DGW) data
assimilation scheme.

2.2. Soil-Water—Atmosphere—Plant Model

We adapted the soil-water—atmosphere-plant (SWAP) model as a one-dimensional (1-D)
physics-based hydrological model [20,21]. SWAP simulates water flow across soil, water, atmosphere,
and plant systems at the near-surface and in the unsaturated zone. The SWAP model calculates water
flow based on Richards’ equation (Equation (2)). Van Genuchten [22] and Mualem [23] derived the soil
hydraulic functions in the soil profile based on the analytical expression by considering the relationship
between the water content (), pressure head (), and unsaturated hydraulic conductivity (K).

00 oh  O[K(h)(S +1)]

R T
where 0: the volumetric water content (cm>- cm™3), K: the hydraulic conductivity (cm- d=1), h: the
soil water pressure head (—cm), z: the vertical soil depth (cm) taken positively upward, ¢: the time,
C: the differential soil water capacity (cm~1), and S(h): the actual soil water extraction rate by plants
(cm® em™3. d1) defined as Equation (3),

—S(h) @

Tpot

() = o)

®)

where Tpot: the potential transpiration (cm- d=1), Z,: the rooting depth (cm), and oy a reduction factor
as a function of h, which takes into account water deficit and oxygen stress [24]. Richards’ Equation (2),
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using the finite difference scheme described by Belmans et al. [25], allows the use of soil hydraulic
databases and all kinds of management scenarios:

B O(h) — Ores B 1 m
Se = Osat — Ores 1+ \cxh\“] @
A 1/m,™M 2
K(h) = Ksatse [1 - (1 - Se ) ] (5)

where Se: the relative saturation (-); 6res: the residual water content (cm3- cm™3) in the dry range; Ogat:
the saturated water content (cm3~ cm ), «, 1, m; A: the shape parameters; Kst: the saturated hydraulic
conductivity (cm- d_l); andm=1—-1/n.

In the SWAP model, we can determine the top (atmospheric) and bottom boundary (free drainage
and SGW table depths) conditions. Also, it adapts the simple and detailed (WOFOST) crop growth
routines combined with various water management modules (i.e., irrigation and drainage) that can
consider the impacts of climate, soil textures, plant types, and crop water management [20,26]. SWAP,
by adapting the Penman-Monteith equation, estimates the potential and actual soil evaporation
(Epot and Eqct). Then, the potential and actual plant transpirations (Tpot and Tact) can be partitioned
based on the leaf area index (LAI) or soil cover fraction (SC) of the land unit. The SWAP model is
well-validated in performing under various climatic and environmental conditions [27-31].

2.3. Iteration Algorithm

The iteration algorithm (IA) was developed to generate the approximate solution (k = {c, 1, Ores,
Osat, Ksat, SGWp =1, ..., m) closer to the observation. In the IA scheme, the random variables (comprised
of the soil hydraulic properties and SGW) are obtained via the normal distribution (N (k,0)) with the
mean (k) and standard deviation (o = 0.5). The constraints for the randomly generated variables are
shown in Table 1. The IA always remembers the best solution through the given iteration processes (i),
and the new random variables are generated from the previous best solution. Once the final solution in
the given iterations (i=1, ... , I) was found, we applied the Monte Carlo (MC) resampling (ensemble,
e = 100) technique based on the normal distribution to the best solution (k) in the iteration (i = I)
to generate the uncertainty boundaries. In order to evaluate the model outputs, we calculated the
Pearson’s correlation (R) using Equation (6) and root mean square error (RMSE) using Equation (7):

(03 =)o ™)

R = (6)
Q obs __ Obs sim __ *Sim 2
; (6 ) ; (6; )

1

Tp=

T .
3] (5% — o5y’

_ Al t=1
RMSE = T (7)

b . . . .
where e: the total number of ensembles, 5? °: the average observed soil moisture with time (), and
51m

0; :the average simulated soil moisture with time (¢).

Table 1. Maximum and minimum parameter constraints used in the iteration algorithm (IA).

