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Abstract: Spatial surface soil moisture can be an important indicator of crop conditions on farmland,
but its continuous estimation remains challenging due to coarse spatial and temporal resolution
of existing remotely-sensed products. Furthermore, while preceding research on soil moisture
using remote sensing (surface energy balance, weather parameters, and vegetation indices) has
demonstrated a relationship between these factors and soil moisture, practical continuous spatial
quantification of the latter is still unavailable for use in water and agricultural management. In this
study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection
from potential predictors that include vegetation indices and energy balance products derived from
satellite (Landsat) imagery and weather data as identified in scientific literature. This methodology
employs a statistical learning machine called a Relevance Vector Machine (RVM) to identify and
relate the potential predictors to soil moisture by means of stratified cross-validation and forward
variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central
Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices,
and energy balance products. The methodology, data collection, processing, and estimation accuracy
are presented and discussed.

Keywords: soil moisture; evapotranspiration; remote sensing; surface energy balance; irrigation;
Relevance Vector Machines; Landsat; Data Mining

1. Introduction

The future of agriculture and food security depends, in large measure, on overcoming current and
future limitations on development of new irrigation systems, which must become more productive
and efficient in order to feed an increasing population [1]. The use of remote sensing techniques to
monitor agricultural variables (water, yield, nutrients, etc.) represents an existing information source
that can significantly enhance agriculture and water management [1–5]. Soil moisture (or soil water
content) is an important variable because, along with evapotranspiration estimates, soil moisture can
support estimation of current and future irrigation water needs using water balance techniques [1,6–8].

Despite their utility, soil moisture estimations for agricultural applications have proven to
be challenging to implement at an operational level because of complex feedback processes that
involve factors, such as atmospheric conditions (weather, time of the year), vegetation (actual
evapotranspiration, crop canopy structure, irrigation frequency, etc.), and soil characteristics (cover,
organic matter, texture, structure, heterogeneity, and root density) [7,9,10]. Another challenge is
the spatial and temporal resolution of soil moisture measurements and estimations. Ground sensor
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measurements (points) can continuously measure soil moisture but are limited in spatial coverage.
Available soil moisture measurements based on optical, thermal, and radar satellites provide spatial
coverage, but the coarse spatial resolution (pixel size) or untimely information during the irrigation
season limit their use for crop field operations [11,12]. Finally, existing land surface models developed
for estimation of soil moisture are not necessarily spatial in nature, or they require information not
generally available for their calibration [13]. Thus, despite the plethora of available procedures for
estimating soil moisture, continuous production of spatially distributed soil water content information
for agriculture at adequate spatial and temporal resolutions is not yet possible.

To address the complex nature of soil moisture, statistical learning theory tools such as Artificial
Neural Networks (ANNs), Support Vector Machines (SVMs), and Relevance Vector Machines (RVMs),
have been tested in recent years for their ability to spatially estimate distributed soil moisture at
the single-farm level. A key characteristic of these learning machine algorithms is their use of the
underlying statistical characteristics of available information (predictors and predictands) without prior
assumptions of their relationship. Examples of learning machine algorithms in spatial applications
used in water resources and soil moisture applications can be found in [6,8,14–21], among others.
The RVM, a Bayesian regression algorithm, was applied in several of these studies. As a sparse model
with high accuracy, RVM has been used in hydrology, water resources, and other fields.

The objective of this study was to develop a methodology for estimating surface soil moisture at
adequate spatial and temporal resolution to support management of irrigated fields (Landsat image
resolution) by integrating previously identified remote sensing and local information related to soil
moisture, such as vegetation indices, energy balance products, and weather data. The RVM learning
machine algorithm was used as the modelling tool. An existing surface energy balance model called
METRIC™ was used to produce energy balance products. Spatial and ground information collected
from an irrigation system in Central Utah for the 2012 irrigation season was used for this study.
To the best knowledge of the authors, the current research is the first effort to estimate surface soil
moisture at a spatial and temporal resolution by combining different datasets (in situ measurements
and remote-sensing products) and suitable modeling techniques based on Landsat vegetation indices,
surface energy balance products, and a Bayesian machine learning approach (RVM).

2. Literature Review

2.1. Soil Moisture Measurement and Estimation

Soil moisture plays a key role in a number of water and energy processes that affect weather,
vegetation, and global chemical cycles [22]. Additionally, spatial distribution of soil moisture is required
for determining hydrological processes, including land–atmospheric interactions, rainfall-runoff
response, and erosion processes [23]. In agriculture, estimation of soil moisture content is important
for irrigation scheduling, water management, crop growth, yield forecast modeling, forest dynamics,
partitioning of sensible, and latent heat fluxes (i.e., Bowen Ratio), and surface-atmospheric interactions,
among others [7]. Soil moisture is especially important in precision farming because soil moisture
content information for any location within or across fields can provide a clear understanding of
current soil water condition; thus, producers/irrigators can more effectively direct their sub-field or
zonal water management efforts.

The study of soil moisture in agriculture divides the soil profile into two zones: the surface zone,
which covers the first five centimeters (two inches) of soil, and the root zone soil moisture (held in the
upper 200 cm of soil) [7,9]. This differentiation is based on the influence of external factors to each zone.
The surface zone becomes a physical interface between the atmosphere and the soil water content,
which regulates the rate of soil water evaporation. The root zone is strongly influenced by the initial
water content and water fluxes from the phreatic water underneath. Surface soil moisture is physically
related to the root zone through diffusion processes [7].
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In general, soil moisture measurements can be described as point measurements, which can be
acquired using gravimetric, nuclear, electromagnetic, tensiometric, and hygrometric techniques or
embedded sensors, such as time- and frequency-domain reflectometry (TDRs and FDRs) [7]. These
measurements are the most accurate, given the close contact of the sensor to the water-holding medium
(soil), and are considered ground truth. Nevertheless, these measurements are restricted in spatial
coverage to a small distance from where the sensor is placed. Therefore, installation of a large or dense
sensor network would be necessary to monitor large field areas, with the associated inconveniences of
operation and maintenance costs, especially in intensively mechanized fields.

