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File S1: Historical and Downscaled Data 

 

 
Figure 1. Monthly temperature (°C) and precipitation (mm) at the three meteorological stations in the 
Fluvià basin for the historical period (1984) and values simulated with ECHAM5 for the reference 
period (1971–2000). 
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Figure 2. Downscaled P and T. 
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File S2: Statistical Downscaling 
Statistical downscaling was carried out to translate the outputs from the global climate models 

into useful information on a regional scale. This process generates precipitation and temperature 
series from the statistical properties predicted by the global climatic model. Downscaling output for 
future climate change scenarios (temperature and precipitation) involves three steps [1,2]. Firstly, a 
stochastic weather generator is developed and parameter calibration is carried out to reproduce the 
statistics of the observed data (1984–2008). Secondly, changes in monthly rainfall (mean and standard 
deviation) between a control period (1971–2000) and the future scenarios predicted by the GCM are 
calculated. Thirdly, perturbation of the stochastic weather generator based on GCM predictions is 
developed. 

For weather generation in the climate change scenario, a model suite was developed that 
comprised a stochastic daily rainfall generator and a stochastic mean daily temperature generator. 

The rainfall generator is based on the well-known chain-dependent-process stochastic model for 
daily precipitation [3–5], which is a two-state model: a first-order non-stationary Markov chain for 
modelling rainfall occurrences, and a probabilistic sub-model for modelling amounts of rainfall [6]. 
This rainfall generator is capable of dealing with seasonal non-stationarity by simply evaluating the 
probability transition matrix and the parameters of the probabilistic sub-model on a monthly basis. 

Xt represents the binary event of precipitation or no precipitation (precipitation refers to a 
rainfall event of more than 0.1 mm/day) occurring on day t: 
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Then the time series of precipitation is: 

ttt XhY ⋅=  (2) 

where ht represents non-zero precipitation. 
The first-order Markov chain model for Xt follows from the assumption that the probability of a 

wet/dry day depends on whether there was a precipitation occurrence the previous day (t − 1). 
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Equivalently, the complementary conditional probabilities are: 
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Parameters p01 and p11 are the conditional probabilities of a wet day following a dry day and of 
a wet day following a wet day. Both the definition of the parameters and Equation (3) are defined 
completely by the Markov model. 

If precipitation occurs, then the amount of precipitation falling on a wet day is determined by 
using a predefined distribution frequency. In this case, the non-zero precipitation amount ht (i.e., 
rainfall over 0.1 mm) was simulated using the Weibull distribution [7]. 
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where α and β are the distribution parameters estimated using the maximum likelihood estimation 
procedure. To incorporate the seasonality of precipitation events, parameters were independently 
estimated for each month. 
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The stochastic simulation of series Xt under first-order Markov dependence is a straightforward 
process. Output ut from a uniform [0,1] random number generator was compared with the 
appropriate transition probability from Equations (3) and (4). A wet day was simulated if the random 
number was lower than a “critical” probability pc: 
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The temperature daily series was obtained by multiplying the mean monthly temperature for 
the daily proportional coefficient, defined as the ratio between the mean k-daily temperature and the 
mean j-monthly temperature. The temperature generator is based on the classical Autoregressive 
Moving Average model (ARMA) [6], particularly of first-order in both the autoregressive and moving 
average parts (ARMA (1,1) model): 
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with: 
μ(t)j = monthly mean temp. for jth month; 
σ(t)j = monthly standard deviation temp. for jth month; 
εk = uncorrelated white noise process; 
tk = daily average temperature for kth day. 
The model was used in a normalised form to handle the seasonal non-stationarity in the original 

temperature series [8]. The parameters of the model were obtained by maximum likelihood estimation. 
In climate change scenarios, meteorological series were built as follows: future rainfall scenarios 

were generated by the perturbation of the Weibull distribution parameters using the new values for 
monthly variance and the mean predicted by the GCM future scenarios; the rainfall generator is based 
on the hypothesis that only the precipitation amounts are affected by climate change and not the 
probability transition matrix. The new temperature series were obtained by multiplying the 
normalised series by climate scenario variances and then adding the corresponding mean. 
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Figure 1. Results. Q-Q diagram of precipitation. Comparison of the historical period (meteorogical 
stations in the area) and the Weibull-simulated data. 
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File S3: The Visual BALAN Numerical Model 
Visual BALAN v. 2.0 [1], is a computer code suitable for long-term simulation of water balance 

in the soil, vadose zone and aquifer and similar to other existing codes, like INFIL [2] or SAHYSMOD 
[3] among others. The code comprises three sub-models for processes in (1) the upper part of the soil 
(root zone); (2) the vadose or unsaturated zone (lower soil) and (3) the saturated zone (aquifer). The 
approach assumes a cascade model for precipitation, interception, runoff, evapotranspiration and the 
recharge process. The state variable in each of the three zones is water volume, expressed as volume 
per surface unit (e.g., L/m2) or equivalent height of water (e.g., mm). 

For vegetated soil the water balance is represented by: 

P + Ir −In − Es − ETa − Pe = Δθ  

where P is precipitation; Ir irrigation; In canopy interception; Es runoff; ETa actual evapotranspiration;  
Pe potential recharge to the vadose zone and Δθ variation of soil water storage. 

 
Figure 1. Balance components as defined in Visual Balan. The three soil components and hydrologic 
processes. (K) hydraulic conductivity; (Φ) drainable porosity; (θ) water content; (FC) field capacity; 
(WP) wilting point; (bs)thickness; (yh) thickness of the waterfront;(Pe) potential recharge; (Qh) 
hypodermic flow; (Qp) recharge; (m) porosity; (w.l) water level; (h) groundwater level; (T) 
transmissivity; S storage coefficient, (Qs) groundwater flow. 

In the vadose/unsaturated zone, potential recharge Pe, constitutes the entry of water, which can 
be hypodermic flow Qh (constitutes baseflow) and vertical flow or percolation to the aquifer Qp, 
which constitutes the deep recharge. 
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File S4: Sub-Basins Characteristics 
Table 1. Characteristics of sub-basins defined in Figure 1. 

Sub-Basin Area (km2) Impervious Area (%)
Land_Use (%) 

Forest Crops Bush 
W270 202.2 0.5 93.6 1.5 4.4 
W280 138.01 1.8 87.6 3.8 6.8 
W300 71.9 2.7 85.5 1.5 10.3 
W320 242.02 8.5 85.6 1.6 4.3 
W410 127.9 4.2 75.8 19.9 0.1 
W430 131.3 1.9 65.1 9.8 23.2 

 