Ranges o n Ores Osat Kgat SGWp=-1,...,M
Max. 0.006 1.200 0.061 0.370 1.840 50.000
Min. 0.033 1.610 0.163 0.550 130.000 300.000

Notes: Iteration number (i): 3000; idum (initial random seed number): —1000; standard deviation (SD):
0.5 (synthetic condition)/0.8 (field validation); resampling number (1): 100.
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2.4. Description of Study Sites and Data

We selected the Little Washita 13 (LW 13) site in Oklahoma and the Olney (OLN)/Bondville
(BOND) sites in Illinois to test our proposed DGW scheme (Figure 2). The in situ soil moisture
(0-10 cm) data (13/12 days for OLN/ BOND in 2004/2003, respectively) and measured ground
water table depths were provided by the International Soil Moisture Network (ISMN) [32], but no
ground water table depth information was available at the LW 13 site. The Water and Atmospheric
Resources Monitoring Program (WARMP), part of the Illinois State Water Survey (ISWS) located in
Champaign and Peoria (Illinois), provided the daily measured SGW table depths for the OLN/BOND
sites. The airborne sensing scale (800 m x 800 m) electronically scanned thinned array radiometer
(ESTAR) [33] soil moisture (5 cm) products were taken for 17 days during the Southern Great
Plains experiment (SGP97, from 18 June to 18 July) in 1997 at the LW watershed. The currently
available satellite-scale Advanced Microwave Scanning Radiometer—Earth (AMSR-E) [34] platform
only provides the near-skin (0-1/0-2 cm) soil moisture, indicating that it is limited in representing
root zone soil moisture dynamics at the field. For this reason, we aggregated the ESTAR soil moisture
(33 rows x 51 columns) to consider the satellite scale. Considering that the soil moisture active passive
(SMAP) mission [35] provides near-surface (0-5 cm) soil moisture footprints, we assumed that the
aggregated ESTAR data can represent the satellite-scale soil moisture. The LW 13 and OLN/BOND
sites are composed of predominantly loam and silt loam soils ISMN) [36] with grass cover. The daily
weather information (i.e., precipitation, wind speed, maximum and minimum temperature, and solar
radiation) for the input parameters to the SWAP model were collected from the USDA Agricultural
Research Service (ARS 136 for the LW 13 site, ARS 149 for the LW 21 site, and ARS 133, 134, 146, and
149 for the LW site) [37] Micronet weather station in Oklahoma and the Illinois State Water Survey
(ISWS) [38]. Also, we validated our approach using the field-observed hydraulic parameters [36]
obtained from the soil core samples at the soil depth (3-9 cm) at the LW 13 site.

Bondville site

|
|

26.4km

le

Figure 2. Study sites (a) Little Washita (LW) watershed in Oklahoma; and (b) Bondville (BOND) and
Olney (OLN) sites in Illinois.