Over the past decades, remote sensing technology has shown encouraging results for spatial
estimation of soil moisture. Methods applicable on vegetation-covered surfaces have been limited to
two basic wavelength bands: thermal infrared and microwave. The use of each band has its special
advantages and disadvantages, which often allow the two bands to complement one another.

Microwave techniques, which rely on the large effect of water content on the soil dielectric
constant, have the advantage of a wide dynamic range in signal between wet and dry soils. Remote
sensing measurements in the microwave region can give useful information about soil moisture, due
to the strong contrast between the dielectric constant of dry soil and water (four and 80, respectively)
and its effect on microwave emission [24–26]. The Soil Moisture Active Passive Satellite Program
(SMAP) launched in 2015 was designed to provide direct estimation of surface soil moisture (Product
Level 4 Surface and Root Soil Moisture L4_SM) at a resolution of 9 km/pixel by merging active radar
information from SMAP with a land surface model [27,28]. Nevertheless, due to its spatial resolution,
SMAP and other microwave satellites do not provide information at adequate scales (farm, subfield,
~30m/pixel), thus limiting their application to subbasin and larger scales.

Thermal infrared observation of soil moisture has the advantage of requiring a significantly more
modest sensing system. A study of irrigated wheat [29] concluded that useful qualitative soil moisture
information could be obtained from vegetation canopy temperature measurements where the soil was
completely obscured. In addition, [30] showed that soil moisture can be most accurately estimated by
thermal infrared information in dry or marginal agricultural areas where drought is a frequent threat.

In addition to infrared thermal and microwave sensing, other documented research efforts have
estimated surface and root soil moisture using optical remote sensing imagery. [31–33] present a
relationship between root zone soil moisture conditions and the evaporative fraction (crop coefficient)
as a product of the Surface Energy Balance Algorithm for Land (SEBAL), using Landsat and MODIS
as sources of remotely-sensed data, as long as soil texture is adequately mapped. [6,20,21] found
relationships between surface soil moisture and remote sensing indices and products (such as NDVI;
SAVI; LAI), surface temperature, meteorological parameters (precipitation, air temperature), and
soil water holding capacity. [34,35] found that Landsat reflectance band ratios and cap-tasseled
transformations were non-linearly related to surface soil moisture. Vegetation and soil water content
have been found to be related to Landsat Normalized Burn Ratio (NBR) [36], as well as surface
albedo [37] and energy balance components [38].

Finally, physically-based models for soil moisture estimation, also called land surface
models [25,39], relate soil water content and surface fluxes. [20] lists some of these land surface
models, which include the Soil-Plant-Atmosphere-Water model [40,41], US Department of Agriculture
Hydrograph Laboratory [42,43], Sacramento Soil Moisture Accounting Model [44], and soil vegetation
atmosphere transfer schemes [45]. However, the difficulty associated with measuring physical
parameters required by these models serves as an impediment for their intensive use in agricultural
management [20]. Research on land surface models has confirmed that soil moisture varies both in
space and time because of spatial and temporal variations in precipitation, weather patterns, soil,
topographic features, and vegetation characteristics [39,46]. Additionally, there is an inherent feedback
process between atmosphere and surface soil moisture [9]. Near-surface atmospheric conditions (for
example, humidity and temperature) affect the magnitude and direction of surface fluxes as soil
moisture, while surface energy and hydrological fluxes affect atmospheric conditions at the surface.
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Land surface models have identified wind speed, roughness, and biomass as the three more important
parameters that have a uniformly large effect on all of the potential signatures and would, therefore,
need to be taken into account in any selected soil moisture algorithm [30]. For issues of soil moisture
scaling, the confounding effects of atmospheric stability, soil properties, vegetation, and topography
also need to be considered. Results from these land surface models suggest that it may be possible
to combine some simple parameters relating root zone soil moisture, surface runoff, groundwater
discharge, the surface energy budget equation, and the effective evaporation efficiency control to
describe the equilibrium state of a land surface scheme [9]. However, issues related to interactions
among multiple processes, nonlinearities, and feedbacks across land surfaces, along with relationships
among single-sensor measurement, statistical averages, and the definition of spatial heterogeneity
within pixels, are yet to be solved.

2.2. The Mapping Evapotranspiration at High Resolution with Internalized Calibration Model
(METRIC) Model

The Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC)
model is an algorithm developed by [47] to estimate actual evapotranspiration (ET) for agricultural
lands using aerial or satellite imagery that includes a thermal band. METRIC has been validated
extensively using the Landsat satellite platform [3], and continued research and development of
applications demonstrate its validity. One main characteristic of METRIC is its specific design for arid,
desert areas, such as the Western US and coastal locations in the world where water availability is
restricted and improved water management is necessary. METRIC is based on the Surface Energy
Balance (SEB) equation [48,49], the formulation of which is as follows Equation (1):

Rn ´G´H´ LE “ 0 (1)

where Rn is net radiation at the surface; G is the soil heat flux; H is the sensible heat flux to the air; and
LE is the latent heat flux (or actual evapotranspiration: the energy used to evaporate water). Every
component of the SEB equation is expressed in Watts/m2. ET models such as METRIC, SEBAL, and
others, make use of the SEB equation to estimate actual evapotranspiration (LE) by solving for the
other three components of Equation (1) [3]. The METRIC model solves for each of the parameters of
the SEB equation with the following procedure:

Rn Equation (2) is computed for each pixel using albedo (α) and transmittances computed from
short wavebands (Landsat first to fifth and seventh reflectance bands, or ρ1:ρ5 and ρ7), using broadband
emissivity (ε0) computed from the thermal band (Landsat sixth band).

Rn “ p1´αqRsÓ ´RLÒ `RLÓ ´ p1´ ε0qRLÓ (2)

where RsÓ, RLÒ, and RLÓ are the incoming shortwave, emitted outgoing longwave, and the incoming
longwave radiation, respectively (W/m2) [48,50].

Soil heat flux (G, Equation (3)) is predicted using leaf area index (LAI) and surface temperature
(Ts), along with the Rn estimates [51]:

G{Rn “ 0.05` 0.1e´0.52LAI pLAI ě 0.5q
“ 1.8 pTs ´ 273.16q {Rn ` 0.084 pLAI ă 0.5q

(3)

Sensible heat (H, Equation (4)) is calculated from several factors: a single wind speed measurement
at the ground, air density (ρair), air specific heat (cp), estimated aerodynamic resistance to heat transport
(rah), and surface-to-air temperature differences (dT) predicted from thermal infrared radiances.

H “
`

ρaircpdT
˘

{rah (4)
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All computations are made specific to each pixel in the image. Iterative predictions of H are
improved using atmospheric stability corrections based on Monin-Obukhov similarity [51]. Endpoints
for H within a satellite image are bounded by known evaporative conditions at key reference (anchor)
points [50]. These reference points include pixels having little or no evaporation (the “hot pixel”) and
maximum evapotranspiration (the “cold pixel”). Evapotranspiration is calculated from LE by dividing
by the latent heat of vaporization. Further details of the METRIC algorithm are presented in [3,47,50].

2.3. The Relevance Vector Machine

The relevance vector machine (RVM) is a Bayesian learning approach for supervised learning
regression and classification tasks developed by [52] and posteriorly enhanced by [53]. The RVM is a
nonlinear model based on a Bayesian probabilistic treatment to determine a descriptive function based
on existing information. The RVM has been extensively used in hydrological, water resources, and
Earth image processing [6,15,18,19,54,55], with excellent results.

The development of an RVM model for regression tasks is based on a training set of input vectors
txnu

N
n“1 with corresponding targets ttnu

N
n“1. For this training subset, the RVM develops a model of

dependency of targets t on the inputs x, thus achieving accurate predictions of t for previously unseen
values of x [52]. The general form of the RVM function is presented in Equations (5) and (6):

y “ wΦ pxq , (5)

tn “ yn ` εn, (6)

where w is the model “weights” and Φ(x) is a basis function where Φ=[ϕ1 . . . ϕM] is the N * M
“design” matrix whose columns comprise the complete set of M “basic vectors”, y or yn is the RVM
predictand, and εn is the difference or residual [53]. The main feature of the RVM is the target function
y Equation (5), which attempts to minimize the difference εwith respect to t Equation (6).

Two main assumptions are made to implement the Bayesian probabilistic approach in the RVM:
the distribution probability of t, p(tn|xn) is Gaussian distributed, N(tn|yn,σ2), as is the difference ε,
N(0,σ2). Using these two assumptions, the likelihood of the set {x, t} can be written as:

ppt|w,σ2q “

N
ź

n“1

N
´

wϕn,σ2
¯

(7)

To avoid overfitting issues when solving for w and σ, usually by maximum likelihood
methods [56], a common approach is to impose on them constraints based on an assumed “prior”
Gaussian probability distribution Equation (8):

p pw|αq “
Q
ź

q“1

N
´

wq|0,α´1
q

¯

(8)

with α being a vector of Q hyperparameters, individually related to each weight value. From Bayes’
rule, the “posterior” probability over all unknown parameters over the set is:

p
´

w,α,σ2|t
¯

“ p
´

w|t,α,σ2
¯

p
´

α,σ2|t
¯

, (9)

The first part of Equation (9) can be expressed as p(w|t, α,σ2) „ N(m, Σ), where the mean m and
the covariance Σ are given by:

m “ σ´2ΣΦTt (10)

Σ “ pA` σ´2ΦTΦq
´1

(11)
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and A = diag(α). Solving for m and Σ involves finding the hyperparameters (α and σ2) that maximize
the second term in Equation (9):

ppα,σ2|tq9ppt|α,σ2qppαqppσ2
¯

(12)

Assuming uniform hyperpriors (thus ignoring p(α) and p(σ2)), it is possible to maximize the
evidence or likelihood function (the first term in Equation (12)):

ppt|α,σ2q “

ż

ppt|w,σ2qppw,αqdw (13)

Replacing Equations (7) and (8) while solving the integrand gives:

ppt|α,σ2q “

ˆ

1
2πσ2

˙N{2 ˆ 1
2π

˙Q{2 Q
ź

q“1

α
1{2
q exp t´E ptqu p2πqQ{2 |Σ|1{2 (14)

where:
Eptq “

1
2

´

σ´2tTt´mTΣ´1m
¯

(15)

A fast marginal likelihood optimization algorithm is used to obtain the optimal set of
hyperparameters αopt and σopt

2 (which affects the estimation of m and Σ). This optimization algorithm
uses an efficient sequential addition and deletion of candidate basis functions described by [53].
Thus, the basis functions from the training set that are associated with non-zero weights (not deleted
during optimization) are called “relevance vectors”.