2.5. Numerical

We conducted the numerical experiments to assess the DGW data assimilation scheme at the
point, airborne sensing, and satellite scales under various hydroclimatic conditions. In order to test
the performance of our proposed scheme, we compared model outputs of the DGW scheme to those
derived by the original near-surface data assimilation considering the fixed (given) ground water (FGW)
table depth (e.g., =300, —200, —100 cm) in time. Here, the near-surface data assimilation with the FGW
table depths is named the FGW scheme. The numerical experiments were comprised of two conditions
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under rain-fed conditions: (i) synthetic and (ii) field validation conditions. For the synthetic condition,
we generated the root zone soil moisture using the existing input data (i.e., soil textures, vegetation,
weather forcings, and SGW table depths) to SWAP in a forward mode. Note that the generated soil
moisture dynamics were defined as the synthetic root zone soil moisture observations. Then, the
DGW and FGW approaches derive the soil hydraulic properties from the synthetic observations, and
the root zone soil moisture estimates based on the derived soil parameters were compared to the
synthetic observations. Thus, the synthetic condition can test its own performances of DGW and
FGW approaches by excluding factors such as measurement errors and model structural uncertainties.
Here, we selected three different soil textures (Sandy Loam-SL, Silt Loam-SiL, and Clay Loam—-CL
soils) and grass cover with weather data provided by the ARS 136 site, and a soil column (0-200 cm)
assumed to be a homogeneous soil layer (Figure 3a). The references of laboratory-based soil texture
information (SL, SiL, and CL) were obtained from the UNSODA database [39]. Under the synthetic
conditions, we tested the performance of the FGW and DGW schemes in parameter estimations
with various fixed SGW table depths of —100, —200, and —300 cm from the soil surface. Based on
the estimated soil parameters, we compared the water retention (6(/)) and hydraulic conductivity
(K(h)) curves. Furthermore, we tested the FGW and DGW approaches with various vegetation covers
(grass, wheat, maize, and soybean) and silt loam soil with the dynamically changing SGW tables
of —160.0, —200.0, —170.0, —170.0, —170.0, —170.0, and —160.0 cm (1st day for individual months,
April-October). Generally, the inversion model scheme predicts the effective soil hydraulic properties
that can represent the entire soil domain vertically using only the near-skin (0-1/0-5 cm) soil moisture
data. However, the heterogeneity (e.g., soil textures, soil layers) in the soil column influence the soil
parameter estimations considerably [40]. In order to test the performance of the DGW model with soil
heterogeneity, we designed a layered soil column comprised of two layers (1st: silt loam-SiL soil and
2nd: loam-L soil at the soil depths of 0-60 and 60-200 cm, respectively), as shown in Figure 3b. In the
field validation experiments, the FGW and DGW schemes were evaluated with in situ, airborne-scale,
and satellite-scale soil moisture data at multiple scales.

(a) (b)
Precipitation Iranspiration Precipitation Transpiration
Soil evaporation T Soil evaporation
Run-on Run-off Run-on Run-off
eri — iy —
0-5 em <7 0-5 cm <7
Soil moisture Soil moisture
observations observations
. .
Infiltration Infiltration 12 0-60 cm
" v =
Downward flux Soil Downward flux Soil
Z Profile z Profile
Upward flux Depth (0-200 cm) Upward flux Depth (0-200 cm)

27 60-200 cm
Percolation Percolation

Figure 3. (a) Homogeneous soil column; (b) Layered (heterogeneous) soil column.

3. Results and Discussion

3.1. Synthetic Conditions

We tested the newly developed DGW scheme that can consider dynamically changing shallow
ground water tables for predicting the soil hydraulic properties under the synthetic conditions. Figure 4
shows the water retention (6()) and hydraulic conductivity (K(h)) curves using the estimated soil
parameters based on the FGW (dashed line) and DGW (thin line) approaches for different soils (SL, SiL,
and CL) with SGW table depths (no oscillations in time) of —300, —200, and —100 cm. The FGW- and
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DGW-based 6(h) curves for sandy loam and clay loam soils generally matched the observations with
the presence of SGW tables, while the results for silt loam soil showed small uncertainties, especially
for the FGW scheme. The K(h) curves usually had more uncertainties than those of the (/) curves
as the SGW tables come closer to the soil surface. However, the DGW-based K(h) curves consistently
were in good agreement with the observations, with small uncertainties compared to those of FGW,
although the result of DGW for clay loam soil with GW —100 cm was slightly more biased. Overall,
the hydraulic conductivities (K(/)) were sensitive to the presence of SGW tables compared those of
0(h). This might provide significant inferences with respect to parameterization schemes adapting
physics-based hydrological models because these parameters limit soil moisture dynamics in the root
zone. Thus, the presence of SGW tables considerably influences the physical flow processes (directly
related to K(h)) occurring in the soil profile [9,40]. Although the derived 6(h) and K() curves had
uncertainties (especially for silt loam soil), the DGW data assimilation approach performed better for
estimating the soil hydraulic properties than FGW with various SGW table depths.