Given a previously unseen input vector x1, the predictive distribution for the corresponding target
t and the prediction confidence σ2(x1) can be computed as:

p
´

t|x1,αopt, σ2
opt

¯

“

ż

p
´

t|wopt, σ2
opt

¯

p
´

wopt|αopt, σ2
opt

¯

dw

“ NpmoptΦ
`

x1
˘

,σ2
px1qq

(16)

Therefore, the estimate for t (y) for an unseen input data x1 is:

y “ mT
optΦ

`

x1
˘

(17)

and the confidence in the prediction y is determined by the variance of this distribution σ2(x1) given by:

σ2 `x1
˘

“ σ2
opt `Φ

`

x1
˘

ΣoptΦ
`

x1
˘

(18)

This predictive variance is the sum of variances associated with both the noise of the data and
the uncertainty (error bar) in the prediction of the weight parameters. The theory behind RVM,
its mathematical formulation, likelihood maximization, and optimization procedure are discussed in
detail in [52,53,56–58].

3. Material and Methods

3.1. Area of Study

The area of study (Canal B) is located in Central Utah, as shown in Figure 1. The agricultural land
consists of approximately 33,000 irrigated hectares and 5882 agricultural fields organized within an
on-demand irrigation system managed by three different canal companies. Canal B is part of a large
irrigation command area called the Lower Sevier River Basin, not shown in Figure 1. The Lower Sevier
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River Basin and Canal B are served by the DMAD Reservoir through a main diversion called Canal A.
Crops in the area of study are alfalfa hay (main crop), corn, and small grains for silage.
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Figure 1. (a): Landsat Path 38 Row 33 scene footprint (dashed lines) and area of study (black).  
(b): gap-filled Landsat 7 ETM+ false view (29 May 2012) of the area of study and soil moisture 
sampling sites (stars) in Central Utah. 

3.2. Weather Information 

A meteorological station located in the Lower Sevier River Basin (Delta, Utah) provided the 
weather data for this study. The station is a part of the Community Environmental Monitoring 
Program (CEMP) in the Desert Research Institute (DRI) network of 29 monitoring stations located in 
the Western States. The station, located at 39°21’11” N, 112°34’42” W, and 1415 m asl, records hourly 
solar radiation, air temperature, wind speed, precipitation, and relative humidity. These data are 
available on the CEMP website [59]. This study included 2012 weather data from January to June. 

3.3. Remote Sensing Data 

Landsat 7 ETM+ satellite images with a 16-day revisit time were used in this study. These images 
were already terrain and geometrically processed by the Level 1 Product Generation System at the 
USGS Center for Earth Resources Observation and Science, EROS [60]. Four cloud-free images, listed 
in Table 1, were acquired for a period of two months in 2012 covering different crop growth stages 
for the area of study. The Landsat 7 ETM+ sensor has six bands with 30 m spatial resolution in the 
shortwave, near-infrared, and mid-infrared portions of the electromagnetic spectrum, while the 
thermal band has an original spatial resolution of 120 m downscaled to 30m. Due to the 2003 sensor 
failure in Landsat ETM+ [60], the images for the four Landsat scenes were completed by running a 
natural neighbor interpolation through the individual bands, as suggested in [61].  

Table 1. Landsat 7 ETM+ images used for this study. 

DOY Date Average Agronomic/Irrigation Conditions 

136 13 May 
Alfalfa first cut (harvest) period, severe decrease in on-demand 

water orders, limited to corn and small grains. 

152 29 May 
Alfalfa cutting period was ending, large farm areas with no 

crop cover, minimal on-demand water orders. 

168 14 June 
On-demand water orders increasing, second alfalfa-growing 

cycle in progress. 
184 30 June Second alfalfa growing cycle at maturity stage. 

  

Figure 1. (a): Landsat Path 38 Row 33 scene footprint (dashed lines) and area of study (black).
(b): gap-filled Landsat 7 ETM+ false view (29 May 2012) of the area of study and soil moisture sampling
sites (stars) in Central Utah.

3.2. Weather Information

A meteorological station located in the Lower Sevier River Basin (Delta, Utah) provided the
weather data for this study. The station is a part of the Community Environmental Monitoring
Program (CEMP) in the Desert Research Institute (DRI) network of 29 monitoring stations located in
the Western States. The station, located at 39˝21’11” N, 112˝34’42” W, and 1415 m asl, records hourly
solar radiation, air temperature, wind speed, precipitation, and relative humidity. These data are
available on the CEMP website [59]. This study included 2012 weather data from January to June.

3.3. Remote Sensing Data

Landsat 7 ETM+ satellite images with a 16-day revisit time were used in this study. These images
were already terrain and geometrically processed by the Level 1 Product Generation System at the
USGS Center for Earth Resources Observation and Science, EROS [60]. Four cloud-free images, listed in
Table 1, were acquired for a period of two months in 2012 covering different crop growth stages for the
area of study. The Landsat 7 ETM+ sensor has six bands with 30 m spatial resolution in the shortwave,
near-infrared, and mid-infrared portions of the electromagnetic spectrum, while the thermal band has
an original spatial resolution of 120 m downscaled to 30m. Due to the 2003 sensor failure in Landsat
ETM+ [60], the images for the four Landsat scenes were completed by running a natural neighbor
interpolation through the individual bands, as suggested in [61].

Table 1. Landsat 7 ETM+ images used for this study.

DOY Date Average Agronomic/Irrigation Conditions

136 13 May Alfalfa first cut (harvest) period, severe decrease in on-demand water orders,
limited to corn and small grains.