100000 4 . (a) S 100000 @ (d)SiL 100000 () CL 60 (G)SL f_:n (m) SiL 4 (p) CL
10000 10000  { | 10000 | | oY e 3] 2
1000 1000 ANY 1000 40 _‘\ 40 \ .
itc ; Y 3 30 S 30 & oy 3 F==s ~aa\ =)
100 %{ 100 20 Fommee- % 20 \"'. \;.‘ :.\
10 } 10 \ 10 10 ! 10 k| I % P
1 i 1 2 1 4 0 S S S—— 0 ——
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8 530 0 @ —y 2:d . g
g 100 100 NN 100 =20 % i Vi , -
v 10 ‘I 10 1 10 =10 \ 10 k| B
1 4 e 1 ] X 0 I 0 A— 0 SO—
0 03 06 0 03 06 0 03 06 00000001 0.01 1000 0.0000001 0.01 1000 0.0000001 0.01 1000
100000 ; (c)SL 100000 4 4 (D SIL 100000 . (i)CL fjtl () SL fjtl (0) SiL 4 (r) CL
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[ g i i \- k -
1 4 1 1 i [ J SN S S 0
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Figure 4. Comparison of observed and ensemble averaged water retention (8(h)) and hydraulic
conductivity (K(h)) curves with shallow ground water table depths of —300, —200, and —100 cm with
different soil textures. SL: sandy loam; SiL: silt loam; CL: clay loam. Number in ensemble: 100.

Figure 5 shows the comparison of observed (synthetic) and simulated root zone soil moisture
dynamics using the FGW and DGW schemes with silt loam soil and various vegetation covers (grass,
wheat, soybean, and maize) under the conditions of dynamically changing SGW tables at the ARS 136
site in Oklahoma (1997). As shown in the findings in Figure 4, the DGW-based results (R: 0.986—0.993
and RMSE: 0.004—0.010) matched the synthetic observations better than those of FGW (R: 0.947—0.984
and RMSE: 0.007—0.024). Also, the model outputs showed that soybean and maize can hold more
moisture than grass and wheat. Table 2 shows the statistics of soil hydraulic properties (used in
Figure 5) derived by the FGW and DGW schemes with the references (as target values) of soil texture
information [39]. Comparing the estimated soil parameters to the results as shown in Figure 5,
the FGW approach, showed relatively higher uncertainties with the SGW dynamics, especially for
the values of Kat (12.850-19.894 mm- d—1). The K, values were usually underestimated compared
to the target value of silt loam soil (30.500 mm-d~!), while the DGW scheme still estimated soil
parameter values (i.e., Ks,t in the ranges of 27.948-32.056 mm- d’l) that are closer to the target value.
Furthermore, the estimated DGW tables were identifiable in the observations with small uncertainties,
as shown in Table 3. These findings might support the robustness of DGW data assimilation for
considering the SGW dynamics with time, although these numerical studies were conducted under
synthetic conditions.
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Figure 5. Comparison of observed and ensemble averaged root zone soil moisture dynamics at ARS

136 site in Oklahoma (1997) under synthetic conditions; (a) grass; (b) wheat; (c) soybean; and (d) maize.

Number in ensemble: 100.

Table 2. Observed and simulated soil hydraulic properties at Agricultural Research Service (ARS)

136 site in Oklahoma (1997) with silt loam soil and various vegetation covers under synthetic conditions.

Silt Loam (Target Values) @ " Ores Osat Ksat

0.012 1.39 0.061 0.43 30.5
bow  Ave 0013 1456 0.106 0.431 27.948

G SD 0001  0.026 0.005 0.017 0.801
rass row  Ave 0015 1401 0.075 0.405 12.85
SD 0001  0.008 0.002 0.003 0.810

bow  Ave 0014 1.45 0.115 0.431 31.81

Wh SD  0.001  0.026 0.005 0.017 0.801
eat row  Ave 0015 1.42 0.087 0.402 14.019

SD 0001  0.008 0.002 0.003 0.810
bow  Ave 0014 1384 0.137 0.411 29.843

Sovbean SD 0001  0.026 0.005 0.017 0.801
y row  Ave 0021 1325 0.13 0.397 19.894
SD 0001  0.008 0.002 0.003 0.810
bow  Ave 0014 1456 0.139 0.423 32.056

Mai SD 0001  0.026 0.005 0.017 0.801
aze row  Ave 0018 1414 0.107 0.41 18.296

SD 0001  0.008 0.002 0.003 0.81
bow  Ave 0009 1471 0.064 0.462 26914

. SD 0001  0.026 0.005 0.017 0.801
Grass (Layered soil column) Avg. 0016 141 0.07 0.394 11.285
FGW sp 0000  0.008 0.002 0.003 0.810

Notes: DGW: Dynamic Ground Water data assimilation; FGW: Fixed Ground Water data assimilation. UNSODA

database [39].
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Table 3. Monthly observed (target values) and simulated shallow ground water table depths at ARS
136 site in Oklahoma (1997) with silt loam soil and various vegetation covers under synthetic conditions.

Target Values Grass Wheat Soybean Maize Grass (Layered Soil Column)

Date  (Obs. SGW, cm)

. ’ Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
04-01 160.0 149.9 74 154.4 74 162.9 7.4 155.5 7.4 170.0 74
05-01 200.0 208.1 13.2 200.8 13.2 202.0 13.2 186.0 13.2 196.3 13.2
06-01 170.0 152.4 5.3 168.8 5.3 173.4 53 162.2 5.3 174.3 5.3
07-01 170.0 171.3 43 159.9 43 151.6 4.3 171.4 43 186.9 4.3
08-01 170.0 159.3 55 175.1 5.5 179.3 55 163.8 55 188.0 5.5
09-01 170.0 157.5 7.6 176.8 7.6 181.2 7.6 169.6 7.6 2114 7.6
10-01 160.0 145.2 6.9 144.9 6.9 161.8 6.9 152.1 6.9 172.3 6.9

We tested our proposed approach in the layered soil column comprised of two soil textures
(1st layer: silt loam soil and 2nd layer: loam soil) as shown in Figure 6. The comparison of observed
and estimated root zone soil moisture dynamics in the 1st layer (0-60 cm) in the DGW scheme showed
good agreement (R: 0.988 and RMSE: 0.009), while the FGW-based results had more uncertainties
(R: 0.915 and RMSE: 0.025). The DGW approach (R: 0.474 and RMSE: 0.042) estimated the deep
soil moisture dynamics better than those of the FGW (R: —0.173 and RMSE: 0.037) in the 2nd layer
(60-200 cm), although higher uncertainties exist in both results. These findings show that the increased
number of unknown parameters (e.g., soil layers, different soil textures) in the soil column causes
higher uncertainties in the parameter estimations based on the inverse modeling. Considering that
the sub-surface layer in field regions is usually heterogeneous because of different soil layers and soil
textures, the near-surface soil moisture data assimilation scheme could be limited in predicting vertical
soil water flow across the whole soil profile using only the near-surface soil moisture information.
However, the DGW assimilation scheme improved the estimated soil parameters in the layered column
better than those of the FGW scheme. The DGW-based soil parameters (see Table 2) and SGW tables
(see Table 3) in the layered soil column also matched the observations with predictable uncertainties.
Thus, the newly developed DGW data assimilation scheme could improve upon the limitations due to
the heterogeneity along the soil profile in estimating the soil hydraulic properties in fields. When we
considered that the environmental factors (e.g., soil textures, presence of SGW tables, layers, root depth
and distribution) are unknown in field conditions, our approach could provide more reliable model
outputs in fields with small uncertainties.
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Figure 6. Comparison of observed and ensemble averaged root zone soil moisture dynamics for layered
soil column with grass at ARS 136 site in Oklahoma (1997) under synthetic conditions; (a) 1st layer at
soil depth of 0-60 cm; and (b) 2nd layer at soil depth of 60-200 cm. Number in ensemble: 100.
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3.2. Field Validation Experiments

The DGW scheme was validated at the BOND (2004) and OLN (2003) sites in Illinois with the
measured soil moisture and shallow ground water table dynamics. As shown in the results with
synthetic conditions, our approach performed well in reproducing the simulated root zone soil moisture
and SGW dynamics as shown in Figure 7a. The correlation (R: 0.967) and RMSE (0.028) for DGW (OLN)
were considerably improved compared to those (R: 0.930, 0.954, 0.933 and RMSE: 0.040, 0.035, 0.041)
for FGW, with fixed SGW table depths of —300, —200, and —100 cm. The differences in soil moisture
estimates derived by the DGW and FGW schemes increased during dry days, while the results showed
similar trends for wet periods. This indicated that the soil parameter estimations are affected by the
SGW table fluctuations and recharged, with time, by precipitation. Figure 7b shows the comparison of
measured and estimated SGW table dynamics. The measured SGW tables change with time based on
the rainfall amounts/frequencies. As the rainfall events were generated, the measured soil moisture
values increased. Also, the SGW table depths became higher (closer to the soil surface). Although the
SGW tables estimated by the DGW scheme were relatively underestimated (more negative from the
soil surface) during the initial simulation period compared to the measurements, these model outputs
followed the measured SGW data.