152 29 May Alfalfa cutting period was ending, large farm areas with no crop cover,
minimal on-demand water orders.

168 14 June On-demand water orders increasing, second alfalfa-growing cycle in progress.

184 30 June Second alfalfa growing cycle at maturity stage.
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3.4. Surface Soil Moisture Data Collection

During the Landsat overpass dates (Table 1), surface soil moisture measurements were taken
at twenty sampling sites within the area of study (indicated by stars in Figure 1). These sites were
chosen based on locations in a previous soil moisture network. Soil moisture measurements were
made using a Decagon GS3 sensor [62], which measures soil volumetric water content (θ) using a
generic calibration that has an accuracy of ˘0.03 m3/m3 (˘3% θ) [63,64]. A laboratory validation of
the GS3 sensor [6] in Central Utah agricultural lands (near the area of study) determined that custom
sensor calibration was not required. To account for the spatial footprint of the individual Landsat pixel
(30 m by 30 m), several soil moisture measurements were made for each sampling site and posteriorly
averaged within the pixel footprint. Table 2 presents details of the crops at each sampling site. The
crop types tend to fully cover the surface after the initial development and until the harvest stage. The
irrigation method used in the area of study is level basin, in which water covers the entire field during
an irrigation event, with no drainage. This type of irrigation is possible because of the laser leveling
practice continuously used in the Lower Sevier River Basin.

Table 2. Installed crops in soil moisture sampling sites.

Site Crop Site Crop

1 alfalfa 11 corn
2 alfalfa 12 alfalfa
3 grain 13 alfalfa
4 grain 14 alfalfa
5 corn 15 alfalfa
6 corn 16 alfalfa
7 corn 17 alfalfa
8 grain 18 alfalfa
9 grain 19 alfalfa

10 grain 20 alfalfa

The measured surface soil moisture ranged from 0.06 to 0.65 m3/m3 (dry soil to water layer) for
the four dates. Similar soil moisture ranges for similar crop types in Central Utah are reported by [6]
at up to 0.55 m3/m3. Higher soil moisture values represent the basin water in the field due to an
irrigation event [62,63]. No distinctive pattern of soil moisture ranges can be identified among crop
types or sampling sites (Table 2), due to dissimilar farm management, including irrigation scheduling
(on-demand water distribution).

3.5. Potential Surface Soil Moisture Predictors

Surface soil moisture predictors used in this study were selected based on the scientific literature
and were included based on the information available for the area of study. The potential soil
moisture predictors were then organized in groups by their complexity in estimation/acquisition.
Three potential predictor groups were defined: (a) atmospheric variables; (b) Landsat reflectance and
vegetation indices; and (c) spatial energy balance (fluxes).

a) Atmospheric Variables: These potential predictors are weather parameters obtained from a
typical agricultural weather station and are presented in Table 3. Since precipitation records for
the area of study have been historically scarce, rainfall was omitted as a potential predictor.

b) Landsat Indices: The Landsat individual surface reflectance, band ratios, vegetation indices, and
cap-tasseled images that were calculated for each of the four dates are summarized in Table 4.

c) Evapotranspiration and Energy Balance Components
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Table 3. Potential atmospheric predictors considered in this study.

Potential Predictors Abrev. Units

Max. Daily Air Temp. Tmax ˝C
Min. Daily Air Temp. Tmin ˝C

Ave. Daily Dew Temp. DewP ˝C
Ave. Daily Wind Speed Wind m/s

Ave. Solar Radiation Rs W/m2

Extra. Solar Radiation Rso W/m2

Daily Reference ET ETr mm/d

Table 4. Potential landsat indices calculated for this study.

Potential Predictors Abrev. Units

Reflectance Bands 1 to 5 and 7 ρ No units
Surface Temperature Tsurf
Band 1/Band 2 ratio ρ1/ρ2 ˝C
Band 1/Band 3 ratio ρ1/ρ3 No units
Band 1/Band 4 ratio ρ1/ρ4
Band 1/Band 5 ratio ρ1/ρ5
Band 1/Band 7 ratio ρ1/ρ7
Band 2/Band 3 ratio ρ2/ρ3
Band 2/Band 4 ratio ρ2/ρ4
Band 2/Band 5 ratio ρ2/ρ5
Band 2/Band 7 ratio ρ2/ρ7
Band 3/Band 4 ratio ρ3/ρ4
Band 3/Band 5 ratio ρ3/ρ5
Band 3/Band 7 ratio ρ3/ρ7
Band 4/Band 5 ratio ρ4/ρ5
Band 4/Band 7 ratio ρ4/ρ7
Band 5/Band 7 ratio ρ5/ρ7

Red NDVI NDVI
Green NDVI GNDVI
Blue NDVI BNDVI
Normalized Burn Ratio NBR
Brightness Bri
Greenness Gre
Wetness Wet
Haze Haz

Normalized Diff. Water Index NDWI
Leaf Area Index LAI
Surface Albedo α m2/m2

Emissivity ε No units

The METRIC algorithm by [47] was implemented in ERDAS software to process the four Landsat
images and obtain spatial estimation of Surface Energy Balance components, actual evapotranspiration
(ET24), crop coefficient (ETrF), and water evaporation (Table 5).
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Table 5. METRIC energy balance products used in this study.