B | L e

08 GW-100ecm GW -200em GW-300cm DGW 50 =
E R: 0936 R:0.954 R:0.930 R: 0.967 g
g "0 RMSE: 0.041 RMSE:0.035 RMSE:0.040 RMSE: 0.028 100°%
,% 0.4 150 §
=]
- i
E 0.2 200 =
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DOY
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<
3
= 200 %
=
= X
3 b » N =t
=g Vo
E (b)
S0
122 152 182 212 242 272
DOY

----0Obs.GW = Avg. GW

Figure 7. (a) Measured (in situ) and ensemble averaged root zone soil moisture; and (b) measured and
estimated shallow ground water tables from fixed ground water (FGW) and DGW data assimilation
schemes at Olney site (2004). Number in ensemble: 100.

Figure 8 shows the validated root zone soil moisture and SGW dynamics at the BOND site.
These also showed trends similar to the DGW-based model outputs (R: 0.910 and RMSE: 0.027)
and are more identifiable from the measurements than those of the FGW scheme (R: 0.763—0.781,
RMSE: 0.040—0.043). The estimated SGW depths during the initial simulation periods (Day-of-Year
(DOY) 121) were overestimated compared to the measurements shown in Figure 7b. The nighttime
temperature (DOY 1-90) in Illinois is usually below zero degrees (°C), and the snow melting or thawing
effect on the soil column might influence the measured ground water depths (relatively higher values
compared to the simulation results). However, the SWAP model has no module that can simulate
these physical processes in modeling. Thus, uncertainties in the estimated SGW table depths during
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the initial periods for the BOND and OLN sites might be due to both the measurements and model
structural errors. Overall, our proposed scheme estimated the soil moisture dynamics and SGW table
depths during the simulation period quite well, except for during the initial days.

1 - I T vllu I I I - | l - - 'I 0
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Figure 8. (a) Measured (in situ) and ensemble averaged root zone soil moisture; and (b) measured and
estimated shallow ground water tables by FGW and DGW data assimilation schemes at Bondville site
(2003). Number in ensemble: 100.

Figure 9a,b present the comparison of estimated root zone soil moisture dynamics using the
FGW and DGW data assimilation schemes at the ESTAR airborne (800 m x 800 m for a pixel) and
satellite (33 rows x 51 columns for the aggregated pixels) scales within the LW watershed in Oklahoma.
The root zone soil moisture estimates (R: 0.471, 0.558, 0.565 and RMSE: 0.044, 0.042, 0.043 for GW
—100, —200, and —300 cm, respectively) by the FGW scheme had relatively larger uncertainties than
those of DGW (R: 0.878 and RMSE: 0.024). The satellite-scale model outputs also showed similar
results. The estimated root zone soil moisture dynamics (R: 0.873 and RMSE: 0.019) identified with the
aggregated ESTAR products better than those of FGW (R: 0.880, 0.843, 0.865 and RMSE: 0.019, 0.021,
0.019 for GW at —100, —200, and —300 cm), except for the correlation (R: 0.873) of GW at —100 cm.
In order to validate the estimated soil parameters, we compared the observed and derived water
retention curves (6(h)) at the airborne scale (LW 13) as shown in Figure 10. Note that the observed 6(h)
curve was derived by the field-scale soil hydraulic properties [36] taken from the soil core (3-9 c¢m) at
the LW 13 site in 1997. The estimated 6(h) curves were usually biased from the observation, especially
those of GW at —100 and —200 cm. The 6(h) curves with DGW and FGW (GW at —300 cm indicating
relatively free-drainage conditions) were closer to the observation. When we considered that the LW
13 site has a hill slope at the airborne sensing scale, the DGW-based 6(h) curve might be comparable
with that of FGW (GW at —300 cm).
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Figure 9. Observed (ESTAR) and ensemble averaged root zone soil moisture dynamics using FGW
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(b) satellite scale (26.8 km x 40.8 km) at LW) watershed (1997). Number in ensemble: 100.
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4. Conclusions

In this study, we developed a dynamic ground water (DGW) data assimilation scheme that can
consider SGW table depth dynamics across time in the unsaturated zone at the point, airborne, and
satellite scales in various hydroclimatic regions. The DGW scheme adapts a near-surface soil moisture
data assimilation scheme [6] that can quantify the pixel-scale soil hydraulic properties (&, 71, Ores, Osat,
Ksat) from RS soil moisture footprints. Note that this near-surface soil moisture data assimilation
scheme adapting the physics-based soil-water-atmosphere—plant (SWAP) model only considers the
fixed SGW table depths in time, and was named the fixed ground water (FGW) data assimilation
scheme. Our proposed DGW scheme can derive not only the soil parameters, but also monthly SGW
table depth dynamics in time from RS data. The newly developed simple iteration algorithm (IA)
was integrated with the DGW data assimilation for searching the optimized soil parameters and
time-variant SGW table depths by minimizing the differences between the observed and SWAP-based
soil moisture dynamics. In order to verify our approach, numerical experiments comprised of the
synthetic conditions and field validation experiments were conducted. For the numerical studies, the
Little Washita (LW) watershed in Oklahoma and Olney (OLN)/Bondville (BOND) sites in Illinois,
which are in different hydroclimatic regions, were selected. The synthetic studies were conducted
using the weather data at the ARS 136 site and laboratory-based soil textures [39] within the LW
watershed, and field validations were conducted at the ONL and BOND sites.

For the synthetic conditions, we tested the FGW and DGW data assimilation schemes with various
soil textures (sandy loam-SD, silt loam-SiL, clay loam—CL, and loam-L, UNSODA database [39]) and
vegetation covers (grass, wheat, soybean, and maize) with the fixed and dynamically changing SGW
table depths in homogeneous and heterogeneous (layered) soil columns across time. Under the fixed
SGW table depths of —300, —200, and —100 cm for individual SL, SiL, and CL soils, the FGW and DGW
approaches derived the effective soil hydraulic properties from the synthetic near-surface (0-5 cm) soil
moisture dynamics at the ARS 136 site. The water retention curves (6(/)) derived by the DGW-based
estimated soil parameters matched the observations, while the 6(h) curves from the FGW scheme
showed uncertainties for SiL soil. The FGW-based hydraulic conductivities (K(h)) were highly biased
compared to the observed curves, indicating that the presence of SGW table depths considerably
influence the Ksut variable. However, the K(h) functions derived by our proposed approach usually
showed a good agreement with the synthetic observations. In the layered soil system (1st and 2nd
layers at soil depths of 0-60 and 60-200 cm with SiL and L soils, respectively), the DGW-based
data assimilation still performed better in estimating the soil parameters compared to those based
on the FGW scheme. In the field validations, the FGW and DGW schemes usually showed good
model performances, but the DGW-based model outputs showed better correlations (R) and smaller
uncertainties (RMSE). Although we only validated the monthly estimated SGW table depths to the
measured data at the point scale (BOND/OLN), our proposed model can provide improved root
zone (0-10 cm) soil moisture dynamics with small uncertainties better than those of FGW at the
study sites. The airborne sensing- and satellite-scale soil moisture estimates in the DGW scheme also
identified slightly better with the ESTAR soil moisture products compared to those of FGW. According
to the studies of Ines and Mohanty [6] and Shin et al. [9,40], the presence of SGW table depths in the
unsaturated zone considerably influences the soil parameter estimations. The proposed DGW scheme
that can consider both the soil hydraulic properties and SGW table depth dynamics in time performed
well for the synthetic and field validation, supporting the robustness of our approach in application to
field regions. Thus, our approach could improve the availability and applicability of pixel-scale soil
moisture footprints based on satellite platforms.
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