Potential Predictors Abrev. Units

Net Radiation Rn W/m2

Ground Heat Flux G W/m2

Latent Heat Flux ET24 mm/d
Sensible Heat Flux H W/m2

Water Evaporation Ewater W/m2

Fractional Reference ET ETrF no units

3.6. Relevance Vector Machine Calibration

a) The Relevance Vector Machine (RVM)

A 2009 version of the RVM algorithm implemented in Matlab and developed by [65] was
used in this study. The kernel functions tested in this study were Gauss, Cauchy, TPS (thin-plate
spline), Laplace, Spline, R, Cubic, and Bubble. The RVM algorithm required two parameters to be
calibrated: the kernel function type and kernel width. The kernel functions are mathematical equations
for likeness comparison of basis functions that originate from predictors themselves [52]. For the
second RVM parameter, kernel width (λ), each kernel function requires a single parameter called
“width” for adjustment of the kernel amplitude. The kernel width can take any real positive non-zero
value. For each tested kernel function, a kernel width range from 0.00001 to 1000 was considered
(approximately 700 values).

b) Stratified Cross-Validation

Due to the number of potential soil moisture predictors described in Tables 3–5 (47 in total) and
the parameters to calibrate the RVM (2 in total), a custom procedure to calibrate the RVM surface
soil moisture model was necessary. In addition, because of the limited number of soil moisture
ground samples (80 in total) available for this study, it was evident that commonly used hold-out
calibration, also known as training and testing subsets [18,66], was not applicable. In similar reported
cases, a cross-validation technique (CV) with randomized K-folds (5, 10, 20) has been applied [67].
Nevertheless, traditional randomized K-folds would introduce a bias component in the RVM or any
other model. In this study, a modified CV technique is implemented that defines the number of
datasets for each K-fold as the number of Landsat scenes used. Thus, the soil moisture samples and
potential predictors for a given Landsat date belong to a specific kth-fold. For this study, the number of
folds, K, equals four (e.g., May 13 fold#1, May 29 fold #2, etc.); therefore, the CV technique is “stratified”
by the collection dates, per se, which avoids bias or randomness effects on the model-performance
statistics and ensures repeatability of results.

c) Soil Moisture Predictors Identification

Not all of the 47 potential predictors included in this study were expected to be of equal importance
for soil moisture estimation. In addition, it was expected that no prior predictor filtering would be
necessary because the forward predictor selection (FPS) procedure [68] implemented in this study
would allow the proposed RVM calibration to automatically purge less important predictors. The FPS
allows for fast identification of synergistic predictor subsets based on the model performance statistics
using the modeling algorithm itself (in this case, the RVM).

All Landsat-derived potential predictors were expected to be correlated to each other to a certain
degree at spectral (correlation between predictors) and spatial (neighboring pixels within a predictor)
levels because they were derived from the same Landsat reflectance and temperature bands (spectral
correlation) and were affected by the optical sensor design (neighboring pixel correlation). While using
these predictors would raise issues in customary statistics (e.g., linear regression), Bayesian learning
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machines, such as the RVM prioritize the synergy effect of predictors and predictor statistical pattern
over their statistical or spatial relationships. Nevertheless, Landsat Tasseled Cap products (Brightness,
Haze, Greenness, and Wetness) are not expected to be statistically correlated [69]. The inclusion of
Tasseled Cap products in this study provided an initial point to assess whether uncorrelated predictors
were of higher importance for RVM soil moisture modeling.

The performance statistics obtained from the RVM using the stratified CV and FPS procedure
allowed predictor subset candidates (along with kernel function type and width) to be determined.
Two statistical parameters, in order of importance, were used in this study: the Root Mean Square
Error (RMSE, m3/m3) and the Coefficient of Efficiency or Nash–Sutcliffe Coefficient (η, no units) [70].
These two parameters have been used extensively in hydrological and earth science applications [71].
In addition, because of the number of potential predictors incorporated into the RVM calibration with
stratified CV and FPS, there can be cases where two or more different predictor subsets have similar
predictive power (similar statistical results). Occam Razor philosophy indicates that, ceteris paribus,
simpler models/parameters must have priority over more complex ones. Thus, simpler predictor
subsets took priority. This implied that the predictors listed in Table 3 took precedence over those
named in Table 4, which in turn took precedence over the ones identified in Table 5.

It is important to mention that the stratified CV was used, along with FPS, solely for identification
of suitable predictor subsets along the RVM calibration parameters. The final RVM model selection
required an additional step using all collected soil moisture data.

d) Surface Soil Moisture Model Selection

The final surface soil moisture model was selected by comparing the statistical performance of
different RVM models generated for potential predictor subset and using the 80 sampling values,
called in this document “all (Data)”, as training and testing sets. Again, the performance statistics are
RMSE and η. Due to the stratified CV and FPS procedure implemented in this study, model-overfitting
issues were minimized. The selected RVM model was then applied to the area of study (Canal B) for
the four Landsat dates.

4. Results and Discussion

4.1. Potential Predictors

A sample of the surface soil moisture potential predictors (Atmospheric, Landsat Indices, and
Energy Balance Products) used in this study is presented in Table 6 and Figure 2. Figure 3 shows the
spatial distribution of the crop coefficient or fractional evapotranspiration (ETrF) for the four Landsat
dates. In addition, Figure 4 shows a scatterplot comparison of measured surface soil moisture against
ETrF, surface temperature and NDVI.

Table 6. Daily Weather Information for Landsat overpass dates.

Date Air Tmax Air Tmin AirTdew Wind Speed Solar Rad Ext Rad ETref

˝C ˝C ˝C m/s W/m2 W/m2 mm/d
13-May 24.6 4.5 ´5.9 0.60 314.4 456.9 6.39
29-May 27.8 7.5 ´5.5 0.67 323.3 475.3 6.43
14-Jun 30.9 14.9 ´3.1 0.76 331.5 482.9 6.82
30-Jun 35.9 18.0 0.1 1.16 339.8 483.9 7.02
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Figure 2. Measured surface soil moisture (bottom row) and corresponding Landsat indices and metric 
energy balance products (upper rows) for the four Landsat overpass dates considered in the study. 
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Figure 2. Measured surface soil moisture (bottom row) and corresponding Landsat indices and metric
energy balance products (upper rows) for the four Landsat overpass dates considered in the study.
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the absence of gaps in the maps due to the use of the natural neighboring interpolation technique on 
the original DN bands. 
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The information presented in Figure 2, Figure 4, and Table 6 indicate that measured surface soil
moisture did not have a linear relationship with any of the potential predictors included in this study.
Figure 4 also indicates that there is no identifiable trend between Landsat fractional evapotranspiration
(ETrF), surface temperature, nor NDVI with measured surface soil moisture values.

4.2. Model Development

The stratified CV along with FPS used in this study was implemented at the High Performance
Computing facility at Utah State University. Due to the large number of computational runs for each
individual kernel type, only a selection of the best performance runs is shown in Table 7. Figure 5
presents a detailed view of the statistical performance during FPS using the “Bubble” kernel and all
available samples (all (Data)).
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Figure 5. Example of RMSE and η values for fourty-six FPS iterations using RVM with a bubble kernel
function. Subplot title indicated variable selected for the i-th FPS iteration. Red dots are statistical
result values for considered kernel width values using all (Data). Blue dots are all (Data) statistical
results of selected stratified CV inputs for each iteration.
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Table 7. RVM statistics for best soil moisture models using each kernel type.

Kernel Type Inputs (in Order of Selection)
Stratified CV All (Data)

RMSE m3/m3 η RMSE m3/m3 H

Bubble ρ4, ETrF, LAI,ρ3/ρ4 0.10 0.42 0.06 0.66
TPS Rn, Rs, Tmin, Tmax, Rso 0.14 0.16 0.12 0.30

Cauchy Rn, Rso, Tmin 0.12 0.24 0.10 0.40
Laplace Rn, Rso, Tmin, LAI 0.12 0.24 0.08 0.50

R Tmax, Rn, Tmin, ETr 0.14 0.14 0.12 0.26
Gauss Rn, Rso, Tmin 0.12 0.26 0.12 0.32
Cubic Rn, Tmin, Tmax, Rs 0.14 0.14 0.12 0.28

Due to the stratified CV, differences among results for all (Data) vs. CV statistics are small (Table 7).
Nevertheless, when comparing models using CV and all (Data) results, statistics from the CV should
be considered as true descriptors of the RVM model performance.

Table 7 also indicates that, from among the kernel types tested, the RVM model using the
“Bubble” kernel best identifies a relationship between four potential predictors (NIR band, ρ4;
fractional evapotranspiration, ETrF; leaf area index, LAI; and the band ratio Red/NIR, ρ3/ρ4) and
surface soil moisture. The results from the other RVM models, with different kernel types, showed
different selections of predictors using the forward predictor selection procedure but with poorer
statistical performance.

Figure 5 provides a detailed description of the RVM model performance with the bubble kernel
when using the same information for training and testing purposes (all (Data) statistical results). Due
to the evaluated kernel width range, some statistical results (red dots) will have a perfect score or
overfitting conditions (RSME « 0 m3/m3, η « 1), which have a poor statistical performance on the CV
results. In the same figure, for each forward predictor selection iteration, the best RVM models based
on stratified CV results (blue dots) do not suffer from these overfitting conditions.

The selection of the best RVM model for each kernel type (presented in Table 7) was performed
by assessment of the statistical performance in the stratified crossvalidation and all (Data) runs (same
as Table 7), statistical plots (same as Figure 6), and spatial mapping of the results (e.g., Figure 7) for
each of the forty-six iterations. Thus, an RVM model with the bubble kernel and two inputs (ρ4 and
ETrF) was rejected as the best model despite having all (Data) statistics of RMSE = 0.02 and η = 0.8,
as shown in Figure 5 because the spatial soil moisture map developed for this specific model exhibited
overfitting characteristics (constant soil moisture values) across the maps.

The predictor subset selected by the RVM model with the bubble kernelkernel (Table 7) indicated
the synergy and need of these predictors to estimate surface soil moisture. The NIR band is a relative
indicator of vegetation variability; ETrF indicates the water consumption ratio from the root zone;
the red/NIR band ratio, also known as the simple ratio or Ratio Vegetation Index [72], allows for
relative estimation of soil moisture from dry to moist conditions; and finally, LAI is a direct indicator
of crop biomass per pixel. These four predictors contain the necessary spatial pattern for the RVM
algorithm to estimate surface soil moisture for the crop types and status present in Central Utah (full
cover crops). In addition, the inclusion of more than one predictor in the RVM also indicates that the
spatial pattern of the surface soil moisture does not follow the spatial pattern of a single predictor
(e.g., ETrF or NDVI).
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Figures 6 and 7 show the statistical and spatial behavior of the selected RVM model (Bubble
Kernel, four predictors). In Figure 6, the adequate correlation of the RVM model to the measured
surface soil moisture is evident: 1:1 relationship between measured and estimated values, normal
(or Gaussian) distribution of the model residuals, and random pattern in the occurrence of residuals.
In Figure 7 the resulting spatial soil moisture on the surface can be seen for the four Landsat dates
used in this study. In general terms, the soil moisture values within each field tend to be alike because
of the irrigation type (gravity flooding of laser-leveled fields) employed by all farmers in the area
of study. Thus, high soil moisture values will occurs in fields recently irrigated and low values in
fields where the last irrigation event was not recent. Within fields, the RVM model seems to be able
to recognize small differences at the pixel level, which can be an indication of soil characteristics
(texture, structure, type), although these differences can fall within the accuracy of the RVM model
(CV RMSE = 0.10 m3/m3). Outside agricultural fields, it seems that the RVM is able to infer surface
soil moisture in fallow or non-cultivated areas, although no ground information is available to confirm
this. The developed RVM model does not recognize open water surfaces, given that no information
about these locations (in the southern portion of the area of study) was provided during the calibration
process. Finally, the RVM seems to have limited performance in locations with mixed pixel information
(fields with canals or houses), which creates an identifiable perimeter for most fields. This is because
Landsat 30-m/pixel resolution does not allow for a direct discrimination of non-agricultural pixels.
A spatial filter based on the National Land Cover Database NLCD [73] and used by the METRIC ET
algorithm can help to discriminate these mixed pixels in Landsat images and the soil moisture maps of
this study.

As with any proposed methodology, uncertainty sources and identified limitations in this study
must be identified. The uncertainty sources in this study were the various error sources that affect
collected soil moisture and weather data as explained by [74]. For Landsat, major uncertainty sources
are the occurrence of transparent cirrus clouds/haze, radiometric calibration, and optical distortion
on pixel reflectance as described by [75,76]. Additionally, Landsat’s camera quality degradation can
also affect the remotely sensed information [77,78]. In addition, Landsat ETM+ images presented gaps,
which were filled for this study. METRIC algorithm, despite its extensive use in research, may require
validation to determine its actual local accuracy [79]. Finally, in the presented study, the selected RVM
model is not expected to perform adequately on non-agricultural or mixed pixel areas such as roads,
urban areas, wetlands, and open water. These uncertainty sources must be taken into account when
using the presented methodology.

5. Conclusions

This study presented a methodology to estimate surface soil moisture from atmospheric variables,
Landsat vegetation indices, and energy balance products. A relevance vector machine, RVM, along
with stratified crossvalidation and forward predictor selection, was used to build the surface soil
moisture model for the irrigated lands located in the Central Utah area of study. The methodology
presented here allowed a fast discrimination from 47 potential predictors cited in scientific literature
with a calibration process that required statistical and visual (spatial) validation to determine the best
predictor subset that strongly relates to surface soil moisture.

The results of this study indicate that a single spatial parameter (e.g., ETrF or NDVI) cannot
describe the surface soil moisture behavior in temporal nor spatial scales. From 47 selected predictors
included in this study, the proposed methodology for estimation of surface soil moisture identified
four: (1) spatial vegetation variability (NIR band); (2) evapotranspiration rates (ETrF); (3) relative soil
moisture variation (Red/NIR ratio); and (4) biomass estimation (LAI). These predictors provided the
best spatial estimation of surface soil moisture in the agricultural lands at the Central Utah site, from dry
soil to irrigated conditions, regardless of the canopy development (from bare soil to full development).

The methodology presented here can be used to derive surface soil moisture for any other
agricultural site that has measured soil moisture information, regardless of the crops that are grown.
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For different crop distributions and irrigation practices than those employed in Central Utah (full cover
crops, alfalfa, corn, small grains, and basin irrigation, respectively), the proposed methodology may
select additional, or even different, predictors than the ones selected by this study. This characteristic
of the proposed methodology can be very useful for specialty crops (orchards, high value crops,
herbs, etc.), where different satellite or aerial platforms than Landsat are available (e.g., manned
aircraft, commercial satellites). In addition, the presented methodology may have application for
natural environments, if measured soil moisture information is available, as can be inferred from
the RVM results of the soil moisture model for fallow areas in the area of study. Therefore, this
methodology can improve understanding of soil-moisture-related processes in other places with
different land and crop types.

This study relied on standard procedures for Landsat vegetation indices and surface energy
balance products as proposed in scientific literature, with their related accuracies and uncertainties.
Nevertheless, embedded uncertainty in the spatial information is not expected to translate into the
proposed soil moisture model using the RVM algorithm due to the nature of the RVM statistical
modeling (as opposed to physical modeling). Nevertheless, it is advisable to apply quality control
procedures for the validation of spatial information (Landsat for this study), especially for gap-filling,
spatial evapotranspiration, and energy balance component products.

In remote sensing applications, autocorrelation in the spatial data (among bands and neighboring
pixels) is expected. This is due to optics design, selected spectral bands, and smoothing and
downsampling applications (e.g., NASA standard cubic convolution filter applied to all Landsat
records, especially on the thermal band), among others. In physical-based models (e.g., land surface
models) this autocorrelation characteristic could have a high impact on modeled results, but in the RVM
learning machine model used in this study, the statistical behavior for each of the potential predictors is
the modeled characteristic related to measured surface soil moisture. Nevertheless, within the potential
predictors included in this study, four Landsat uncorrelated inputs were evaluated (Brightness, Haze,
Greenness, and Wetness) to initially determine if these predictors were of higher importance for soil
moisture modeling. The obtained results (predictors selected by the RVM algorithm) indicated that
they were not.

Future work could include estimating soil moisture at deeper levels and soil water content (on
which this study can play an important role), along with forecasting spatial ET and soil water content
for integration in irrigation water balance operational schemes at field and command areas using
Landsat and MODIS Terra satellite platforms. In addition, procedures to quantify and minimize the
impact of data and model uncertainty sources in results need to be developed, such as initial USGS
efforts for standard Landsat surface level reflectance and temperature products.
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